3 STRUCTURAL ABSORPTION

in Fig. 2 along with excess, viscous, and experi-
mental values. The variation of AF with pressure
has been shown in Fig. 1. Considering the uncer-
tainties involved in the assumption of 8, and 7, it
is obvious from Table II that the theoretical values
of (a/f2),,; have an excellent agreement with the
experimental results. This indicates quite conclu-
sively that the two-state theory can be used to de-
scribe the pressure dependence of the compression-
al losses in methyl alcohol as well. However, the
previous concept about the linear variation of AF
and AV with pressure is to be modified. Figure 1
shows that the variation of AF with pressure for
methyl alcohol is similar to the variation of its ve-
locity, which is nonlinear. Similarly, the varia-
tions of AF and velocity of water are quite similar
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and linear with pressure, thereby suggesting that
there is a correlation of AF with velocity, which
seems to be convincing, because g,, AF, and §,
(and so velocity) depend upon the internal structure
and so on the population density of the two states
under consideration in the liquid. Hence the varia-
tions of AF and c are expected to be alike, which

is true in our case. This point further supports the
assumption for 8, and 7 at 1000 kg/cm?, because
the variation of AF with pressure, as evaluated us-
ing the above assumption, is as expected. So this
successful attempt to explain the experimental curve
of the ultrasonic absorption in methyl alcohol gives
an idea about the variation of AF and B, with pres-
sure in methyl alcohol, in particular, and primary
alcohols in general.
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The ground-state energy of a mixture of spin-3 fermions and bosons in one dimension, inter-
acting with a repulsive -function potential, is analyzed. The wave function is given by repeated
use of a generalized Bethe hypothesis. The “momenta ” in the hypothesis are determined by coupled

Fredholm integral equations.

L

Consider a one-dimensional N-body problem:

N &
==2 F+2026(x;—x,), c>0 (1)
1 i i<y
for M, fermions of species 1, M, fermions of spe-
cies 2, and M, bosons, where

N=M;+My+M,, M;2My>0. (2)

In this paper we shall discuss the ground-state en-
ergy of this system, especially in the limit that
M, M,, M,, and the length L of the box go to in-
finity proportionately. A periodic boundary con-
dition is assumed, and we further assume that

M;=o0dd, M,=odd. (3)
II.

Our method of solution starts with first proving
the following:

Numerical solutions are given.

No phase separation is found.

Theorem. The ground state of the system in
question has a wave function ¥(x,---xy), which be-
longs to the irreducible representation of the per-
mutation group Sy, characterized by the following
partition:

(2+M,, 2M2"1  141-¥2) (4)

as shown in Fig. 1. Furthermore, it is the lowest
energy state among wave functions of this sym-
metry.

(To illustrate the meaning of the question an-
swered by the theorem, consider the case of two
fermions of spin up, two fermions of spin down,
and two bosons. It is easy, by a computation with
group characters, to find that any eigenfunction for
such a system belongs to one of the representations
as shown in Fig. 2. The question is which of these
does the ground-state wave function belong to?)

The proof is similar to that of a theorem due to
Lieb and Mattis.! Take the case, for example, M,
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FIG. 1. Diagram of partition (4).

=5, My=3, M,=2, N=5+3+2=10. Consider the
Schridinger equation Hy = Ey for five fermions x,,
X3, X3, X3, X5 of spin up, three fermions x;, x;, x,
of spin down, and two bosons x,, ¥, in a box so that
all x’s are between 0 and L, with periodic boundary
conditions. Call this problem 1. Next define a re-
gion R so that

(i) x,<x3s%3sx <% or cyclic permutation,
(ii) xgsx7s x5 or cyclic permutation,
(iii) all ;>0 and <L (cyclic).

Consider the Schridinger equation Hy=Ey in R with
¥=0 on the boundary of R. Call this problem 2.

The complete space L XL x --+ x L= L' is bigger
than R by a factor of (4!)(2!)=48. It is clear that
every eigenfunction y of problem 1 is also an eigen-
function of problem 2 when restricted to the region
R. It can be shown without much difficulty that,
furthermore, Y is

cyclicly symmetrical with respect
to xy, X3, X3, X4, Xs, (5a)

cyclicly symmetrical with respect to x5, x;, xg,
(5b)
symmetrical with respect to xy — x,. (5¢)

Conversely every eigenfunction of problem 2
satisfying (5a)-(5c) can be uniquely extended into
the full L'° space through the conditions of anti-
symmetry, so as to form an eigenfunction of prob-
lem 1.

Now the ground state ¢, of problem 2 evidently
can be normalized to satisfy

¥ >0 inside R, y,=nondegenerate. (6)

Symmetrization of y, with respect to x; — x;, leads,
because of (6), to the condition

Yo =symmetrical with respect to x5 — x;5.  (7)

Similarly cyclic symmetrization with respect to x;,
X, X3, X, %5 and cyclic symmetrization with re-

il

FIG. 2. Representations for the eigenfunctions of a
special 6-particle system.

spect to x5, x;, x5 show that ), satisfies conditions
(5).

Thus y, is identical, in R, with the ground-state
eigenfunction y, of problem 1. Equation (6) then
leads to

¥, >0 in R, ¥, =nondegenerate. (8)

Next, construct the operator
Y=AB,

where
A= (2] 24 permutations among 1, 6, 9, 10)

X (1+ Py 7)1+ Py q), (9)

B=[2(-1)? the 5! permutations among 1, 2, 3, 4, 5]
x[ 2 (- 1)F the 3! permutations among 6, 7, 8]

for the tableau
(4, 2%, 17], (10)

as shown in Fig. 3. By a well-known theorem,

Y, is again a wave function for problem 1 and be-
longs to the partition (10). [To prove Yy, =ABy, #0,
we observe that By, =(5!)(3!)¢;. Now A is a sum of
(24)(2)(2) = 96 permutations. Each of these permu-
tations transforms the region R, into itself.

0<X1, Xgsy X9, x10<%L’
5 L<x,, xn<ilL,
%L<x31 x8<%L,
%L<x4<55Lv

§L<xs<L.

Now R, is entirely within R, in which y, >0 by (8).
Thus Ay, >0 in R;. Hence Yy, = (5!)(31)4y, #0.]

Yy, evidently has the same eigenvalue as .
Hence they are proportional, and we have estab-
lished that ¥, belongs to the symmetry (10).

Conversely let y, be an eigenstate belonging to
symmetry (10). There exists a permutation of its
ten coordinates resulting in an eigenstate y; so that
s = BAy #0. Now i, = B(something) is evidently an
eigenstate of problem 1. Hence its energy is not
lower than that of y,, i.e., Y, is the lowest energy
state among all wave functions with symmetry (10).
This completes the proof of the theorem.

9 [i0]
8 FIG. 3. Diagram of the tableau
represented by (10).

~

[a] o] u]w]-



3 GROUND-STATE ENERGY OF A MIXTURE: - 395

1L

The problem is thus reduced to finding the ground

state with the symmetry (4). This is a problem

i‘,LGip—iA'_c,

on Al T
ip—iN'+c"?

iN-iA'-¢

iN-iN'+c iN-iA'-c’
(Bt s ber of A=M
A,( )H(iA—iA'+c')’ number o

-iB'-¢

that can be solved by repeated?'® use of a generalized
Bethe hypothesis. The result® for symmetry (4)
is given by the solution of

-n(aTas)n(a

iA-iB'+c

iB-iB'-¢

iB-iB'+¢ iB-iC'-¢’
- =M. -1
( )H(zB—zC Yy > number of B=M,

=‘g<iy—iY’—

where M=M,+ M, and ¢’'= 3¢. When L, N, M, M,
- o proportionally, the number of equations con-
tained in (11a)-(11f) becomes infinite. Fortunately,
due to the theorem below, Egs. (11c)-(11f) could
be reduced to a single equation,

Theorem. Equations (11c)-(11f) can be reduced
to the following equation:

iA-iA'+c’
H(iA—iA'—c')‘l’
so that the A’s in (11b) will satisfy (11g).
We prove it by induction. It is obvious that the

right-hand side of (11f) equals 1 since there is only
one Z'to sum over. Thus (11f) reduces to

iZ-iY'+c’ )
3 . , 7 = .
IJ(:Z—tY—c 1 (12)

To complete the induction let us suppose that Egs.
(11d)-(11f) can be reduced to the following:

iB-iA'+c’
g(iB-—iA'—c'>_1' (13)

(11g)

With the A’s considered as given (M, in number),
expansion of (13) into a polynomial equation for B
yields an equation of degree M, -1, which has M,
-1 roots. Since the B’s are different from each
other, these roots should be exactly the set of B’s,
It will be shown in Appendix A that from (13) the
following identity holds for any A:

iA-iB'+¢’ iA-id'+c
g(iA—iB'-c'>-—g<iA-iA'—c)' 14

Substitute (14) into the right-hand side of (11c), and

ivY-i¥V'+c iv-iz'-c'
#\iv-izZ'+c’

number of p=N (11a)

(11b)

) number of A =M, (11c)
(11d)

>, number of Y=2 (11e)
number of Z=1 (11f)

[

one readily obtains (11g). Thus the theorem is
proved.

[One might be tempted to reduce (11b) and (11g)
further. But as the degree of the polynomial equa-
tion for A obtained from (11g) is M - 1, it admits
more solutions than the collection of A’s which
number only M,. The quantum numbers to be dis-
cussed below serve to choose the correct A’s from
among the (M - 1) solutions. These quantum num-
bers will be determined by continuity arguments. ]

Iv.

Thus (11a) and (11b) together with (11g) are the
equations we need to solve. Taking the logarithm,

we have
pL=2m,+2.,6(2p—2A), (15a)
Toa (A=A =27J,+2,0(2A — 2p)+ 2. 4 0(2A - 24),
(15b)
0=21K,+2.,6(24 - 2A), (15¢)

where 6(x)=~-2tan"'(x/c), 16| <m, and I,, J,, and
K, are quantum numbers resulting from the term
(mod23) in taking logarithms. For the case when
all M,, M,, M, are odd, I,, J,+ 3, and K, are in-
tegers.

We shall now show that for ¢ >0 and for the ground
state with symmetry (4), the quantum numbers I,
J, and K are given by

I,=successive integers from- 3 (N-1)to 3(N-1),

(16a)
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1, J,=successive integers from 1- 3M to .,

(16b)

K, =successive integers from - 3 (M, - 1)

to $(M,-1). (16¢c)
To do this we substitute (16) into (15) and go to the
limit ¢ -0+. For concreteness, take M,=5, M,
=3, M,=3. Now we have §(x)=4nmor - 37mas c
-0+. One can readily show that the p, A, and A
values shown in Fig. 4(a) satisfy (15) and (16) in
that limit. A different set of quantum numbers I,
J, K is illustrated in Fig. 4(b). As explained in
the caption, the energy for the case of Fig. 4(a)

is lower. Generalizing this example, one obtains
(16).

V.

Now one can go to the limit N, M, M,, L -
proportionally in the case ¢ >0 and obtain integral
equations in the standard fashion:

p 1 0 X, 0
1
o '—‘ﬁ 0 + Xl -Xz Xl
T 0 0 X, 0
B,
X B, o , (17)
B, T

where X, is an integral operator:

n_nc 4
L LR = ety .

and By, B,, B, are projection operators, i.e.,

-4m -2 2 4w -4 -2mw qm
TH o T T, & T,
A
A

(b)

FIG. 4. Distribution of p, A, and Aas ¢ — 0 in
the case N=11, M=6, M,=3 (i.e., My=5, M,=3, M,=3).
(a) For closed-packed quantum numbers (16): I,
=(=5, =4, **°4, 5), Jp=(=3, =3--+ 3, %), K,=(~1,0,1).
Fiveofthep’s, four of the A’s, and three of the A’s are
crowded near the origin. Notice that each A is in between
two p’s, and each A is in between two A’s. (b) For the
same set of I, and J, as above but for K4=(-2,0, 2).
One p jumps from the origin to 27/L and another from
the origin to —2m/L. It is clear that the energy (=Z:p2)
is smaller for (a).

|

p(k) for |k|<b,
(k| Byp)= < . (19)
0 for |k|>b,

Here by, by, b; are real positive numbers. In ad-
dition, we have

M;+M,+M, N %
AT e 2 k)dk,
L L= ), P® (20)

and the energy E is given by

E/L= |0 Kptk)dk. (21)
VI
Note that
X, X=X pum » (22)
Xp=e™""Y if (k|y)=e?iok, (23)

By integrating the second or third equations of (17)
over all real 2, one obtains the following:

(i) b,=0 - M,=0 (i.e.,no bosons,

agrees with Ref. 2),
(ii) by=w = M,=0 (i.e.,no spin-down fermions),
(iii) by=c - M;=M, (i.e.,spin-up and -down
fermions equal in number),
(iv) by=b,= - M;=M,=0 (i.e., no fermions,
agrees with Ref. 4).

Now assume b; or b, or both to be # ., One can
eliminate p and 7 from (17) and obtain

0=XBy(1/271) + (X,BoX, - X, +X,B,X,)B,0. (24)

Using B?=B,, we obtain

B,0= B X,By(1/2m)+ (R_+ Q,)(B,0), (25)
where

Q.=B,X,(B, - 1)X,B,, (26)

Q,=B,X,B,X,B, . (27)

Now _is a nonpositive operator. The maximum
eigenvalue of Q, is 1 if b,=b,= = (for which Q,= X,).
For b; or b, or both #«, the maximum eigenvalue
of @, is <1. Thus in this case Q_+, has a maxi-
mum eigenvalue <1, and (25) is a nonsingular Fred-
holm equation. Thus (17) has a unique solution.
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In the following, we will take b, = = so that spin-
up and spin-down particles are equal in number.
For a fixed total number M, + M, of fermions and a
fixed number M, of bosons, this system gives! the
lowest energy. When b, >0, one can expand quan-
tities in power of M ,/L which is of the order of b,;
the energy thus obtained gives the energy of mixing
of bosons in the fermion system. It will be shown
in Appendix B that one can readily obtain, for a

fixed density,
(~———1"‘E L) f pu(k) dk

(01
y —fbo kzpl(k)dk>+ coey,  (28)
-bg

where (E/L), is the energy of the pure fermion sys-
tem at density »,=N/L and p,(k) is given by (B9).
[1t is clear that p,(k) is proportional to the change
of distribution function of the fermions when bo-
sons are added to the system. ]

As for the case b, >~ = so that N~ M,, the energy
in the expansion of (N - M,)/L gives the energy of
mixing of fermions in a boson system. At a fixed
density, one readily obtains (see Appendix C)

E =<£> +<N_-A_4a>’ Ll
L \L/,”\ L 12¢

[52-4(2))
Y, dry 70— L/,
where (E/L), and 7, refer now to the energy and
density of the pure boson system. That the first
two powers of (N - M,)/L are absent from this for-
mula is easy to understand: At fixed N a substitu-
tion of one (or two) fermions for one (or two) bo-

sons in a pure boson system cannot change the
ground-state energy.

*y (29)

VIIL

We solve (24) numerically by applying Simpson’s
rule to the integrals on a sufficiently fine grid and
then iterating the equation to yield approximate
values of o(k) on the grid. The functions p(k) and
7(k) are then computed from the first and second
equations of (17), and E/L, N/L, M,/L are com-
puted from (20) and (21). By using different values
of by and b, each time, fixing b,= =, one obtains the

|

II; GA-iB+c")=II, (- iB)=a*"!

=QLa-2Za) " [Za-Za)a -

=Ca-2ayYa*-M,. @-a)]-

%22, (iB)+a®
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T T T T

1 1
o Z 4

1 1
s/r 6 8

FIG. 5. Ground-state energy E/N plotted as function
of s/r at density »=0.5, s=M,/L. We take c=2 and
by== (i.e., M{=M,) in the numerical computation.

ground-state energy E/L for various values of N/L
and M,/L. It takes about ten iterations of (24) to
get three-digit accuracy. The energy E/N plotted
in Fig. 5 is for a fixed density and is obtained by
interpolation from calculated data. The smooth
concave nature of the curve indicates no phase sep-
aration, in contrast to the case of real He*-He!
mixture which shows® a phase separation at 0 °K.

APPENDIX A
Write
iA-c'=a R

iA+c'=a.

Equation (13) then becomes, as a polynomial equa-
tion for B:

(iB)* - (L a)(iB)*'+ (2 aa)(iB)*-2 -

= (same with a -a),

where (2 aa) means sum over all pairs of diffevent
a’s,etc., and a=M,, i.e.,

(iB)*'(a-2.a) - (iB)**Q_aa-2.a3)+ +--=0

From the relationship between the roots and the
coefficients of a polynomial equation, one obtains

2.(iB)=Caa-2 aa)Qa-2.a)",
2 (iB)(iB)= (O aaa - 2 aaa)(Xa-2.a)", etc.

We can now evaluate the numerator of the left-hand
side of (14):

2. GB)GB)~ ...
Q. aa-2.aa)a*%+...]

[a°-T, @G-a")]} =-Ca-28)", @-a’).
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Similarly the denominator of the left-hand side of
(14) is

Il; @-iB)=Ca-2.3)"II, (a-a’).
Taking the ratio one obtains (14).

APPENDIX B

When b, ~0, the second equation in (17) can be
expanded as follows (one takes b, = « here):

_1 (% _cpar 1 f 2co(k) dk
T72m )y /44 k—E'Y 21)e Fr(k-FF

1 c 3
“2r Fay g 2070+ 002). (B1)

One also has

s=M,/L= j_:: (k) dk = 2b,7(0)+ O (). (B2)

If one writes p and o in the power expansion of s,

D=Pg+SPy+S2pa+ "re,  O=0y+S0+ 820+ o+,

(B3)

then by substituting (B3) into (17) and by using (B1)
and (B2), one obtains the following in operator
forms:

po=1/2m+X,00, 05=X,Bopy— X0, , (B4)

p1=X101, 01=X,Bop;— X201+ X,&, (B5)
where &(k) is defined as a 6 function,

(k|&)=06(k). (B6)

Note that (B4) are the integral equations for the
fermion system. Eliminating p, in (B5), one obtains

0y == X (1 = B)X, 0y + X,£ . (B7)
Thus one has

o,=[1+X,(1 -By)Xx,]"' X, ¢, (B8)

p1=Xi[1+ X, (1 - B)X, ]\ X,& . (B9)

The density »=N/L and the energy E/L are given
by

r= j:g podk+s j_ﬁg p1dk=7y+Sf, (B10)

E/L= [0 Kpydk+s [0Fpydk=(E/L)o+sg, (B11)

where 7, and (E/L), denote quantities with respect
to the fermion system. At fixed density », one has

day,
Ar=—L Ap +As f=0,

db, (B12)

E (E d(E/L)
== L Ag -
L <L>,)+ b, Nbothsce

e

dary

The expansion (28) for fixed density immediately
follows from the above. Note that from (B4),

1 1 1
= —_— —_ B
Po= o * X1 T X (1= By)X, X1B°(2n>’ (B14)
and by (B9) one has
£= J 30 py(k) de=2mpy(0) - 1. (B15)
-0

APPENDIX C

When b, =~ «, it is more convenient to use the fol-
lowing equations derived from (17):

p=1/2n+7, (c1)
T=X,Byp — Xp(1 = B)T . (C2)

Let us write p=py+ p;, T=T7y+ Ty, such that
po=1/2n+T1,, (C3)
To=X2Bopo ; (C4)
P1=Ty, (C5)
T1=X3Bopy = Xp(1 = By)Ty = X,(1 = By)7, (C6)

(C3) and (C4) give the equations for a boson sys-
tem:

Po = 1/277+XzBoPo ’ (CT)
with solution
Bypo= (1 - BoX,Bg)'Byl/(2m) !, (C8)

and (C5) and (C6) give a single equation for 7,,

Tl = XZBOTI - Xa(l" Bg)(Tl +To) . (cg)
Integration of (C2) over all real k gives
W =M)/L=2 f,, 7(k)dk. (C10)

The energy E/L and density r=N/L are given by

¥= j_ig (po+ py)dE =74+ j_:g 1,dk, (C11)

E L) L}
-= kz(po+p.1)dk=<£ + Kt dk. (C12)
L -bgy L 0 ~by

0

As b, is very large, we can make the following ap-
proximation in (C11) and (C12). From (C9), we
have

BOTl = BOXZBOTI - BOXZ (1 - BZ)(TVI + To) N
and thus
ByTy = = (1 = ByX3By) ' BoX, (1 = By) (T, + 7o) . (C14)

Since

(C13)

2c 4ck

. 1
(k| ByX,(1 - B,) |k )='2“"<k—,g+;,7+ ) as k' ,

(C15)
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(C14) becomes

1 1
= - - = ves >~ B
BOTX lJ,(l _B ’.'zBo Bo 21f)+ == UDoPg

(C16)
where pu is the integral
= 1w i5s, (2¢/R"3) T+ To)dR. (€17)
Then (C11) and (C12) become
r=7y- ur,, (c11)
£2(2) (5.
Now let us write 7,= ¢+ ¢ in (C9) such that
¢==X,(1 - By)p - X,(1 - By)7y, (C18)
==X3(1 = By~ BoJ+ XzBo¢ . (C19)

By arguments similar to those in deriving (C16)
and by (C4), which implies that

1 1
‘ro(k) 'Ez' O(k ) as k-, (C20)
we have
¢ =~-[1+X,(1 - B,)]" X,(1 - B,)ry, (c21)

X,Byp=— XzBo[l +X,(1 - Bz)]'1 X,(1 = By)1y

~const X X,B, %1, (C22)
where
k") ., ( 1 )
~ L= de'=0( -5 c23
.[h >y R k=0 b3/ (c23)

From the above and (C19), it will readily be seen
that we can neglect the contribution of ¥ to (C10)

and (C17) in our lowest-order calculation. Then
(C18) and (C20) gives
= —!‘02 —1— e e -
o (k) or B as k~, (C24)

Using the above and (C20) to evaluate (C10) and
(C17), we obtain

(N = M,)/L = 2cry/ by, (C25)
r=ry— 73 (2¢2/37b3), (C26)
E E E 20
(55 om

The expansion (29) for a fixed density immediately
follows.
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The macroscopic dynamics of classical many-component plasmas in electric and magnetic
fields is formulated in terms of scalar complex wave equations which contain pressure and

electromagnetic potentials.

The complex wave equation of each particle component is shown

to be mathematically equivalent to the nonlinear conservation equations of mass, vector mo-
mentum, and energy. Thus, the description of a plasma by wave equations leads to a consider-
able mathematical simplification compared to the conventional many-fluid electromagnetohydro-

dynamics.

As an elementary illustration of the wave-mechanical formalism, the dispersion of

longitudinal and transverse electromagnetic waves in an electron plasma is treated.

I. INTRODUCTION

The macroscopic dynamics of classical plasmas
is determined by the complete set of conservation

equations for mass, vector momentum, and energy
of each component. In the electromagnetohydro-
dynamic approximation for a dissipation-free plas-
ma consisting of » components, these field equa-



