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From the general formulation of the coupling of a laser wave and a scattered light wave
with density, temperature, and concentration fluctuations in a binary fluid mixture, an ex-
pression for the gain g, of stimulated concentration scattering is derived. It is shown that
this gain is usually much smaller than the gain for stimulated Brillouin scattering gz. How-
ever, in gaseous mixtures at relatively low pressures with a large difference in polarizability
as well as in mass between the two components, g, can become larger than g&. A large dif-
ference in polarizabilities increases the coupling of light to the concentration fluctuations,
while a large difference in mass produces a pronounced increase in damping of a sound wave.
The calculated values for g, /gB are compared with experimental results.

I. INTRODUCTION

Spontaneous light scattering from fluids has a
long history. The spectral triplet in the scattered
light spectrum, consisting of a central (Rayleigh)
peak and a Brillouin doublet, is well known. ' The
low-lying excitations of the medium involved in
these scattering processes are the thermal diffusion
and the acoustical phonon modes, respectively. In
a binary mixture of fluids the Rayleigh cross sec-
tion for the central component can be very much
enhanced, because the contribution from concen-

tration fluctuations can be larger than that from
temperature fluctuations. There are, of course,
many other types of excitations which contribute to
the scattered light spectrum. Examples are rota-
tional motions or 1.ibrations of anisotropic mole-
cules (inelastic Rayieigh wing scattering) and vi-
brational excitations or optical phonon modes (Ra-
man scattering). All of these spontaneous scatter-
ing processes have been studied with renewed vigor
and much greater precision by means of gas-laser
beams during the past decade. '

In principle there are stimulated scattering pro-
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cesses associated with each spontaneous process. '
The intensity in a scattered mode can be amplified
exponentially with a gain coefficient proportional to
the incident laser intensity. If this gain coefficient
is larger than the unavoidable (linear) absorption
and spontaneous scattering losses, some preferred
scattered light modes may build up to very high
intensities. Usually the stimulated process with
the lowest threshold is dominant and may deplete
the laser intensity before other processes can be
stimulated. Due to differences in a transient re-
sponse it is sometimes possible to excite two or
more stimulated processes with a high intensity
laser pulse. Since the response of low-lying hy-
drodynamic excitations is slow, they are best stim-
ulated in relatively long laser pulses. The results
of a steady-state gain theory are valid in the limit
that the spectral width of the laser is smaller than
the spontaneous linewidth divided by the gain
coefficient.

Stimulated Brillouin and Raman scattering are
most frequently observed, and their relative steady-
state and transient characteristics have been studied
in detail. Stimulated Rayleigh wing scattering in
liquids from anisotropic molecules is also well
established. 4

Stimulated scattering associated with the sharp
central Rayleigh peak is more difficult to demon-
strate experimentally without ambiguity. It is char-
acterized by a small frequency shift and is usually
difficult to stimulate by the short pulses from Q-
switched lasers. The thermal Rayleigh scattering
from temperature fluctuations induced by absorp-
tion has been demonstrated convincingly, ' and
the thermal scattering induced by the electrocalo-
ric effect in a nonabsorbing fluid has been discussed
in several papers by Fabelinskii and co-workers.

Two experiments have been reported which claim
to have demonstrated stimulated concentration scat-
tering. One of these was concerned with a binary
mixture of liquids, the other with a mixture of
gases. It is the purpose of this paper to present
a systematic investigation, analyzing the relative
importance of the stimulated scattering from den-
sity, temperature, and concentration fluctuations.
In Sec. II we present the relevant dynamical equa-
tions of a fluid mixture and discuss their range of
validity. In Sec. GI the coupling mechanisms with
the electromagnetic fields are analyzed. The con-
centration scattering can easily be made to domi-
nate the thermal scattering, but the ever present
Brillouin scattering usually has a much higher gain.
The steady-state solutions for stimulated concen-
tration and Brillouin scattering from a binary fluid
mixture are given in Sec. IV. It is shown in Sec.
V that the stimulated concentration scattering can
become dominant only in selected situations, e.g. ,
in a binary gas mixture at relatively low pressure

with two components with large differences in mass
and polarizability. Numerical calculations on the

competition between stimulated Brillouin and con-
centration scattering are compared with recent ex-
perimental results. The agreement is satisfac-
tory, but our calculations show some doubt on the
correctness of the interpretation that stimulated
concentration scattering was responsible for the
earlier observations. '

c = c ' [c ' + (1 —c ')(m, /m, )] ' (3)

Bc dc m$ m2
ec' &c [m, c '+m, (1-c ')]

[m, c+(1-c)m,]'
mg SPIES

If pressure, temperature, and mass concentra-
tion are taken as independent variables, the total
differentia1. of the Gibbs free energy per unit mass
may be written as

d4 = -s dT+vdP+ p. dc,
where the chemical potential of the mixture per unit
mass p. has been introduced:

The diffusion current may be expressed as

i= & Vp. —PVT,

where the last term represents the thermal diffu-
sion. The heat current is given by

PT
q=- p+ —- i-~VT .

The last term represents the heat current in the
absence of diffusion. These convection equations
are valid if the relative variation of the thermo-
dynamic quantities over a mean free path of the

II. REVIEW OF THE DYNAMICAL EQUATIONS IN A
FLUID MIXTURE

Consider a mixture of two fluids. ' Let there be
N, molecules of mass m& and N& molecules of mass
m, per unit volume. The chemical potentials of the
two species are p& and pa, respectively. The dif-
ferential free energy may then be expressed as

dF = —Sd T —Pd V + p, g ding+ p, qdNq .
The mass density is

p =N, m, + N~ mz = N [c 'm, + (1 - c ') mz], (2)

where X is the total number of particles per unit
volume and c ' is the relative number concentration
of the first species. It is related to the relative
mass concentration c by
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molecules is small.
The chemical potential p, is expanded as a func-

tion of P, T, and c and the coefficients of diffusion,
thermal diffusion, and barodiffusion are introduced
by the following relations:

, x=
'

PK&D ap P T
+P ~ K=y— (9)aT p

Kp= P — — = —P — P

the transport coefficients are regarded as constants,
to be obtained experimentally, which describe the
properties of a continuous medium. In a micro-
scopic approach the macroscopic conservation laws
are derived from the Boltzmann equation, according
to the Chapman-Enskog procedure. The transport
coefficients are then obtained in terms of molecular
parameters. When only binary collisions are taken
into account the following expressions are valid in
a mixture of dilute gases":

3 Tk, (, ,)}"'
SNO, 2 2 m1m2

For a dilute gas, obeying the ideal-gas law, the
chemical potentials of the individual species have
the form

p~=ksTlnc '+$~(T), pm=ksT ln(1 c')—+$g(T),

where the g's are functions of temperature only.
With these relations one finds that

(
Bp, k~T
sc r p c(l -c)[mac+(1 —c)m&]

q [T (Mi+M2)/2MiMR]
~12

(rigid sphere)

~ [T ~(M~ + M2)/2 M gM3]=2.828&&10 ~a 0"(T*)LJ 12 12 12

(Lennard- Jones pot. ),
(iv)

~i ~2

[ 1~1I2 (1 s
)&1/2] 2 (18)

Sc' N(m, -m, )c'(1 —c')
p ac P

(12)

The fundamental hydrodynamic equations for the
two component fluid mixture, which express the
conservation of mass, momentum, energy, and

number of particles of individual species, may be
written in the following forms:

(i) continuity equation (conservation of mass)

ap—+div(pV) =0; (13)

(ii} Navier-Stokes equation (conservation of
momentum}

1—+(V grad) V= ——grad P+ —v Vat P P

+ —( —,
' q+ 0) graddiv V; (14)P

(iv) concentration diffusion equation (conserva-
tion of particle number of individual species)

2c+ ~ V2T+ p W2P
ac K K
at T P (is}

In this macroscopic thermodynamic approach

(iii) thermal diffusion equation (conservation of

energy)

1/2 MT "'
-2 8893xio-'( ' }

7l

(rigid sphere)

(M, T)"'
= 2. 8893&& 10 q (qm)(T ~)~LJ (

(Lennard- Jones pot ), .
c '(i -c')N(m, -m, )Kp

p (19)

y = (sv)"'No '/k = &/n '"f, (2o)

where & is the wavelength of periodic variations
and l = 1/v 2 w No 2 is the mean free path. For y & 3
the hydrodynamic equations are valid. To be sure
that we are in the hydrodynamic regime, we have
calculated the parameter y for various gases in
Table I.

Here v, and c;& are molecular diameters in the
rigid- sphere model, a «; and a «;& are parameters
describing the Lennard-Jones interaction potential,
and fl''~'(T, ~z} are Chapman-Cowling integrals as a
function of the reduced temperature.

For very dilute gases the equations lose their
validity, because the variation of the dynamical
variables over a mean free path becomes large.
The dimensionless constant, which is characteristic
for the transition from the hydrodynamic to the
kinetic regime, may be written in the form'
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TABLE I. Gas parameters for a rigid-sphere model
at T = 300'K. o' is hard-sphere collision diameter of the
molecule in angstroms. M is molecular weight. /is mean
free path in microns. g is the shear viscosity. P is
the pressure in atmospheres.

g(A) l yM qx105
g/sec cm

2. 016 8. 986
4. 003 19.821

131.3 23. 372
146.05 13.974

0. 1123/P
0. 1770/P
0.0346/P
0.0209/P

0. 5548P
0.3520P
1.800P
2. 978P

H2 2. 731
2. 174

Xe 4. 916
SF, 6.323'

'Calculated from the measured value of q.

III. COUPLING WITH THE ELECTROMAGNETIC FIELD

O' E—
to the right-hand side of Eq. (14). For an isotropic
fluid without macroscopic flow, so that the nonlinear
hydrodynamic term (V ~ V) V may be ignored, the
combination of Eqs. (13) and (14) leads to a small
amplitude sound-wave equation in a linearized form

=P' P-~V — E +—

(22)
In this equation p may be expressed in terms of the
independent variables P, T, and c by means of the
equation of state.

From Eq. (21) it is clear that the entropy per unit
mass in the presence of an electric field is changed
by an amount

Sop 8T s, c

In a nonabsorbing dielectric the thermal diffusion
equation requires a correction term

In the presence of an electric field the differen-
tial free energy per unit mass has to be augmented
by terms due to variations in the electric field and

the dielectric constant and takes on the form

&E dE E2d&
dE= -SdT+ podc+Pp+dp— (21)

4np Sgp

Here & must be regarded as a function of the vari-
ables T, c, and p. It can be shown that the force
per unit volume for an uncharged dielectric is
changed in the presence of an electric field by an
amount'

1, 8&'t E'(8&& E' 8&

8& sPjr, 8m ~scj, r 8m sT

The last two terms are usually negligible compared
to the first term. The effect of electrostriction is
therefore to add a term

T Ba 8E2

8%pep 8T p

In the presence of an optical absorption coefficient
~„t, one has to add another term, so that the ther-
mal diffusion equation becomes

T 8 & 8E2 c~E2
Smp „8T„,8t "' S.pc, (23}

In a similar manner the concentration diffusion
equation has to be augmented, because the chemical
potential per unit mass is changed by an amount

Snp 8c p g

Instead of Eq. (16), the concentration diffusion
equation becomes

~K 2 K
8t T P

8P I 2 86
(24)

To these three equations the wave equation for
the electromagnetic field in the isotropic medium
must be added,

gf 8t 2 c2 8t2

x E — P+ — T~ — c

(26)
Solutions to the set of four simultaneous second-
order differential equations (22) —(25) maybe found
in the parametric linearized approximation, in
which the laser field

E~( r, t}= —,
'

E~ e
"~' '"~ '+ cc

is considered as a constant parameter. The scat-
tered light is represented by a backward wave with
amplitude E„ frequency ~„and wave number k„

E,(r, t)=~ E,e ' "' "+cc .
Assume for the pressure, concentration, and tem-
perature variations solutions of the form

P(r, t) =-,' P, e' ' '" +cc,

T(r, t}=~ T, e' ' ' '+cc .

(26)

Substitute these expressions into Eqs. (22)-(25) and
ignore all terms higher than linear in the four small
variables E„P&, c&, and T&. With the phase and
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frequency matching conditions (momentum and en-
ergy conservation between the waves), k =k~+k„
~ = ~~ —~„a secular determinant is obtained which
gives a general dispersion relation. Unfortunately
this relation is too complicated to afford physical
insight and it will not be written out explicitly. For
the special case E~ =E, = 0, absence of the electro-
rnagnetic field, the relation must of course reduce
to the description of sound waves in a fluid mix-
ture. ' Numerous papers have been devoted to the
description of stimulated thermal and Brillouin
scattering of light in a single-component fluid where
c =(I sE/ac=0 ~4 1B

The interest in this paper is directed toward the
concentration scattering in a nonabsorbing gaseous
mixture. A solution for this case will be presented
in Sec. IV, after some explicit expressions for the
coupling coefficients se/sP and s&/sc have been
given.

For a substance obeying the Clausius-Mosotti
relation,

« —1 4~
= —N [c'~, +(1-c )~, ),I

«+2 3

where && and &2 are the polarizabilities of the two-
molecular species, one readily obtains with the
aid of Eqs. (2)-(4)

P —- = p — =p — = —«-1 «+2

(27)

sound-wave equation may thus be written in the
form

BP 2 8P Bc
et s g gt2 8

1 4 a
+ —-n +& +X(v —1) —(&'P)

pp 3 &t

—(8v)-'p, — v,'v'E'
r, c

(29)

The last term arises from the gradient of Se/Sp in
Eq. (22), as evaluated by means of Eq. (27). This
term was inadvertently omitted by Wang. " It leads
to an additional contribution of the intensity-depen-
dent Brillouin shift. '

The Stokes wave equation (25) is reduced to the
form

~(&,) s'E, 1 &~ s'(PE, )
c 9t c ~P, ~ 8t

1 &e s (cE ) (30)
co ~c pr ~t

The concentration equation (24) takes the form

~C 2 K—=D Vc+~V'P
~t Pp

8»po D

4m (E+ 2) mim2N
( )9 [m, c+(1 —c)m, ]'

(28)
For a gas with a small optical density one may put
(~ + 2)/3- 1.

It should be noted that the coupling to the concen-
tration can only become comparable to the density
coupling for &&» &2.

IV. STIMULA i'ED CONCENTRATION AND BRILLOUIN
SCATTERING

In a nonabsorbing gaseous mixture the coupling
of the temperature with the electric field and the
concentration may be ignored, &„,=0, se/&T=O,
and Er = 0, in Eqs. (23)-(25). The temperature Eq.
(23) may be combined with the sound-wave equation.
For small thermal conductivity X, this leads to a
sound wave propagating with the adiabatic velocity
v, =~v& instead of the isothermal velocity v2. , and
an additional thermal damping term. ' Here
y = cp/cv is the ratio of the specific heats at con-
stant pressure and volume, respectively. The

(31)

The last term may be evaluated by means of Eq.
(28) in terms of 7 P, and 7 c, . It corresponds to
an intensity-dependent frequency shift of the stimu-
lated concentration scattering, analogous to a sim-
ilar term in Eq. (29) for the Brillouin scattering.

The set of three coupled equations (29)—(31) for
&„P&, and c& may now be solved by the same pro-
cedure as followed by Herman and Gray" for the
case of thermal Brillouin scattering in a one-com-
ponent fluid, where the three variables were E„P,
or pg, and Tg.

Since the characteristic relaxation times for dif-
fusion and acoustic damping are assumed to be
short, compared to the laser pulse duration, we
may look for a steady-state solution for E,. The
imaginary part of the wave vector of the Stokes wave
due to the driving terms on the right side of Eq.
(30) determines the amplitude spatial gain constant
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of the Stokeswave. We thus solve the two inhomo-
geneous equations (29) and (31) for P,* and c *, in
terms of E, and substitute into Eq. (30), using the

"ansatz" (26). One thus finds the power gain con-
stant for combined stimulated Brillouin-concentra-
tion scattering,

I E I &u,
( o . y, v,k y, v, ~ (Sp/Sc) (Se/Sc) Dk

167lcon Po Popo(sp/Sc)p r

(& s —& +i&op'k /po)Dk (Se/Sc) p r Dk'Kpy, vi(aa/Sc)p r
po(sp, /sc)p, r Po

i k I o . i v+ (d Dk Kp(ep/Sc)px
i ~B +zco&j —

l, Dk +$(d) + (32)

The following abbreviations have been used:

v2
ya) ~ (a

4gpo &+2

y, = po
— --—,'

(& —1)(e + 2),
~p c, r

ri'=
o n &++pXo( y- }1

~= &ui —ar„ki =k+k„&u, =c,k, /n .

(33)

~, k'D(ee/Sc)op r I Ei I'
16vncoPo(SP/Sc)p r &u +D'k' (34)

It assumes a maximum value for a small stokes
shift ~=Dk . We may write G, ,„=g,II, where
Ir =con I Eo I /8v is the laser intensity, and the gain
coefficient for stimulated concentration scattering
is given by

k, (s e/sc)', ,
4c, n'po(s p/sc) p r (35)

The resonance at (d = co~ leads to the usual stimu-
lated Brillouin gain with the maximum gain factor
given by

The expression (32) shows large resonant values of
the gain in the vicinity of &u = ~s (stimulated Bril-
louin gain) and in the vicinity of ~ = 0 (stimulated
concentration gain). The latter may be nearly un-
coupled from the Brillouin gain and is approximate-
ly given by

(38)

In a binary mixture the sound wave has an extra
damping term [last term of Eq. (38)] due to the
coupling with the concentration fluctuation. " This
extra damping depends on (op/Sc)p r, and conse-
quently the sound wave is heavily damped in a mix-
ture with a large difference of component masses.
The threshold of stimulated Brillouin scattering is
increased by mixing. The ratio of the gain con-
stants for stimulated concentration and Brillouin
scattering is

g kv, ri (Se/Sc},
g 2po (s &/sp),', (sv /sc), (39)

kv, qr c '(1 -c ')(a, —oo)
go 2NksT [&,c'+(1 —c') &o]

(40)

From Eqs. (38) and (28) it follows that a large dif-
ference in polarizability and a large difference in
mass of the two components is favorable to make
this ratio appreciable. Furthermore, the total
density or pressure should be kept low, because
the ratio is inversely proportional to the density.
This is a consequence of the fact that g, is propor-
tional to the density, but g~ increases proportional
to the square of the density, as the acoustic damping
constant is inversely proportional to the density. '

For a gaseous mixture Eq. (39) can be simplified
with the aid of Eqs. (11), (27), and (28) to

where

co, i E I p (se/sp) cu

32mc nv2rmconvs

g~ = ks po 2con Av, gTBp

4 1 1I'= = — —g+f + g
2po 2po 3 F P

(36}

(3'1)

with qr given by Eq. (38).

V. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENT

If one substitutes typical values for a liquid mix-
ture into Eq. (39), the ratio is found to be very
small compared to unity. For example, a mixture
of n-hexane (589o weight concentration) and nitro-
benzene (429o) gives g, /gs- 1.25 &10 '. This throws
doubt on the interpretation of the experiment de-
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TABLE II. Comparison of the concentration and Brillouin gain coefficients in a mixture of SF6 and He at total pressure
10 atm.

He

C

0
0, 1
0.2

0.3
0. 4
0. 5
0.6
0.7
0. 8
0. 9
0.95
0.98
1

qx104
mix

(g/cm sec)

l.397
1.444
1.492
1.542
l. 596
1.652
1.711
1.773
1.839
1.908
1.945
1.967
l. 982

v~x 10-4

(cm/sec}

1.509
1.608
l. 723
l. 859
2. 025
2. 233
2. 507
2. 895
3.509
4. 731
6.088
V. 635

10.194

(cm-')

0. 0145
0, 0154
0. 0165
0. 0179
0. 0194
0. 0214
0. 0241
0. 0278
0. 0337
0. 0454
0. 0584
0. 0733
0. 0979

g~x10'
{g/cm sec)

2. 474
5. 821
9.305

12.923
16.646
20. 449
24. 392
27. 932
31.035
31.898
28. 495
20. 461
4. 626

0
0. 0076
0. 0295
0.0734
0. 1568
0.30
0.596
l. 142
2.310
5. 067
7. 030
5.444
0

53.352
17.405
8. 137
4.220
2.255
1.191
0.5935
0.2711
0. 1037
0. 0262
0. 0100
0.0053
0. 0086

,x 10~0

(cm/W)

0
0. 1325
0.2396
0.3096
0.3535
0.3686
0.3534
0.3097
0.2396
0. 132V
0. 0703
0. 0287
0

scribed in Ref. 7. Near the critical point in a bi-
nary mixture, where Sp, /Sc —0, the concentration
gain could become large. The diffusion constant D
approaches zero at the same time. The correlation
length and correlation time for the concentration
fluctuations becomes very long, -10 sec. The
steady-state analysis breaks down for solid-state
laser pulses, and even for gas-laser beams it
would be difficult to keep the required coherence
for such long times. A transient analysis must be
made and the experimental difficulties would be
further enhanced by the large spontaneous critical
opalescence, although amplification of this spon-
taneous emission at high intensities may well be
detectable.

Even for gaseous mixtures it is difficult to obtain
a ratio g, /ge comparable to unity. It should be kept

in mind that the total pressure cannot be decreased
arbitrarily, because the parameter y in Eq. (20)
would become too small and the kinetic regime
would take over. Also the required path j.ength to
obtain appreciable over-all gain would be too long.

In Table II we have calculated numerical values
of the constants which appear in g, and g~ as a func-
tion of helium concentration, for a gaseous mixture
of SF6 and He at 10 atm total pressure and
T = 300 'K. The diffusion constant D= 0.037 47
cm /sec and viscosity are calculated from Eqs. (17)
and (18), using the tabulated Lennard-Jones poten-
tial parameters (Ref. 11). The adiabatic sound
velocity is calculated using the expression v,
=[(c'r, +(1-c ')y, )keT/(c'm, +(1-c ')mg)] . The
high-frequency specific-heat ratios for He andSF6-
are taken to be y, =1.667 and y, =1.333." g~, the

)0-9

.05

g(pm/W)

gg (cm')

ip-IP

.03

.02

.0(-

-)1
10

10 20 455

He PRESSURE

FIG. l. Backward Brillouin and concentration gain
coefficients as functions of He partial pressure (in atm)
keeping the partial pressure of SF6 at 5 atm.

0, I

SF .2

FIG. 2. Stokes frequency shift of the backward scat-
tered light from a mixture of SF6 and He as a function of
He concentration, starting with five atmosphere SFS.
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TABLE III. Comparison of the concentration and Brillouin gain coefficients in a mixture of Xe and He at total
pressure 10 atm.

He
c

0
0. 1
0.2
0.3
0.4
0.5
0.6
0.7
0. 8
0.9
0.95
0.98
1

gx104
mix

(g/cm sec)

2. 337
2, 296
2.257
2. 219
2. 183
2. 147
2. 112
2. 078
2, 044
2.012
1, 996
1.986
1.982

vsx 10 4

(cm/sec)

1.779
l. 872
1.981
2. 113
2. 274
2.478
2.751
.3.138
3.755
4. 984
6. 117
7.792

10.193

(cm-&)

0. 0171
0. 0180
0. 0190
0. 0203
0. 0218
0. 0238
0. 0264
0. 0301
0. 0361
0. 0479
0. 0587
0. 0748
0. 0978

g&x10
(g/cm sec)

5.453
10.372
15, 254
20. 082
24, 824
29. 428
33.800
37.745
40. 677
40. 322
34. 871
24. 347
4. 624

0
0. 0157
0. 0541
0. 1279
0.2586
0. 4853
0. 8855
1.6262
3.1129
6.3119
7.821
5.731
0

g x 1010

(cm/W)

16.830
6. 890
3.546
1.968
1.112
0.6173
0.3247
0. 1547
0. 0615
0, 0170
0, 0073
0. 0041
0. 0086

gc x 101o

(cm/W)

0
0. 1078
0. 1916
0. 2516
0. 2876
0.2996
0.2875
0.2516
0. 1914
0. 1073
0.0569
0. 0235
0

gain coefficient ge, and the ratio g, /ge are calcu-
lated from Eqs. (37), (38), and (40), respectively.

We have also calculated the gain coefficients g~
and g, for a mixture of five atmospheres of SF~ as
a function of the additional helium pressure. The
results are plotted in Fig. 1. It is seen that stimu-
lated concentration scattering may be expected to
dominate when the concentration of helium is around
0.85. The gain ratio becomes larger mainly be-
cause the damping of sound wave increases and the
Brillouin gain becomes smaller. Thus, in order
to be able to see the stimulated concentration scat-
tering one has to increase the laser power from the
value used in obtaining the stimulated Brillouin
scattering. The expected frequency behavior of
the stimulated back scattered light has been plotted
in Fig. 2. The frequency shift should increase for
the stimulated Brillouin scattering when helium is
added to SF6. As the concentration gain becomes
larger than the Brillouin gain one would see a sud-
den decrease in the frequency shift.

The numerical results for mixtures of helium and
xenon gas are given in Table III. These results
should be compared with the data reported in Ref.
8. The experiment in Ref. 8 was done for a Xe

and He mixture with He concentration c ' =0.S. At
this concentration the Brillouin shift should be
0.0479 cm ' instead of 0.055 cm ' reported. Ac-
cording to Table III the gain ratio at a total pres-
sure of 3 atm should be g, /ge= 21 in contrast to

g, /ge = 0. 1 as estimated in Ref. 8. The observed
concentration shift 0.033-0.042 cm ' agrees with
the value 6 v, = Dk~/2' = 0.032 cm '. At a higher
total pressure the stimulated Brillouin should take
over the stimulated concentration scattering as
suggested in Ref. 8; however, this should not occur
at a total pressure as low as 4 atm. In conclusion,
the theoretical calculations presented in this paper
are in partial agreement with the observation in
Ref. 8; however, the agreement is not conclusive.
Further experimental investigation of the stimulated
concentration scattering as a function of concentra-
tion and total pressure of the mixture is required.
Preliminary observations on SF6-He mixture have
shown that the onset of stimulated concentration
scattering can occur at a rather high total pres-
sure. It is clear that in problems relating to the
propagation of intense light beams in the atmos-
phere, stimulated concentration scattering may be
ignored.
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It is well established that a totally reflected light beam of finite diameter undergoes a lateral
displacement, known as the Goos-Haenchen shift. The theory for the corresponding effect in
nonlinear optics is presented. The special phase-matched case, in which both the fundamental
and the second harmonic are at critical total reflection, is shown to have a characteristic ra-
diation pattern. Since the finite beam diameter is taken into account, divergencies of earlier
theories are eliminated.

I. INTRODUCTION

When a light beam is totally reflected, there is
no net power flux normal to the boundary into the
less dense medium. There is, however, a non-
vanishing component of the poynting vector tangen-
tial to the boundary. The fields decay exponentially
normal to the boundary in the less dense medium,
but this decay of the evanescent field becomes in-
finitely slow at the critical angle, for which total
reflection first occurs. There is a singularity in
k space, as the normal component k, in the less
dense medium changes from small positive values
through zero to pure imaginary values. An aeeurate
description of the phenomenon of critical total re-
flection must consider explicitly the finite diameter
of the light beam and integrate properly over a dis-

tribution in f space around the critical point. This
problem in linear optics has been discussed by
many authors' and was solved in a rather complete
form by Artman. The field distribution of the fun-
damental light beam, of width coo in the less dense
optical medium for critical total reflection, is
shown in Fig. 1. The transverse component of the
poynting vector corresponds to a lzferal displace-
ment of the reflected beam. This displacement has
been observed experimentally and is known as the
Goos-Haenchen shift. '4

It is the purpose of this paper to extend these
considerations to the domain of nonlinear optics,
in particular, to the ease of harmonic generation
of light by a totally reflected fundamental beam.
The theory of total reflection of parametrically gen-
erated light has been given by Bloembergen and


