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The classical van der Waals model of fluids is modified by a more accurate equation of state
for hard spheres. The hard-sphere diameter and the van der Waals constant a are obtained
from experimental data. The model is used to predict the critical constants of metals, as well
as the equation of state, cohesive energy, and coexistence curves near the critical point. The
model is also applied to rare gases and ionic salts. The semiquantitative predictions of the
model are at least as accurate as those of other theories. Of the three critical constants, the
critical temperature is most accurately predicted, being within 11% of experiment. More in-
formation about the interatomic potential in metals is needed before the theory can be substan-
tially improved.

I. INTRODUCTION

Recent high-temperature research has determined
the critical constants of mercury and the alkali
metals. ' Because of the large cohesive energies
of metals, the temperatures and pressures at the
critical point are high, and experimental work is
correspondingly difficult. Thus, mercury and
cesium are the only metals whose critical constants
have been directly measured. For other metals,
the critical constants have been obtained by extra-
polation.

At present a theoretical foundation for this ex-
perimental work on metals is lacking. One of the
main difficulties in the theoretical treatment of
metals is the absence of an adequate interatomic-
potential function. The inert gases may be accur-
ately treated as molecules interacting according to
a pairwise additive potential, and the statistical-
mechanical theory may be developed accordingly.
Unfortunately, for liquid metals this state of affairs
does not yet prevail. Hence, we must at present
resort to a mean-field type of theory for the equa-
tion of state of metals. Gne of the simplest such
theories is the van der Waals model, which assumes
that the liquid consists of hard-sphere particles
moving in a uniform potential field.

Several experimental facts may be called upon to
support the plausibility of a van der Waals model
for metals. First, the diffusion coefficient4 and
the first peak of the structure factor' in liquid
metals may be accurately described by the hard-
sphere fluid model, as predicted by the van der
Waals model. Second, the vapor-liquid coexistence
curve for metals appears to be more nearly qua-
dratic in form near the critical point, as predicted
by van der Waals, than for the rare-gas fluids.
Third, experimental values of the critical compres-
sibility ratio Z, = P, V,/RT, vary between 0. 2 and
0. 4 for metals, and this is sufficiently close to the
classical van der Wa, als prediction of 0. 375 to sug-
gest that the theory might apply. Finally, the co-
hesive energy of mercury is predicted at least as
well by the van der Waals model as by other theories.

II. REVIEW

There has been little pure theoretical work on the
critical points of metals. Attempts have been made
to use the classical van der Waals model ~ to obtain
critical constants by estimating the parameters g
and b in the model. Also, there have been attempts
to correlate empirically critical temperatures with
some other physical property, such as the boiling
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temperature, heat of vaporization, ' '" or surface
tension. '3 Many of these calculations implicitly
use a corresponding states argument, as, for ex-
ample, among the alkali metals or with mercury as
a reference metal. All of these theories suffer
either from incompleteness because not all of the
critical constants can be predicted, or from lack
of theoretical justification for the assumptions made.

Experimental work has been done on the deter-
mination of the critical constants of mercury and
the alkali metals. Extensive work on mercury has
been done during the past few years. """ There
is good agreement among the experiments on the
critical pressure and temperature, but the critical
volume has been poorly determined. We shall use
the critical constants of Kikoin and Senchenkov' be-
cause their data is the most extensive. Alkali
metals have been less thoroughly studied than mer-
cury. Cesium is the only alkali metal whose criti-
cal constants have all been determined. ' Estimates
of the critical constants of sodium, potassium, and

rubidium have been made from measurements close
to their critical points, and this data has been used,
with the principle of corresponding states, to esti-
mate the critical constants for lithium.

Grosse' has estimated critical constants from
experimental data in several ways. One way is to
get T, by matching the entropy of vaporization at
some To to a curve of d S„,versus T/T, obtained
from mercury data. Then one reads off the corre-
sponding value of To/T, and calculates T, Grosse.
has also measured the densities of liquid metals
from their melting points to their boiling points.
These data, combined with the law of rectilinear
diameter of Cailletet and Mathias, and T, obtained
above, give the critical density p, . Extrapolation
of vapor-pressure curves then yields p, . Alter-
natively, T, can be calculated by requiring pb, /p,
=4. 35 and using the law of rectilinear diameter.
Grosse's estimates of the alkali-metal critical con-
stants compare favorably with later experimental
data. '

III. METHOD

The classical van der Waals equation of state for
one mole of fluid is

(P a+/V )(V- b)=RT

This equation of state is of little value in predicting
critical constants because the two parameters a and
b are usually obtained by fitting the equation to the
critical constants themselves or to low-density
PVT data, which are not generally available for
metals. Instead, we make use of the rigorous ex-
pansion of the free energy as a perturbation series
about the hard-sphere free energy. ' ' The first
cor rection to the hard- sphere free energy is the
cohesive energy of the fluid taken as an average of

E =A/V'"+ B/V"'+ C/V+ D (3)

I I I I

t
i i i i

-10
0
E

O
O

I
1

I

I
/

/
/

/

I » i i I i & i i I i & i i I

5 10 15 20

/0 (g/Cm')

FIG. 1. Comparison of the cohesive energy of mercury
at 1823 'K calculated from experimental data (circles)
(Ref. 1) with the van der Waals model (straight line), a
free-electron theory of the form A/V + B/V (solid
curve), and a modified free-electron theory of the form
A/V~/3+B/(V - V;) /3 (dashed curve).

the interatomic pair potential over the hard-sphere
radial distribution function. The ion-ion pair po-
tentials which have been calculated from theory and

experimental data 0 for liquid metals near the melt-
ing point have the difficulty that the attractive well
is not nearly deep enough to predict the correct
critical temperatures. This is based on the argu-
ment, which holds for rare gases, that the well
depth is roughly kT, . This presumably means that
the depth of the potential well is strongly dependent
upon temperature and density. Until these poten-
tials are better understood over the whole liquid
range of the metal, we cannot use them to calculate
the first-order perturbation term in the free energy.

Instead of attempting to make an exact calculation
of the cohesive energy, we make use of the mean-
field approximation used in the classical van der
Waals model:

E= —a/V

where a is a positive constant. This has the sim-
plest form consistent with the condition E = 0 at
p= 0.

We have used PVT data' for mercury to calculate
E as a function of p for a given supercritical tem-
perature (1823'K). A plot of E versus p for mer-
cury is shown in Fig. 1. The predicted energy
from the van der Waals theory is a straight line
which falls reasonably close to the mercury data.

The form of the energy generally assumed for a
dense metallic phase is
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RT 1+ y+ y~- y3
PO V (1 y)$ (6)

where v = vNo /6V, o is the hard-sphere diameter,

where the first term includes electron exchange
energy and the ion-ion potential; the second term
is the electron kinetic energy; the third term is
the dominant term of the electron-ion potential;
and D contains terms due to electron correlation
and band effects. Recent calculations with this
model ' have produced good agreement with experi-
mental, binding energies (based on a reference state
of separated ions and electrons) and compressibil-
ities for nearly free-electron metals such as the
alkalis. Thus the theory provides a fairly accurate
description of the region near the minimum in the
curve of energy versus density. At lower densities,
deviations from the theory will occur because the
electrons will attach themselves to the ions. There
is evidence based on conductivity measurements '
that this metal-nonmetal transition occurs near the
critical density. At very low densities the metal
vapor will behave like a normal imperfect gas and
the energy will vary as V ' rather than V '

A curve of the form A/V'~'+ B/Va~' is given in
Fig. 1 in order to show qualitatively how the free-
electron theory compares with experiment and van
der Naals. The curve is given a minimum
value a,t normal solid density and E = —12 kcal/
mole, the best estimate of the minimum point at
1823'K. This curve is obviously unrealistic at low
density and near the energy minimum. Use of this
form of the cohesive energy in the van der Waals
model yields very poor critical constants as a con-
sequence. Also in Fig. 1 we show a curve of the
form A/V'~'+ B/(V- V, )@'. The quantity V, repre-
sents the volume excluded from the electrons by
the ion cores. We arbitrarily set V;=10.0 cm'/
mole for mercury in order to illustrate the improve-
ment which this form represents over the previous
one. The theoretical curve now exhibits more real-
istic behavior near the energy minimum but still
fails at low density. Given this uncertainty about
the validity of the free-electron theory and the pres-
ent lack of experimental data in the critical region,
the use of the simple mean-field approximation to
the cohesive energy appears to be justified.

The mean-field approximation yields a pressure
of —BE/BV= —a/V~, so that the first-order pertur-
bation theory is

P =P —a/V

Here pp is the hard-sphere pressure, and this is a
significant improvement over the classical van der
Waals theory. The hard-sphere pressure has been
calculated by machine experiments and several
good algebraic approximations to it are available.
The approximation to pp which we use is

y = +~ mNo jVL = 0.45 (6)

We can now calculate o for metals for which the
liquid density is known, and for the others we can
use a simple scaling method to obtain approximate
values.

Table I shows a list of computed values of 0 com-
pared with other estimates of the diameter. It
can be seen that the effective hard-sphere diameters
are much larger than the ionic-crystal diameters

TABLE I. Diameters of metal atoms in angstroms
calculated by different methods.

3.14
4.70
2.77
3.00
2.34

Na 3.28 1.90 (+ 1) 3.14 3.71
Cs 4.69 3.38 (+ 1) 4.66 5.30

2.75 2.20 (+ 2) 2.88 3.21
Pb 3.02 1.68 (+ 4) 3.08 3.50
Fe 2.25 1.28 (+ 3) 2.33 2.48

Calculated from liquid-metal density by Ashcroft-
Lekner rule.

~Calculated from ionic-crystal radii in Ref. 26, p. 514.
The ionic charges are shown in parentheses.

Calculated from metallic radii in Ref. 26, p. 403.
~Calculated from metallic radii of diatomic metal

hydrides in Ref. 26, p. 257.
'Internuclear distance in the solid metal.

and N is Avogadro's number. This pressure is ac-
curate to a few tenths of 1% for the hard-sphere
fluid up to the freezing point.

The constant a is equal to —EpV„where Ep ls the
molar cohesive energy and V, is the molar volume
of the metal. The subscripts refer to some refer-
ence state. Theoretically, the reference state is
at infinite temperature, where the hard spheres
are uninfluenced by the attractive potential. This
is, of course, experimentally absurd. The region
in which Ep should be measured for best results is
the supercritical fluid near normal liquid density.
Unfortunately, there is almost no experimental data
avaliable for metals in this region. The most re-
liable values of Ep and Vp are available for metals
in the solid state. ' The use of solid-state data to
calculate a is justified by noting that the value of a
shows no significant difference between solid and
liquid mercury.

Now we need to determine an effective hard-sphere
diameter o for each metal. The best way to do this
appears to be that of Ashcroft and Lekner, ' who
determined 0 by fitting the first peak of the Percus-
Yevick hard-sphere structure factor S(k) to the ex-
perimental curves for liquid metals. They deter-
mined that y = 0.45 is a close approximation for a
liquid metal near the melting point. Hence, all that
is needed is the molar volume Vi of the liquid metal
at the melting point and 0 can be immediately com-
puted:
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TABLE II. Comparison of experimental rare-gas critical constants with predictions of the van der Waals model.

V, (cm /mole) T, ( K) p, (bar)

Ne

Ar
Kr
Xe

Theory

51.9
95.4

112.8
166.6

Expt

41.7
75.3
92.1

118.8

Theory

42.0
159
233
290

Expt

44.5
151
209
290

Theory

24.1
49.7
61.7
52.0

Expt

26.2
48 ~ 9
55.0
58.4

Theory

0.359
0.359
0.359
0.359

Expt

0.295
0.294
0.292
0.288

and about the same size as the metallic-bond dia-
meters listed in the third column of Table I. This
indicates that although the species in the metal are
ionic, they are screened by electrons so that their
repulsion envelopes are much larger than the bare
ions. This is an important result because it means
that as the metal passes from a condensed phase to
a dilute atomic vapor, the effective size of the
metal atoms changes very little. This is just what
we have assumed in the hard-sphere theory.

The calculation of the critical constants V„T„
and p, proceeds in the usual way:

ep a'p
eV av'

These two equations, along with Eq. (4), are solved
simultaneously to yield

c= 0. 13044
or

V, = 2.417 x10"o', T, = 0. 7 232a/R V, ,

p = 0. 2596a/V , ~Z, =P, V,/RT, = 0. 3590

IV. CALCULATIONS

As a check on the van der Waals model, we have
calculated the critical constants for rare gases.
In this calculation we have used hard-sphere dia-
meters computed from the second virial coefficents '
rather than from the liquid densities because the
empirical y=0. 45 rule is not accurate for nonme-
tals. ' The constant a is computed from 0'K solid
data. ~ ft can be seen from Table II that there is
satisfactory agreement between theory and experi-
ment for the four elements. Some discrepancies

must appear between theory and experiment inde-
pendently of the choice of a and 0, since the van der
Waals prediction (0. 36) of the dimensionless quantity
Z, does not conform to the experimental value, Z,
=0. 29, for the rare gases. Plots of the cohesive
energy versus the density for supercritical iso-
therms of argon and xenon show good agreement
(within 15/~) with van der Waals over the whole den-
sity range. The generally accurate predictions of
the van der Waals model for the rare gases give
us confidence in applying it to metals.

For the alkali metals (Table III), the theoretical
critical volumes are uniformly too small. The
theoretical temperatures are in good agreement
with experiment except possibly for lithium, where
the experimental uncertainties are large. The
theoretical pressures are much too large. The
critical compressibility factor for the alkali metals
is Z, =O. 2, whereas the van der Waals model pre-
dicts 0. 36. Hence to an even greater degree than
for rare gases, the algebraic form of the equation
of state forces disagreement bebveen theory and
experiment for at least one critical constant, and
the pressure is the worst of the three. The critical-
pressure values are made still larger by the small
values of the predicted critical volumes. It is in-
teresting to compare these calculations on the al-
kali metals with the predictions of the classical
van der Waals model. For this calculation we write
a = —EOVO and 5 = —, vNv' (see Table III). The clas-
sical model predicts pressures in better agreement
with experiment, but now the volumes and temper-
atures are worse.

For mercury (Table III) the errors in the pre
dieted critical constants are more evenly distributed

TABLE III. Comparison of experimental metal critical points with predictions of the van der Waals model. Classical
van der Waals model predictions are shown in parentheses.

Vc (cm /mole) T, ('K) p, (bar)

Li
Na
K
Rb
Cs
Hg

Theory

47.2(73.9)
85.4 (134)
165 (258)
200 (313)
249 (390)
50.5(79.1)

Expt

66+19
116+23
209 +40
247 +7
299

35 +1

Theory

3831(3008)
2635 (2069)
2185 (1716)
2061 (1619)
1942(1515)
1563(1227)

Expt

3223 +600
2573 +350
2223 +330
2093 +35
2050
1753 ~10

Theory

2422 (1269)
921 (482)
396 (208)
308 (161)
233 (122)
923 (484)

Expt

689 + 140
354 +70
162 +30
159 +30
117

1520 +10

Theory

0.359
0.359
0.359
0.359
0.359
0.359

Expt

Q. 17 + 0.12
Q. 20 + 0.12
0.21 + 0.13
0.22 + 0.02
0.205
0.367
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parison of critic
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Grosse and his co

TABLE IV. Com
lic elements compu
with estimates by

al constants of metal-
der Waals model
lie agues

Ele- V, (cm /mole)
ment Theory Grosse

T, ('K)
Theory Grosse

P,(bar) Refer-
Theory Grosse

Mg 52. 7 59
Al 39. 1
Ca 101.4 134
Sc 59. 0
V 32. 8

Fe 27. 5

Ni 25. 6
CQ 27. 4
Zn 32. 6
Gi 39. 5

45. 0
Mo 36. 8

Pd 35. 0
AK 39.8
Cd 48. 4
In 56. 4
Sn 58. 5
Sb 64. 8
Ba 142. 7 193
Ce 81. 1
Sm 78. 2

Dy 74. 4
Yh 97. 5
Ta 42. 3
W 37. 4

Re 34. 7
Pt 35. 6
AQ 39. 4

Tl 62. 4

Pb 66. 9
Bi 71.9
Th 69. 0
U 459

41.7
40. 5
61
30
75

58
41
83

100

85. 5
94
80

3408
7151
3958
7431

11325
9340
9576
7625
3170
7043
9803

14 588
8301
6410
2619
5823
7297
6370
4154
9089
4661
6211
3741

17 329
18 538
17 293
12 526

8267
4353
4668
5395

14 257
13 043

3850
8550
4590

6750
6000
8900
3430
7620
8400

17 000

7500
2970
6680
8000
5070
4720

22 000
23 000
20 500
14 650

9460
4830
5400
4620

12 500

1929 1750
5458
1166
3759

10 314
10 154
11 159

8300
2904
5329
6511

11 844
7085
4807
1615
3083
3724
2936

869
3347
1780
2492
1146

12 223
14787 &10
14 877
10 505

6265
2080
2082
2239
6166
8487

5060 h

f
2430 i
2030 j

b

C

K

000 K

K

b
f
f

860
k

P. J. McGonigal, A. D. Kirshenbaum, and A. V.
Grosse, J. Phys. Chem. ~66 737 (1962).

A. V. Grosse, J. Inorg. Nucl. Chem. ~24 147 (1962).
'A. V. Grosse and P. J. McGonigal, J. Phys. Chem.

68, 414 (1964).
A. V. Grosse and A. D. Kirshenbaum, J. Inorg.

Nucl. Chem. 25, 331 (1963).
'J. A. Cahill and A. D. Kirshenbaum, J. Phys. Chem.

66, 1080 (1962).
P. J. McGonigal, J. Phys. Chem. 66 1686 (1962).

sA. V. Grosse, J. Inorg. Nucl. Chem. 22 23 (1961).
"A. V. Grosse and A. D. Kirshenbevm, J. Inorg.

Nucl. Chem. 24, 739 (1962).
'P. J. McGonigal, J. A. Cahill, A. D. Kirshenbaum,

and A. V. Grosse, J. Inorg. Nucl. Chem. 24, 1012
(1962).

'A. D. Kirshenbaum and J. A. Cahill, Trans. ASM
55, 844 (1962).

"J. A. Cahill and A. D. Kirshenbaum, J. Inorg. Nucl.
Chem. 25 501 (1963).

than for the alkali metals. In this case, the ex-
perimental value of Z, is 0. 367, coincidentally in
close agreement with the theory. The predictions
of the classical van der Wa,als model are uniformly
poor.

The very different values of Z, for mercury and
the alkali metals present a theoretical problem.
This difference must be due to some basic difference
in the effective interaction between the ions in the

metal. A qualitative explanation of the difference
is provided by the calculation of the cohesive energy
for certain model interatomic potentials in the hard-
sphere Limit. The potentials chosen have the
Sutherland form u(r) = —e (o/r)" for r & o, and where
the exponent n is allowed to vary between 3 and 10.
The Percus- Yevick hard-sphere radial distribution
function is used as a good approximation to the true
function in this calculation. The values of E(V) thus
calculated are then used in the first-order pertur-
bation theory to calculate Z, . As n decreases from
10 toward the long-range limit of 3, Z, steadily de-
creases from 0.608 to the van der Waals limit of
0. 359. The same result may be obtained with a
square-well potential whose well width increases
indefinitely. More terms in the perturbation series
are needed to bring the predicted values of Z, into
closer agreement with experiment, but the trend
in Z, suggests that the smaller value of Z, in cesi-
um compared to mercury corresponds to a longer-
ranged interaction potential or a broader potential
well in cesium.

An alternative approach to the problem of pre-
dicting different values of Z, is simply to vary the
functional form of the cohesive energy. Specifically
we let E = —a/V" and

P =ho —&IV (8)

where n &0. Calculations with this equation of state
show that, given the appropriate value of n, any
desired value of Z, may be obtained. For the case
of cesium, n= 0. 525. By defining a= —F.QVQ" and

using the previously determined values of 0 Fp,
and V0, the critical constants for cesium are cal-
culated to be V, = 483 cm3/mole, T, = 3060 'K, and

p, = 108 bars. Although Z, has been adjusted to the
correct value, only the critical pressure is accur-
ately predicted by this theory. Of course, we can
adjust a and 0 to give the correct critical constants,
but this leads to rather unrealistic values of E0 and
cr. The best check on this type of equation of state
would be to compare it directly with experimental
cesium data in the supercritical region, just as we
do for mercury in Sec. V. For mercury, n is close
to the van der Waals value of 1.0, as we have seen.
Once again, the more slowly decaying cohesive en-
ergy, and hence the longer-ranged potential, cor-
respond to lower values of Z,. According to this
discussion, cesium would have a broader potential
well than mercury. In agreement with this picture
is the correct prediction that V,/hl'o will be greater
for the metal with the wider well, namely, cesium.

As a result of the mean-field approximation to the
cohesive energy, the van der Waals model given
by Eq. (4) obeys the principle of corresponding
states. However, the different values of Z, imply
that all metals do not obey this principle, and that
a more accurate approach will involve the unique
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TABLE V. Comparison of alkali-halide critica1 constants computed from the van der Waals model with estimates
by Kirshenbaum et al. (Ref. 33).

NaC1

Na'Cl (ionic)
NaC1 (diatomic)
Kirshenbaum

K'C1 (ionic)
KC1 (diatomic)
Kirshenbaum

V,(cm /mole NaC1)

129.6
129.6

266 +60

V, (cm3/mole KC1)

168.7
168.7

466+150

KC1

T, ('K)

6808
4050

3400 + 200

T, ('K)

6717
4870

3200 + 200

p (bar)

3139
933

350 + 120

P,(bar)

2378
862

220 + 85

0.359
0.359
0. 332

0.359
0.359
0.385

calculation of the cohesive energy as a function of
density for each metal. Corresponding states may
be valid within certain groups of metals such as the
alkalis, but certainly not between groups. This
principle will probably also fail for light metals
such as lithium and beryllium within their respec-
tive groups because of quantum effects. Thus it is
not possible to use the principle to predict accur-
ately the Z, values for other elements. Also it is
not possible to predict the relative size of theoret-
ical and experimental values of V, and p, for other
metals, since the trends are opposed in mercury
and the alkalis. Generally, however, we expect
that the predicted critical temperatures will be ac-
curate.

In Table IV we show values of V„T„and P, for
33 metals from the van der Waals model and from
previous estimates. There are possible large er-
rors in the estimated quantities owing to the approx-
imations and extrapolations used to obtain them.
Because of this there is little point in a detailed
comparison of the van der Waals predictions with
the estimates, but the critical temperatures, at
least, show satisfactory agreement.

The generally successful predictions of the van
der Waals model for metals and the rare gases sug-
gest that the model should be applied to another
class of substances, namely, the ionic salts. This
calculation is used to demonstrate the importance
of properly identifying the molecular species which
exist at low density near the critical point.

In Table V the critical constants of sodium and
potassium chlorides have been calculated in two
ways. First, these salts are assumed to dissociate
completely into ions at infinite volume. For this
process Eo(NaC1) = —182.6 kcal/mole and Eo(KC1)
= —165.8 kcal/mole. ' To make an estimate of o
we assume that cation and anion have the same size
and that the rule y = Q. 45 for the liquid near the
melting point holds. The molar volume of the liquid
here refers to 1 mole of hard spheres, or - mole
of alkali-halide molecules. In the second calcula-
tion it is assumed that the salts form diatomic

molecules at infinite volume. For this process,
E,(NaC1) = —54. 8 kcal/mole and E,(KC1) = —60. 1
kcal/mole, as determined from spectroscopic ob-
servations on the molecules. Again we use the
rule y =0.45, this time with the volume of one mole
of diatomic molecules, each considered to be a
hard sphere.

Now we construct a rough argument which sug-
gests that the diatomic molecules predominate near
the critical volume. If an alkali-halide salt is iso-
thermally expanded, the Coulombic energy will ap-
proach zero roughly as —Eo/(V/Vo)~~' Alterna. tive-
ly, the energy (relative to separated iona) of a solid
composed of diatomic molecules is assumed to re-
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FIG. 2. Comparison of the reduced experimental
equation of state (Ref. 1) for mercury (circles) with the
van der Waals modyl (solid curve). Values of T/T, are
shown for each isotherm.
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FIG. 3. Comparison of reduced coexistence curves
computed from the van der Waals model (solid curve)
with experimental cesium data {circles) (Ref. 2), mercury
data (triangles) {Ref. 34), and with smoothed rare-gas
data (dashed curve) (Ref. 35).

main roughly constant, because of the much weaker
interaction between diatomic molecules than between
ions. Where these two energy curves cross then
determines the boundary of stability between the
ionic and diatomic assembles. Thus for NaCl and

KCl, the diatomic system will be more stable for
V/Vo&2. 86 and V/Vo &3. 86, respectively. In fact
V,/V0=4. 80 for NaC1 and V,/V0=4. 49 for KC1 as
predicted from the theory.

These calculations favor the predominance of
diatomic molecules near the critical point, both in
satisfying the volume criterion just mentioned, and
in predicting T, and P, closer to the values esti-
mated by Kirshenbaum33 in Table V. These esti-
mates are based on extrapolation of the experimental
vapor-liquid coexistence curve to the critical point,
using the law of rectilinear diameter.

sphere model for mercury under extreme conditions.
It is worthwhile to compare the vapor-liquid co-

existence curve predicted by the model and observed
for metals. Figure 3 shows reduced T-versus-p
curves for mercury, ' cesium, the rare gases, '
and the van der Waals model. The cesium curve
is well reproduced by the van der Waals result.
The fact that the mercury coexistence curve does
not match the cesium curve simply restates the
previous observation that the corresponding states
principle is not valid for these metals. Egelstaff
has plotted the experimental alkali-metal coexis-
tence curves logarithmically to show that they ap-
pear to be more nearly quadratic in form than the
inert gases, which have a cubic form. This con-
clusion is based on metal data not very close to the
critical point, so it remains tentative. The van der
Waals model predicts a quadratic coexistence curve
near the critical point, and the existence of an ex-
perimental curve of this form would suggest that
long-range forces, which underlie the van der Waals
model, really do exist in liquid metals. In con-
trast, molecular fluids have a cubic coexistence
curve and a short range of interaction. More ex-
perimental work on metals close to the critical point
is needed to clarify the situation.

The vapor-pressure curve is also of interest.
For mercury and cesium" this curve is closely
logarithmic, so that lnp =A/T+ B. Van der Waals
also produces a curve of this form. Figure 4 shows

InIp/p, ) versus T,/T for inert gases, 3' van der

gn(P/Pc j

-2-

V. THERMODYNAMICS

As a further check on the validity of the van der
Waals model as applied to metals, we compare
theoretical and experimental equation-of-state data
for mercury. The experimental data must be re-
duced in order to make the comparison. Thus in
Fig. 2, p/p, versus p/p, is plotted for three values
of T/T, . There is moderately good quantitative
agreement between theory and experiment except at
the highest densities, This deviation at high den-
sity is undoubtedly due to the inadequacy of the hard-

OK% WAALI

I ) I i I i I t I i I I I

10 1~ 2 1.6

FIG. 4. Comparison of reduced vapor-pressure curves
computed from the van der Waals model with smoothed
experimental cesium (Ref. 37), mercury (Ref. 34), and
rare-gas (Ref. 35) data.



CRITICAL POINT OF METALS FROM THE VAN DE R WAALS 371

Waals, mercury, and cesium. The van der Waals
result lies between the inert gas and metal curves.

VI. CONCLUSION

We have shown that the van der Waals model pro-
vides semiquantitative agreement with experimental
data on metals near the critical point. At present,
this model is at least as accurate as other theories
in predicting thermodynamic properties in the
critical region. Of the three critical constants, the
critical temperature is most accurately predicted
by the model. Substantial improvement of the model

will require more data on which to check the as-
sumptions embodied in the constant hard-sphere
diameter, the mean-field form of the cohesive en-
ergy, and the magnitude of the constant a. Also,
more reliable determination of the interatomic po-
tential in liquid metals as a function of density and
temperature over the whole liquid range is needed.
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