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I'he He jj:-He r transition has been investigated by measuring the temperature at which the
conductivity of He xr exhibits a sharp drop. It is found that this temperature is a function of
the heat current Q. A qualitative explanation in terms of the Ginzburg-Pitaevskii phenorne-
nological theory is suggested.

I. INTRODUCTION

It is well known that superfluidity breaks down

when the superfluid velocity v, exceeds a certain
critical value, say, v, . However, there is no uni-
versal agreement regarding the processes that oc-
cur when breakdown takes place. It is possible that
there is an hierarchy of critical velocities, some
of which are temperature and/or geometry depen-
dent. Presumably, in any given experimental situ-
ation one observes the smallest critical velocity.

In isothermal flow, the breakdown is marked by
the onset of very large dissipative processes, and

usually it is not possible to drive the superfluid at
velocities greater than v, . Several experiments
have reported measurements of such critical vel-
ocities at temperatures far from T„. ' Following
Feynman, the breakdown has been generally at-
tributed to the appearance of vorticity, On the
other hand, at temperatures close to T„, Clow and

Reppy have studied the variation of another critical
velocity. It is claimed that this critical velocity
represents an intrinsic property of He rz in that it
is determined, following Langer and Fisher, by
the probability of transition from the state of pure
superf low to a state carrying vortex rings.

When the flow is induced by a heat current, the
situation appears to be somewhat different.

A. Temperatures Far Away from T~

The breakdown usually manifests itself through
the appearance of a temperature gradient {in ad-
dition to any gradients attributable to viscosity of
the normal component) at a well-defined critical
heat current Q,. ' For Q & Q, {henceforth referred
to as supercritical flow), the additional tempera-
ture gradients usually increase according to the
relation Q~(gradT)'~ with m =3, and this has been
regarded as evidence for the existence of a mutual
friction force proposed originally by Gorter and
Mellink. It is generally agreed that this force can
at least qualitatively be understood in terms of
scattering of rotons and phonons by the vortex lines
which are presumed to appear in the superfluid for
Q &Q,. Measurements on Q, can be used to obtain
v, through the usual two-fluid hydrodynamic equa-
tions. For T —2 'K, the agreement between the

values of v, measured using the two types of flow

appears to be quite satisfactory. '

B. T Close to Ty

In this case there are very few experimental re-
sults. On the other hand, following the phenomen-
ological expressions for the free energy suggested
by Ginsburg and Pitaevskii, several theoretical
papers have discussed this regime. ' ' The main
result can be summarized by the relationship be-
tween Q and so = v, —v„, exhibited in Fig. 1. Here

[cu,]r„, which allows one to define a "thermodynam-
ic" critical heat current through the relationship
[Q,]r„=p, ST [w,]r„, marks the point where super-
fluidity breaks down. At w'„ the order parameter
{orp,) vanishes. It is clear that neither of these
critical currents has anything to do with vorticity;
they follow from purely thermodynamic considera-
tions. At present, there is no description avail-
able for the state of the system between [w,]» and
w', . The existence of u,' implies that the presence
of conterf low should cause p, (Q, T) to go to zero
at T & T„, thus giving a shift in the transition tem-
perature.

From the experimental viewpoint, two situations
can be envisaged.

(a) [Q,]r„&Q,: This condition may be realized
if one chooses a geometry in which generation of
vorticity is inhibited from general hydrodynamic
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FIG. 1. Q 0)(eat current) versus av (counterflow velo-
city) for a constant temperature T& Tz. [Q ]~ and [re~]zh
are the critical heat current and the critical counterflow
velocity for breakdown of superfluidity. sec marks the
point where the order parameter p~ vanishes.
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considerations. Such an experiment was reported
by us some time ago. ' However, the interpreta-
tion of the results was not as unequivocal as we had

expected. Further details regarding the results
and their implications were presented in an unpub-
lished report. '4

(b) [Q,]r„&Q, : That is, the thermodynamic crit-
ical current is larger than the critical heat current
at which generation and/or growth of vorticity be-
comes energetically favorable. In the present pa-
per we wish to report the results of an experiment
in which we feel that this regime prevails.

We have studied heat flow in a wide channel con-
taining liquid He rr at T close to T„. The main re-
sults are (i.) Even at the smallest heat currents
used there exists a finite temperature gradient in
the liquid. This is taken as evidence to suggest
that for the range of heat currents used by us Q
&Q,. (ii) We have observed a sharp drop in the
conductivity of the liquid at a well-defined tempera-
ture. This "transition" temperature is a fairly
strong function of the heat current (Sec. III 8). A

somewhat similar effect was noticed by Johnson
and Crooks. " However, they did not study the phe-
nomena in any detail.
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II. EXPERIMENTAL METHOD AND OBSERVATIONS

The measurements were made using a convention-
al thermal conductivity apparatus. ' The liquid
He rr was contained in a 20-cm-long thin-walled
stainless-steel tube which was mounted inside a
high vacuum (better than 10 Torr) enclosure (Fig.
2). Two tubes have been used, one of diameter
0. 6 cm and one of 0.4 cm. Several carbon resis-
tance thermometers were mounted on the tube.
Thin copper wires (No. 24 AWG) were soldered to
pass diametrically through the tube and were ce-
mented securely to the body and leads of the ther-
mometer to give improved thermal contact. The
heater was made of high-resistance Karma wire.
A conventional ac bridge, followed by a lock-in
detector and recorder, was used to monitor the
thermometer resistance. The voltage across the
heater could also be displayed continuously on a
chart recorder. The thermometer had a sensitiv-
ity of about 30 0/mK in the neighborhood of T„.
Resistances could be measured to +10 or better,
thus allowing one to measure relative temperatures
to better than 30 pdeg. The resistances were cali-
brated against the He vapor pressure. Over the
present range of measurements (1"„-0. 0003) & T
&(T„—0.01) 'K, dR/dT was essentially constant.
Typical values of Q were between 1 and 100 mW/
cm~.

The observations were made as follows: A given
heat current Q was switched on. The pumping rate
was controlled so as to give a slow rate of warm-
up and the temperature at one thermometer was

FIG. 2. Experimental schematic. Thl, Th2, Th3 are
thermometers (1/8 W Allen-Bradley resistors). The
heater at the bottom of tube is made of Karma wire
(nominal resistance 700 &). The top of the stainless-
steel tube is open directly to the helium bath.

recorded as a function of time. At frequent inter-
vals the thermogram (i. e. , T-versus-time curve)
was obtained for no heat input. Such a thermogram
has two parts, AB and BC [Fig. 3(a) j. Following
the practice of several authors we identify the qui-
escent & temperature from the flat part of this
curve. ' The value of R„(for Q =0) drifts with time.
To minimize the effects of the drift the thermom-
eter bridges were left "on" for 12 to 14 h prior
to taking any data points. All temperatures were
deduced by reference to these values of R„. For a
finite Q the thermogram has a completely different
shape. Figure 3(b) shows the observations for two
thermometers situated, respectively, 5 and 10 cm
away from the heater. An initial linear increase
DE, changes abruptly to a slower one, EF, and
after a few minutes the temperature shows a sharp
increase FG. Several features are worthy of note.
(i) The duration of EF depends on the thermometer
heater distance, l, being larger for larger l, and
the heat input Q being smaller for larger Q. (ii)
As Q is increased, considerable rounding appears
at F and the change in slope at E is not so marked.
(iii) For all thermometers the Points E are simul-
taneous. (iv) Within limits of error of our experi-
ment TP is the same for all thermometers. The
"rounding" of the curve at F makes the precision
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in the thermometer and (b} the exact rate of warm-
up of the bath.

Simultaneous with the above, the voltage across
the heater, (for a given current) was monitored as
a function of time [Fig. 3(c)j. It is interesting to
note that the sharp "jog" occurs exactly at the same
time as the point E in Fig. 3(b). It is believed that
this jog reflects a rapid change in the heater tem-
perature. In hindsight, it was fortunate that the
heater was made of Karma wire. Karma contains
magnetic impurities and it turns out that for T- T„,
the material has a sizable dR/dT. This was checked
by making an independent set of dc resistance mea-
surements.

III. RESULTS AND DISCUSSION

Time

A. Q,

As mentioned earlier, even for the smallest heat
currents used by us (= 1 mW/cm'), a finite tem-
perature gradient is observed. For a typical value
of @=25 mW/cm this temperature gradient is
about 0. 1 mK/cm. If the viscosity of the normal
component was the only source of dissipation the
expected gradients would be about three orders of
magnitude smaller than the measured value. ' Thus
it is claimed that all the data described here per-
tain to the supercritical flow regime (Q & Q,).

Q s II.S mW/cm B. Ther mogram

Io.2'Yo chants

IS sec

Time

FIG. 3. (a) Thermogram for zero heat current
(@=0), shows the time variation of temperature at a
typical thermometer as the helium bath is warmed up
slowly through & point. The flat portion of the curve
BC gives quiescent Tz. (b) Thermograms of two
thermometers, Thl and Th2, placed 5 and 10 cm away
from heater for @=7.4 m%/cm2. Note that points E are
simultaneous and that points E occur at the same tem-
perature. (c) Change in heater voltage as a function

of time. Note that the "log" in voltage occurs simulta-
neously with point E in (b).

of these measurements somewhat poorer. T» val-
ues are good to about 0.05 'K. (v) As a conse-
quence of (i} and (ii} above, data taken for very
small I (& 2 cm) and large Q are highly suspect and
were rejected. In addition, several checks were
made to ensure that none of the measurements de-
pended in any way upon (a) the measuring current

It is suggested that the thermograms in Fig. 3(b)
be interpreted as follows: The point E marks the
instant at which a drastic reduction in conductivity
occurs in the immediate vicinity of the heater. This
interpretation is confirmed by the type of observa-
tion shown in Fig. 3(c), i. e. , simultaneous with E
the heater exhibits a sudden rise in temperature.
Admittedly, at the heater itself the total change in
temperature will reflect (i) changes in the Kapitza
resistance (Rx) at the transition point and (ii) rise
of temperature associated with the possible appear-
ance of a gas film. Thus one cannot use the change
in the heater temperature to get a measure for the
sudden drop in conductivity.

At later instants of time, i.e. , during EF, the
low-conductivity regime spreads through the fluid
and the sharp rise observed at F happens when the
"boundary*' passes the thermometer being moni-
tored.

Admittedly, the thermal conductance of the stain-
less-steel tube becomes comparable to that of He I
(if convection is neglected) and thus over that length
of the tube which is filled with He r the heat flow 'is

not entirely through the fluid. However, during
most of the interval EF the temperature is being
monitored at a point which is still surrounded en-
tirely by He u. Another source of difficulty may
be the Kapitza resistance since this will make the
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FIG. 4. Heat current Q versus temperature T~(Q)
of the He rx-He z transition. Each data point corresponds
to point E, Tz(Q) =—T),(Q), of Fig. 3(b) for a given Q.
The various symbols represent data on different thermom-
eters. Several data points have been left out for the
sake of clarity. As discussed in the text, the full line
is a least-squares fit to the data points.

tube wall warmer than the fluid. However, it is
easy to show that this effect becomes important
only when the boundary arrives within -10 cm
of the thermometer. The two thermal resistances
to be compared are the surface (solid-liquid he-
lium tr} resistance Rr/2vaf and the thermal resis-
tance of the stainless wall l/K, 2va5 where 5 is the

wall thickness and a is the tube radius. Near T„
the Kapitza resistance, Rr= 1 cm K/W" and K,
= 2x10~ W. For a 10-mil-thick stainless tube,
the two will become comparable for /-10 cm.
For longer lengths the Kapitza term is so small
that no heat flows through the stainless. The sharp
rise at F therefore must be related to the presence
of a boundary in the fluid across which the sharp
change of thermal conductivity causes a sizable
temperature "jump. "

The slowdown in the warming rate may be attri-
buted to the fact that part of the applied heat is be-
ing used up to heat the He r locally and, perhaps,
to cause bubbling. It is very difficult to make pre-
cise statements about this regime because it in-
volves a number of unknown factors: degree of
bubbling, convection, etc. However, appeal to
experiment shows that for the following discussion
it is not important to be able to catalog all these
facts. The experiments show that whereas for a
given Q the change in slope depends on the bath
warm-up rate, thermometer position, and/or the
channel diameter, the value of T~ does not. In
fact, as shown in Fig. 4, Tz is the same for all the
thermometers, i.e. , the temperature at the bound-
ary appears to be a unique function of the applied
heat current. Admittedly, this is a very surprising

result. We therefore feel justified in calling T~ a
transition temperature. A least-squares fit to the
data shows that

6 = T„(0)—Tr{Q) = 0.05gQ,

for 0. 1 & d & 10 mK. Here Q is in mW/cm . Sever-
al sets of data are shown in Fig. 4, the full line
being given by Eq. (1). A somewhat similar set of
measurements was reported by Erben and Pobell. '
However, they did not describe their thermogram
sufficiently and therefore a comparison of Eq. (1)
with their data is not likely to be meaningful.

Next, one would like to elucidate the nature of
We suggest that T~ represents the solution of

the equation

p, (Q, Tr}=0, (2)

that is, for a given Q, T~ represents the tempera-
ture at which the order parameter vanishes or the

He j:r-He r transition takes place. That this should
happen first of all in the warmest part of the fluid

(i. e. , near the heater) is obvious enough. In this
sense Tr(Q) =T„{Q), and it is claimed that Eq. (1}
represents the manner in which the transition tem-
perature is depressed by a heat current in the fluid.

As noted in the Introduction all of the phenomeno-
logical theories of superfluidity at T close to T,
predict a depression in T„ in the presence of a
counterflow velocity. However, before one can ex-
pect to compare Eq. (1) with any of the theoretical
expressions, one has to ask oneself the question:
How are the predictions of the theory modified if
one has vorticity in the superfluid? Can one still
talk of a thermodynamic critical current and a so',

(cf. Fig. 1)'? It is suggested that even when vorti-
city is present the general structure of the thermo-
dynamic solution should be the same. This can be
seen as follows. Following Ginzburg and Pitaev-
skii the free energy near T„may be written as

hF —F =gF= -n g 2+—
q 4+ —V ~dt

2 2m
(&)

As before, the macroscopic variables p, and v, are
to be defined through the relations p, =m )g I, v,
= (ff/m}V4' where /=ye' . As a starting point one
wishes to consider the case of uniform superfluid
velocity, v, z in a cylindrical tube of radius a and
ask the question: If a vortex line of circulation &z

centered on the tube axis is introduced, what is the
change in the free energy of the system? The su-
perfluid velocity components will be

[K sin8/r, ~ cos8/r, v, ]
Further, the presence of the vortex line should alter
the order parameter locally and this is taken into
account by writing

{r)e hatt, 8&'
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with

X{&)=X-LI-e '" '"/t], ~&so

reap,
(4)

+p,z Nml ln, lz 2P +Po a /ao o

ap

Measurements on p, near T„ imply '

p, =my,

p, =O, &~ Qp.

(5)

Substituting in Eq. (3) and integrating over the vol-
ume one gets

n E, = —o. l{o [(v —vo) —ofay(3+ 7$/2ao)]

+ 2P X [(v —vo) —0($ I)]

+ p —' [v —v —0(( I )] + p ol
Vs 2

h~ ap 1
s 2 P r~ 4

(6)

where vo = oaol (I being the length of the tube) and

Generalization of the above to the case when an
arbitrary distribution of vortex lines is present in
the fluid is algebraically a very difficult problem.
A possible simplification is to consider N lines,
each of strength Kz, with their axes parallel to the
tube axis. In this case (6) can be generalized in a
straightforward way to read

&F„=o){„{v Nvo) -Nof so) -3+—7 $

2 op

+ —y„[(v —Nvo) —NO($ I)]

+ ' ' [(v —Nvo) —NO($ l)]+p,ol, N —+-Ps~a ap 1
2 P m' 2$ 4

where ap is the so-called core radius of the vortex,
and g has the meaning of a correlation length. In

the present case, p, becomes a function of position
with the following form:

Usually, the core radius ao = $ and K = 8/m - 10 '
cm /sec. For typical heat currents used in the ex-
periments v, - 1 cm/sec. Using these values, pre-
liminary calculations suggest that if N- 10'
{T„-T) ~ the calculated n is very close to that
given by Eq. (1).

The above discussion will break down for (T„-T)
& 1D 'K where $ will become large in comparison
with atomic dimensions. In that temperature re-
gime, the behavior of the superfluid will, in many
ways, be quite analogous to that of a type-II super-
conductor.

One question remains to be answered: Why do
we suggest that Tr is a solution of Eq. (2) rather
than claiming that T~ should be given by the equa-
tion SQ/&ur =0'? A closer look at the experimental
situation helps to clarify this point. It can be
shown quite easily that once the system is driven
past the point SQ/Sov = 0, p, is likely to fall to zero
precipitously (cf. p. 73 of Ref. 14). From the ex-
perimental point of view, therefore, there is no

way of distinguishing between the position of the
maximum and the point where p, (Q, T) =0. Thus
Tz must be very close to, if not exactly, the solu-
tion of Eq. (2).

Closely allied to the above discussion is the ques-
tion of the kinds of processes that control thermal
conduction in the superf low regime. We are at
present attempting to analyze this aspect of the
work and expect to publish it shortly.
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The ground state of a one-dimensional system of many bosons interacting through a repul-
sive 4-function potential is studied when the coupling parameter & of the system is small. The
procedure is based on the variational analysis in the Bijl-Dingle-Jastrow wave-function space.
The ground-state energy, determined in a series form in powers of p and truncated after
the third leading term, is found to be in fair agreement with exact results of Lieb and Liniger
over a range of the coupling parameter extending up to &=6. Two slightly different approach-
es are considered, and they are shown to be equivalent.

I. INTRODUCTION

The one-dimensional problem of many bosons with
repulsive 5-function interactions has been investi-
gated extensively by Lieb and Liniger' and by Lieb~
throughout the entire range of the coupling param-
eter y, which is proportional to the ratio of the in-
teraction strength to the number density. The
same problem in the limit of infinite coupling (y
= ~}, i. e. , one-dimensional system of impenetrable
bosons, was studied earlier by Girardeau, ' who
pointed out that the energy spectrum in this limit
is identical to that of an ideal fermion system. Al-
though no real physical system is known to resem-
ble this model, the problem is interesting in that
it is one of only a very few many-body model prob-
lems whose solutions have been found in the entire
domain of the coupling parameter. Thus, it pro-
vides theorists with a testing ground of many-body
theories at arbitrary values of the coupling param-
eter.

In this paper, we present a variational study on
the ground state of the one-dimensional many-boson
system in the weak-coupling limit, using the method
of series expansion based on a Bijl-Dingle-Jastrow
(BDJ) correlated wave function. ~ 8 The essence of
the procedure consists of (i) development of a clus-
ter-type expansion for the expectation value of the
Hamiltonian (H) in terms of the liquid-structure
function S(k), and (ii) minimization of the expecta-

II. GROUND-STATE ENERGY

We consider a system of N bosons interacting in
a one-dimensional space of length L through a re-
pulsive 5-function potential

v(x) = 2c5(x), c & 0.
The end effects may be neglected by considering
the ordinary many-body limit N-~, L -~ while
the number density p=N/L remains finite. The
Hamiltonian of the system is

where

gR N g2 N

H= — Z ~ +2cZ S(x, ,},m i f i i(f
(2)

xiJxi xj

tion value (H) with respect to the indirect variational
function S(k). In Sec. II it is shown that the result-
ing ground-state energies, with truncation of third-
and higher-order terms, agree quite closely with
exact numerical results of Lieb and Liniger' over
a wider range of y values than the range where the
Bogoliubov approximationv is valid. In Sec. III the
problem is reexamined in a double-variational
formalism, which proves to be equivalent but par-
ticularly helpful in understanding the physical basis
of the relation T, /U, = ——,', where T, and U, are the
first-order terms of the kinetic and potential ener-
gies, respectively.


