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in Fig. 2 along with excess, viscous, and experi-
mental values. The variation of 4F with pressure
has been shown in Fig. 1. Considering the uncer-
tainties involved in the assumption of P „and 7, it
is obvious from Table II that the theoretical values
of (o./f )„, have an excellent agreement with the
experimental results. This indicates quite conclu-
sively that the two-state theory can be used to de-
scribe the pressure dependence of the compression-
al losses in methyl alcohol as well. However, the
previous concept about the linear variation of AF
and 4V with pressure is to be modified. Figure 1
shows that the variation of 4F with pressure for
methyl alcohol is similar to the variation of its ve-
locity, which is nonlinear. Similarly, the varia-
tions of &F and velocity of water are quite similar

and linear with pressure, thereby suggesting that
there is a correlation of 4F with velocity, which
seems to be convincing, because P„, ~F, and Po
(and so velocity) depend upon the internal structure
and so on the population density of the two states
under consideration in the liquid. Hence the varia-
tions of ~ and c are expected to be alike, which
is true in our case. This point further supports the
assumption for P„and ~ at 1000 kg/cm, because
the variation of ~F with pressure, as evaluated us-
ing the above assumption, is as expected. So this
successful attempt to explain the experimental curve
of the ultrasonic absorption in methyl alcohol gives
an idea about the variation of hF and P „with pres-
sure in methyl alcohol, in particular, and primary
alcohols in general.
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The ground-state energy of a mixture of spin-2 fermions and bosons in one dimensio~, inter-
acting with a repulsive 4-function potential, is analyzed. The wave function is given by repeated
use of a generalized Bethe hypothesis. The "momenta" in the hypothesis aredeterminedby coupled
I'redholm integral equations. Numerical solutions are given. No phase separation is found.

Consider a one-dimensional N-body problem:

for M, fermions of species 1, Mz fermions of spe-
cies 2, and M, bosons, where

N = Mq+ Mp+ Mq, M( & M2& 0.
In this paper we shall discuss the ground-state en-
ergy of this system, especially in the limit that
M„M~, Ml„and the length L of the box go to in-
finity proportionately. A periodic boundary con-
dition is assumed, and we further assume that

M, = odd, M& = odd.

Our method of solution starts with first proving
the following:

Theorem. The ground state of the system in
question has a wave function P(x, ~ ~ x„), which be-
longs to the irreducible representation of the per-
mutation group S„, characterized by the following
par tition:

(2+ M 2Hz-1 tz'g-Nz) (4)

as shown in Fig. 1. Furthermore, it is the lowest
energy state among wave functions of this sym-
metry.

(To illustrate the meaning of the question an-
swered by the theorem, consider the case of two
fermions of spin up, two fermions of spin. down,
and two bosons. It is easy', by a computation with
group characters, to find that any eigenfunction for
such a system belongs to one of the representations
as shown in Fig. 2. The question is which of these
does the ground-state wave function belong to?)

The proof is similar to that of a theorem due to
Lieb and Mattis. ' Take the case, for example Mg
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FIG. 1. Diagram of partition (4).

spect to x6, x7, x, show that gp satisfies conditions
(5).

Thus gp is identical, in R, with the ground-state
eigenfunction g, of problem 1. Equation (6) then
leads to

= 5, M& = 3, M~= 2, N = 5+ 3+ 2= 10. Consider the
Schrddinger equation Hg= EP for five fermions x„
x2 x3 x4 x5 of spin up, three fermions x6, x„xs
of spin down, and two bosons xg x1p in a box so that
all x's are between 0 and J, with periodic boundary
conditions. Call this problem 1. Next define a re-
gion R so that

g, & 0 in R, g, = nondegenerate.

Next, construct the operator

Y=AB,

where

A = (F 24 permutations among 1, 6, 9, 10)

(8)

cyclicly symmetrical with respect
o X1y X2y X3y X (5a)

cyclicly symmetrical with respect to x„x„x„
(5b)

symmetrical with respect to xg x1p. (5c)

Conversely every eigenfunction of problem 2

satisfying (Sa)-(5c) can be uniquely extended into

the full L' space through the conditions of anti-
symmetry, so as to form an eigenfunction of prob-
lem 1.

Now the ground state gp of problem 2 evidently
can be normalized to satisfy

t(Ip &0 inside R, gp= nondegenerate. (6)

Symmetrization of gp with respect to x, —x,p leads,
because of (6), to the condition

go= symmetrical with respect to x —x,o. (7)

Similarly cyclic symmetrization with respect to x1,
xg x3 x4 x5 and cyclic sy mmetr ization with re-

(i) x, & xz&x, &x4&x, or cyclic permutation,

(ii) x~ & x~ s x, or cyclic permutation,

(iii) all x, & 0 and & I. (cyclic).

Consider the SchrMinger equation Hg= Eg in R with
g= 0 on the boundary of R. Call this problem 2.

The complete space L & L x ~ ~ ~ && L = L' is bigger
than R by a factor of (4!)(2!)=48. It is clear that
every eigenfunction g of problem 1 is also an eigen-
function of problem 2 when restricted to the region
R. It can be shown without much difficulty that,
furthermore, g is

x (1+P2 ~}(1+Pq ~}, (9)

B= [g(- 1) the 5! permutations among 1, 2, 3, 4, 5]

x [P ( —1) the 3!permutations among 6, 7, 8]

for the tableau

[4, 2', I'], (10)

Now R, is entirely within R, in which t!I, &0 by (8).
Thus AP, &0 in R, . Hence Yg, = (5!)(3!)A$,$0. ]

Yg, evidently has the same eigenvalue as g1.
Hence they are proportional, and we have estab-
lished that g, belongs to the symmetry (10).

Conversely let g& be an eigenstate belonging to
symmetry (10). There exists a permutation of its
ten coordinates resulting in an eigenstate g3 so that
g4= BAP~ $0. Now $4=8(something) is evidently an
eigenstate of problem 1. Hence its energy is not
lower than that of g„ i. e. , g, is the lowest energy
state among all wave functions with symmetry (10).
This completes the proof of the theorem.

as shown in Fig. 3. By a well-known theorem,
Yp, is again a wave function for problem 1 and be-
longs to the partition (10). [To prove Yt!I, =ABP, WO,

we observe that Bg, = (5!)(3!)g,. Now A is a sum of
(24)(2)(2) =96 permutations. Each of these permu-
tations transforms the region R, into itself.

1
0&X1y xgp xgp xjp& 5 L y

1 25L&xg, x~&5L,
2 3
& L&x„x,& —,L,
3
—.„L&x,& 5 L,
4
—,L&x, &L.

:3

FIG. 2. Hepresentations for the eigenfunctions of a
special 6-particle system.

s eliot
2
5 8
4

FIG. 3. Diagram of the tableau
represented by (10).



GROUND-STATE ENERGY OF A MIXTURE. 395

III.

The problem is thus reduced to finding the ground
state with the symmetry (4). This is a problem

that can be solved by repeated ' use of a generalized
Bethe hypothesis. The result' for symmetry (4)
is given by the solution of

I I
iP —i& -c

= il
gp —g+ +c

number of p-N (1 la)

n- ip'- c' „. s~- s~'- c A. i~ —iA'+ c'

.. (-- '-. ) --..(--- —.)"..(--"- )

number of A=M

number of A=M~

(lib)

iB —iA —c' ~. iB —iB —c &. iB —iC + c
number of B=M~-1 (lid)

~ ~ ~

iY fX-+c fY fY-+e fY iZ -—c
number of Y= 2p(,. . . = n, , ,„,rr,. . (lie)

cZ-iY + c sZ-iZ + c
zZ lY c z& sZ LZ e

number of Z=1

aA —iA'+ c'
rr sA —zA —e (»g)

so that the A's in (lib) will satisfy (llg).
We prove it by induction. It is obvious that the

right-hand side of (llf) equals 1 since there is only
one Z to sum over. Thus (llf) reduces to

IIZ iY +c-
Pl, iZ-~Y -c

To complete the induction let us suppose that Eqs.
(lid)-(llf} can be reduced to the foilowing:

(12)

I IiB —iA +c
iB —iA —c (13)

With the A's considered as given (M, in number),
expansion of (13}into a polynomial equation for 8
yields an equation of degree M, —1, which has M,
—1 roots. Since the B's are different from each
other, these roots should be exactly the set of B's.
It will be shown in Appendix A that from (13) the
following identity holds for any A:

iA —iB +c iA —iA +cg sA —sB —c ~. sA —sA —c

Substitute (14) into the right-hand side of (llc), and

where M = M, + Mz and c =
& c. When L, N, M, M,-~ proportionally, the number of equations con-

tained in (lla)-(1lf) becomes infinite. Fortunately,
due to the theorem below, Eqs. (1lc)-(llf) could
be reduced to a single equation.

Theorem. Equations (llc)-(llf) can be reduced
to the following equation:

one readily obtains (1lg). Thus the theorem is
proved.

[One might be tempted to reduce (lib) and (llg}
further. But as the degree of the polynomial equa-
tion for A obtained from (llg) is M —1, it admits
more solutions than the collection of A's which
number only M, . The quantum numbers to be dis-
cussed below serve to choose the correct A's from
among the (M —1) solutions. These quantum num-
bers will be determined by continuity arguments. ]

IV.

Thus (1la) and (lib) together with (1lg) are the
equations we need to solve. Taking the logarithm,
we have

pL = 2wlp+ Qp 8(2p —2A), (15a)

p, , 8 (A A') = 2-w Z, + /, 8 (2A 2p)+ &„8(2A-- 2A),

(15b)

0= 2wK~+Z g8(2A —2A), (15c)

where 8(x)= —2tan '(x/c), l8 I & w, and I~, J~, and
K„are quantum numbers resulting from the term
(mod2wi) in taking logarithms. For the case when
all Mg I M2I Mg are odd, I~, J& + —,', and K„are in-
tegers.

We shall now show that for c &0 and for the ground
state with symmetry (4), the quantum numbers I,
J, and K are given by

I~ = successive integers from ——,
'

(N —1) to —,
'

(N —1),

(isa)
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K„=successive integers from ——,
'

(M, —1)

(16b)

—,'+ J~= successive integers from 1- —,'M to ~ p(k) «r lkl &b~

(k
I B,p) =

to 2 (MI, —1). (16c)
Here bo, b„b& are real positive numbers. In ad-
dition, we have

To do this we substitute (16) into (15) and go to the
limit c-0+. For concreteness, take M, = 5, M&

=3, M, =3. Now we have e(x)= —,'v or ——,'w as c
-0+. One can readily show that the p, A, and A
values shown in Fig. 4(a) satisfy (15) and (16) in
that limit. A different set of quantum numbers I,
J, K is illustrated in Fig. 4(b). As explained in
the caption, the energy for the case of Fig. 4(a)
is lower. Generalizing this example, one obtains
(16}.

V.

Mi+ M2+ Mi, N 0
(„)L (20)

M2+ MI, M
L L

b(

o(k)dk, ~ = il 7'(k)dk,

(21)

Note that

and the energy E is given by

BIL = J o k p(k)dk.

Now one can go to the limit N, M„M~, L- ~
proportionally in the case c &0 and obtain integral
equations in the standard fashion:

XnXm = Xft+m y

x„i{=e"'"
g if

(klan)=e""

(22)

(23)

I )
0

I
+

2 7f

Bo

0 Xg 0

Xi —Xp Xi

(0 X, o/

(17)

By integrating the second or third equations of (17)
over all real. k, one obtains the following:

(i} bz
—-0 —Mi, = 0 (i. e. , no bosons,

agrees with Ref. 2),

(ii) b2-— —Mz ——0 (i. e. , no spin-down fermions),

(iii) h, = ~ - M, =Ma (i.e. , spin-up and -down

fermions equal in number),
where X„ is an integral operator:

(18)

(iv) bi = b2 = ~ - M, = M2= 0 (i. e. , no fermions,

agrees with Ref. 4).

and B» B„B~are projection operators, i. e. ,

Now assume b, or b& or both to be c ~. One can
eliminate p and r from (17) and obtain

o= XBO(l/2v)+ (XiB(pCi —Xg+XIB2X,)B,o. (24)

~ll I
I I I I

IIIIII
I

I I
II

(a)

277' 47y'

P
I
I

-47F' -2K

P
Using B,=B„we obtain

Bio= BX iB(O1 /2w) +(0 +A„)(B,o),

where

(25)

FIG. 4. Distribution of p, A, and A as c —0 in
the case N=ll, M=6, M~=3 (i.e. , M(=5, M2=3, M~=3).
(a) For closed-packed quantum numbers (16): I&=(- ) —

~
'''

)~ JA=(-~. —2' ' a) ~s) Kg=(-, o, 1).
Five of the p's, four of the A' s, and three of the A's are
crowded near the origin. Notice that each A is in between
two p's, and each A is in between two A's

~ (b) For the
same set of I& and JA as above but for Kz= (-2, 0, 2).
One p jumps from the origin to 2~/L and another from
the origin to —2~/L. It is clear that the energy (=g p )
is smaller for (a).

0 =BIX,(BII —l)XiBi, (26)

A, = B(XiBpXiBi . (27)

Now 0 is a nonpositive operator. The maximum
eigenvalue of A, is 1 if b2-—b, = ~ (for which Q, =X3).
For b, or b2, Or bOth C~, the maximum eigenvalue
of 0, is &1. Thus in this case 0 +0, has a maxi-
mum eigenvalue & 1, and (25) is a nonsingular Fred-
holm equation. Thus (17) has a unique solution.
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VII.

In the following, we will take b, = ~ so that spin-
up and spin-down particles are equal in number.
For a fixed total number M, + M~ of fermions and a
fixed number M, of bosons, this system gives' the
lowest energy. When bz -—0, one can expand quan-
tities in power of M, /L which is of the order of b„.
the energy thus obtained gives the energy of mixing
of bosons in the fermion system. It will be shown
in Appendix B that one can readily obtain, for a
fixed density,

E E Mb d(E Lp o

r =.5

Z q
UJ

I I

4
~ .6

FIG. 5. Ground-state energy E/+ plotted as function
of s/r at density r = 0.5, s = Mb/I . We take c = 2 and
$& ——~ (i.e. , M~ —-M2) in the numerical computation.

bp

x — k p, lk)dk) ~ ~, (28)
-bp

where (E/L)0 is the energy of the pure fermion sys-
tem at density ro=N/L and p, (k) is given by (B9).
[It is clear that p, (k) is proportional to the change
of distribution function of the fermions when bo-
sons are added to the system. ]

As for the case bz = ~ so that X=M„ the energy
in the expansion of (N M~)/L giv-es the energy of
mixing of fermions in a boson system. At a fixed
density, one readiiy obtains (see Appendix C)

E E N-Mb

ground-state energy E/L for various values of N/L
and M,/L. It takes about ten iterations of (24) to
get three-digit accuracy. The energy E/N plotted
in Fig. 5 is for a fixed density and is obtained by
interpolation from calculated data. The smooth
concave nature of the curve indicates no phase sep-
aration, in contrast to the case of real Hes-He4

mixture which shows' a phase separation at 0 K.

APPENDIX A

Write

iA —c =a, iA+c =a.

1 d(E/L)o 1 E
X + ~ ~ ~

Kp dip &p L p
(29}

Equation (13) then becomes, as a polynomial equa-
tion for B:

where (E/L)o and ro refer now to the energy and
density of the pure boson system. That the first
iwo powers of (N- M~)/L are absent from this for-
mula is easy to understand: At fixed N a substitu-
tion of one (or two} fermions for one (or two) bo-
sons in a pure boson system cannot change the
ground-state energy.

VIII.

We solve (24) numerically by applying Simpson's
rule to the integrals on a sufficiently fine grid and
then iterating the equation to yield approximate
values of o(k) on the grid. The functions p(k) and
7 (k) are then computed from the first and second
equations of (17), and E/L, N/L, M~/L are com-
puted from (20) and (21). By using different values
of bp and b, each time, fixing b, = ~, one obtains the

I

{iB) —{2a)(iB) '+ (P aa)(iB)

= {same with a -a),
where (P aa) means sum over all pairs of different
a s, etc. , and e = Mb, i. e. ,

(iB) (Za- Za) —(iB) (g aa —Paa)+ ~ ~ ~ = 0.

From the relationship between the roots and the
coefficients of a polynomial equation, one obtains

P (iB)= (2 aa —Z I)(P a —2 a)

P(iB)(iB)= Qaaa —Paar)(ga —Za), etc.

We can now evaluate the numerator of the left-hand
side of (14):

IIe (iA —iB+ c') = IIe (a —iB) = a ' - a' Z, (iB)+a' P (iB)(iB)—~ ~ ~

= {Pa—QB) [(Pa- Za)a ' —(Paa —~a)a' + ~ ~ ]

=(Pa-Pa) '([a'-II, . (a —a')] —[a -II,. (a —a')]) =-(Za-Pa) 'II,. (a-a').
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Similarly the denominator of the left-hand side of
(14) is

8 ~ dEI o (813)

II (a —iB)= (Za —Z5) ' II, -(,a —a').
Taking the ratio one obtains (14).

The expansion (26) for fixed density immediately
follows from the above .Note that from (84),

APPENDIX B

When bo-—0, the second equation in (17) can be
expanded as follows (one takes 5, = ~ here):

I 'o cp(k) dk 1 2ctv(k) dk

,, c'/4+ (k- k')' 2o . c'+ (k k'-)'

1 1 1

2v ' I+ X, (1 —Bo)X, 2v

and by (89) one has

j= j,' p, (k)dk=2spo(0)-1.

APPENDIX C

(814)

(815)

1 c
+

2 2/4 k2 2bov(0)+ O(bo) .

One also has

(81)
p= I/2o+ v,

v = XoBop —Xo(1 —Bo)v .
(Cl)

(C2)

When bz -—~, it is more convenient to use the fol-
lowing equations derived from (17):

s=Mo/L= J o v(k)dk=2bov(0)+O(bo). (82)

If one writes p and a in the power expansion of s,
2p= po+ spi+ s p2+ O'= CFo+ Sa'i + S Op + ~ ' ',2

(83)

then by substituting (83) into (17) and by using (81)
and (82), one obtains the following in operator
forms:

Letus write p= po+ pi, T=To+7'i such that

po = 1/2v+ vo,

~o = XaBopo

pi ~1 y

vi = XoBopg —Xo(1 —Bo)vg —Xo(1 —Bo)vo,

(C3)

{C4)

(c5)

(C6)

(C3) and (C4) give the equations for a boson sys-
tem:

po = I/2m+ Xvao i oo = XlBopo —Xooo

pi = Xicri, ai —XiBopi —Xgcri+ Xi(,
where $(k) is defined as a 5 function,

(84)

(85)

po = I/2w+ XoBopo

with solution

Bopo = (1 BoXoBo) Bo1/(2vv)

(C7)

(C8)

{kI (& = 5(k) . (86)

Note that (84) are the integral equations for the
fermion system. Eliminating p, in (85), one obtains

and (C5) and (C6) give a single equation for v„
v v

= XoBov, —Xo(1-Bo)(v, +vo) .
Integration of !C2) over all real k gives

(CQ)

o, = —X, (1 —Bo)X,a, + X,$ .
Thus one has

(87) (C10)(N —Mo)/L= 2 J v(k)dk.""2
The energy E/L and density r=N/L are given by

a, = [1+X, (1-Bo)Xf] X,$,
p, =Xv[l+X|(l —Bo)X,] 'X,$.

(86)

(89)

r = J,'o p, dk+ s J ,'o p, dk = r, + sf, (810)

The density r= N/L and the energy E/L are given
by

r= J,' (p, + p, ) dk= r, + J ' v, dk,
0

(C11)

o z g ( o
k (po+ p, )dk= — + II k vvdk. (C12)

As b~ is very large, we can make the following ap-
proximation in (C11) and (C12). From (C9), we
have

E/L = J „o k po dk+ s J o k p, dk = (E/L)o+ sg, (811) Bov, = BoXoBov, —BoXo(1 —Bz)(v., + vo),

and thus

(c13)

where ro and (E/L)o denote quantities with respect
to the fermion system. At fixed density r, one has Bov, = —{1—BoXoBo) BoXo(1 —Bo)(v, + vo). (C14)

Since
hbo+4s 'f =0,D

dbo

E E d(E/L),

(812)
(kiBoXo{1—Bo)ik ) =

2 ~,~+,o + ~ ~ ~ as k —~ i
1 2c 4'

(C15)
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(C14}becomes XpBg P = —XpBp[ 1 + X2 (1 —B2)] Xp (1 —Bp, }To

1 1
0 g I 1 g g 0 2

+ I 0P0&
2 0

(C16)
where

=const X X2B0 & 1, (C22)

where p is the integral

p, f }y [&g (2c/k )(rg+ rp)dk

Then (Cll) and (C12) become

r —ro —pro,

Now let us write 7', = P+ g in (C9) such that

p =- Xg(1 —Bg)p —Xg(1 —Bg}po,

g = —X2 (1 —B2 —Bo)g+ XpBO Q .

(C17)

(C11')

(C12')

(C18}

(C19}

const- &p(k'} i 1
P2 dk=O- —

qla i&az k 2
(C23)

roc 1
P(k)= — —q+ ~ ~ ~ as k-~.

2m k
(C24)

Using the above and (C20) to evaluate (C10) and

(C17), we obtain

(N —Mg)/L = 2cro/vbp, (C25)

From the above and (C19), it will readily be seen
that we can neglect the contribution of g to (C10)
and (C17) in our lowest-order calculation. Then
(C18) and (C20) gives

By arguments similar to those in deriving (C16)
and by (C4}, which implies that r = r, —p o (2c /3vba), (C26}

ro(k)= r+0 -r as k-~,roc 1 1
m k k

we have

(C20) L- L 0
0 L 03rb23 (C27)

P = —[1+Xp(1 —B~)] 'Xp(1 —Bp)ro, (C21)
The expansion (29) for a fixed density immediately
follows.
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The macroscopic dynamics of classical many-component plasmas in electric and magnetic
fields is formulated in terms of scalar complex wave equations which contain pressure and
electromagnetic potentials. The complex wave equation of each particle component is shown
to be mathematically equivalent to the nonlinear conservation equations of mass, vector mo-
mentum, and energy. Thus, the description of a plasma by wave equations leads to a consider-
able mathematical simplification compared to the conventional many-fluid electromagnetohydro-
dynamics. As an elementary illustration of the wave-mechanical formalism, the dispersion of
longitudinal and transverse electromagnetic waves in an electron plasma is treated.

I. INTRODUCTION

The macroscopic dynamics of classical plasmas
is determined by the complete set of conservation

equations for mass, vector momentum, and energy
of each component. In the electromagnetohydro-
dynamic approximation for a dissipation-free plas-
ma consisting of r components, these field equa-


