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We use the memory-function formalism to investigate G, (k, p, p, t), the time autocorrela-
tion function for the single-particle density in phase space and S, (k, zo), the incoherent scat-
tering function of Van Hove. Following a recent treatment for coherent neutron scattering by
Akcasu and Duderstadt, we derive a formally exact equation for Cs. If we assume that the
relevant memory function is separable and given by 7p~ (k, p, p', t) = ys (p, p', o) @(k, t), then
the equation for 0, reduces to a generalized Fokker-Planck equation which can be exactly solved.
We use two simple forms for +(k, t), a Gaussian and an exponential, to study the analytical
solution both numerically and in various limits. We also compare these results with those ob-
tained in the molecular dynamics computations by Nijboer and Rahman and discuss the extent
of validity of the separability assumption for the memory function.

I. INTRODUCTION

Slow-neutron-scattering experiments' and more
recently the molecular dynamics experiments have
renewed the interest in understanding the basic
nature of the dynamical correlations in liquids.
The Van Hove theorys for slow neutron scattering
expresses observed cross sections in terms of the
dynamical structure factor S(k, co) and the single-
particle (incoherent) scattering function S (k, tu)

The early phenomenological approach using the
convolution approximation, as well as more recent
mean-field theories and related approaches' for
calculating S(k, ce), require the knowledge of S,(k, ur).

S, (k, se) as well as 4 (t) the normalized velocity
autocorrelation function describe the single-particle
correlations which are of central interest in the
present work. Both S, (k, gu) and g (t) can be deduced
from slow-neutron-scattering experiments on purely
incoherent scatterers and also, after some analysis,
from similar experiments on substances like argon
and sodium which are mixed coherent and incoher-
ent scatterers. However, a cleaner and more di-
rect "measurement" of these functions has been ob-
tained by their computation in the molecular-dy-
namics studies ' where the conditions for the state
of the system, as well as the basic interaction, are
under direct control.

Most calculations cf S,(k, w) use some physical
model which prescribes 4(f), and hence the mean-
square displacement (r (t)) for the particle; from
(r (I)), S~(k, to) is deduced by using the phenomeno-
logical Gaussian approximation. ' Such a procedure
is accurate about 10-154. The molecular-dynamics
experiments of Rahman have given some guidance
about the corrections to the Gaussian approxima-
tion for liquid argon. Moreover, in a dil. ute gas,
where one has a kinetic equation (Boltzmann equa-
tion) available, calculations have been performed
to evaluate these corrections. When such a gas

model is extended to liquid densities, the non-Gaus-
sian corrections look quantitatively similar' to
those obtained by Rahman. ~ It is thus possible to
do a calculation" of S,(k, m} with some confidence
for a liquid. However a better microscopic under-
standing of the Gaussian approximation, of the non-
Gaussian corrections, and of the detailed behavior
of single-particle correlations in the transition re-
gion between the ideal gas and hydrodynamic limits
is desirable and is still lacking for a liquid.

In the last few years, a number of studies"
have been made which attempt to calculate the ve-
locity-autocorrelation function from first principles.
Some of these studies have used the memory func-
tion approach of Zwanzig' and Mori.

In this paper, we use the memory-function ap-
proach to study S,(k, w} and compare the results
with those obtained in the molecular-dynamics ex-
periment of Nijboer and Rahman. '
Duderstadt ' have used this approach to calculate

ega

S(k, ru) and longitudinal as well as transverse cur-
rent correlation functions, and have compared their
results with the molecular-dynamics results of
Rahman ' for liquid argon. Their procedure ' can
be trivially extended to derive a formally exact
equation for the evolution of the (Fourier component
of) single-particle density in phase space denoted
here by 5g, (p, t). In Sec. II we write this equation
and discuss its consequences. We then consider
an approximate equation obtained by making a sepa-
rability assumption [Eq. (7)] for the memory func-
tion. The approximate equation which is analogous
to the usual Fokker-Planck equation, is solved in
Sec. III to give analytical result for S,(k, w).

The resulting expression for S,(k, gu) offers a
clean way of assessing the extent of validity of the
separability assumption for the memory function.
In Sec. IV, we use two simple forms for the memo-
ry function which are generalizations of the forms
used by Berne, Boon, and Rice' and by Singwi and
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Tosi" for evaluating the velocity autocorrelation
function. Ne then show the numerical results ob-
tained by using these functions and compare them
with those obtained by Nijboer and Hahman.

The modeled kinetic equation [Eq. (8)] which re-
sults from the separability assumption is very simi-
lar to the kinetic equation obtained by Lebowitz,
Percus, and Sykes" (LPS), who use a different ap-
proach starting from Bogoliubov-Born-Green-
Kirkwood- Yvon (BBGKY) hierarchy equations. The
approximation made in their Eq. (8.1) is analogous
to the separability assumption and their resulting
Eq. (8.6) is analogous to our Eq. (8); the crucial
difference is that the friction coefficient (do 4(k, c)
in Eq. (8) depends not only on frequency but also
on wave vector. From the numerical results pre-
sented in Sec. IV, we find that the wave-vector
dependence in the friction coefficient is essential
in obtaining the liquidlike behavior for S,(k, w); if
in the modeled kinetic equation one uses a friction
coefficient which is only frequency dependent, a
gaslike behavior results.

LPS have also solved their modeled kinetic equa-
tion using Fourier transforms in momentum and
have expressed the solution in a closed form [see
their Eq. (8.16)]. The first form of their solution
can be shown, by expanding e ", to be identical to
the infinite-series form of our solution [Eq. (37}].
For the discussion given in Sec. III, the infinite-
series form is more convenient; moreover, the
series is rapidly convergent for most (k, w) values
of interest and is thus not inconvenient in the nu-
merical study given in Sec. IV.

After this work was submitted for publication,
we received a preprint by Akcasu, Corngold, and
Duderstadt in which their earlier work ' ' is
extended to the calculation of S, (k, w) via general-
ized hydrodynamic~ and kinetic ' approaches.
They find (see Ref. 25, Figs. 3 and 4) that among
the two approaches, the kinetic approach (used also
in this work) gives better agreement with the mo-
lecular-dynamics results. The work presented
here partially overlaps with their results from the
kinetic approach; they have used an exponential
form for the memory function, whereas we inves-
tigate both the exponential and Gaussian forms and
also present an analysis for the frequency moments
of 8, (k, w).

II. EVOLUTION OF SINGLE-PARTICLE DENSITY
IN PHASE SPACE

In this section we study the evolution of the single-
particle phase-space density 5g~(p, t) via the gen-
eralized Langevin equation (GLE). Akcasu and
DuderstadtB' (AD) have recently applied the GLE
to the evolution of the total phase-space density and
have evaluated the corresponding time-correlation
functions appropriate for describing the collective

behavior of the fluid as measured, for example, in
the coherent slow-neutron-scattering experiments
and simulated in the molecular-dynamics experi-
ments. The analysis of AD can be trivially ex-
tended to derive the formally exact GLE for our
case. The continuous set of dynamical variables
considered here is 5g, (p, t) defined'7 as

5g~(p, t) = e ' ' '"' 5(p —p, (t) ),
where r, (t), p, (t) are the position and momentum
(at time t) of the test particle whose evolution we
wish to follow. It is easy to s'how, following an
analysis similar to that of AD, that 5g, (p, t) satis-
fies the GLE

5g~(p, t}+ dr)t dp' S) (k, p, p', 7)
ag m

" 5g) (P t-r) =f),(P t} (2)

where the random force f~(p, t) propagates in time
via the thermal propagator~0 and is explicitly given
by

f(p, ))=e"" '
Ce'

' 'F, ~ e-- — e(e —)e,)), (e)
8p)

and the memory function rP (k, p, p', r) is given by

p(k, p P r) = (f), (P' 0)fg(P, &))/M(P'). (4)

In Eqs. (3}and (4), L is the Liouville operator for
the one-component system of N identical particles
for mass m enclosed in volume V and interacting
classically via, pairwise interaction u (r}; P is the
projection operator explicitly defined by AD; F, is
the total force on the test particle; (~ ~ ) is the
canonical ensemble average, and M(p ) the equilibri-
um Maxwellian distribution normalized to unity. It is
interesting to note that initially the memory function
is independent of k and is given by

p (k, p, p', 0) -=9) (p, p', 0) = (O', M(t))

m B B 5(p'-p)
x p

Bp P Bp Bp M(p') (5)

where P= I/ks T is the inverse te'mperature in en-
ergy units and (do is related to the mean-square
force on the test particle as (d~o=(N —I)(& u)/(3m).

The time correlation function appropriate for
studying the various properties related to the single-
particle motion in liquids is

G,(k, P, P", t)=(5g)(p t) 5g)" (P 0))
Its inverse Fourier transform C,(r, p, p", t) is the
conditional probability that at time t the test parti-
cle will be at the phase point (r,y), given that ini-
tially it was at (O, p"). G,(r, p, p", t), when inte-
grated over p, p", becomes identical to the Van Hove
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—f &p' (( (k, p, p', e) G.(k, p', p", e}. (8)

While applying the memory-function formalism to
the collective motion in liquids, Rahman and co-
workers as we]l as Akcasu and co-workers
found it convenient to use a model description for
the appropriate memory functions. We shall follow
here a similar procedure and make the assumption
of separability that

(() (k, p, p', r) = ((() (p, p', 0) 4 (k, r). (7)

This approximation implies that the random force
correlation in Eq. (4}decays at the same rate re-
gardless of the initial and final momenta of the test
particle. We expect that such an approximation
would be reasonably good if we are interested in the
low-order momentum moments of the correlation
function G,(k, p, p", e), but it will not be particularly
appropriate if we are interested in the detailed be-
havior of G,(k, p, p", e) in the momentum space.
Using Eq. (5), the approximation in Eq. (7) reduces
Eq. (6) to

correlation function, ' G,(r, f). Now since the ran-
dom force f~(p, f} is orthogonal to 5g,(p", 0) at all
times, and since initially C,(k, p, p", t) has the
value. M(f)}5(p —p"), the Laplace transformed func-
tion

G,(k, p, p", e) =- f dt e "G,(k, p, p", f)

satisfies the equation

) G.()t, p, p", t)=M(p)k(p-p")

III. GENERALIZED FOKKER-PLACK EQUATION
AND S,(k, m)

S, (k, (()), the double Fourier transform of Van
Hove's G, (r, t}, is related to G, (k, p, p", e) as

S, (k, (())=(1/w) lim Re S, (k, e=i (()+)7), (10)

where

S, (k, e) = f dp" f dp G, (k, p, p ', e),
S, (k, e)=- f dpd Y (kp, p„e),

and Z axis is chosen to be in the direction of k.
Because of their connection with the velocity auto-
correlation function 4(t) -=(p, (0) p, (t)) /(p', ), lon-
gitudinal and transverse single-particle current-
correlation functions are also of some interest.
These are, respectively, defined as

(»)
(18)

Jpt, (k, f) =—(p, (0) e ' ' " '
P)d (t) e'" ~)(") '(13)

obtained from the ordinary Langevin equation and
the Gaussian approximation of Vineyard used to ob-
tain S, (k, (()}. Such a model was used by Singwi and
Sjolander' and our solution for G, (k, p, p", e) in
this limit is consistent with their result. It is in-
teresting to note that for a dilute gas the weak-in-
teraction limit implies the neglect of the non-Gaus-
sian corrections in calculating S, (k, s)).

In Sec. III, we discuss the analytical solution of
Eq. (8). The solution enables us to study the extent
of validity of the separability assumption in Eq. (7)
in a rather clean way by comparing the results of
the molecular-dynamics experiments for liquid
argon with the results derived from Eq. (8).

(e - [fk p / m + mruo 4 (k, e) II (p)]}G, $, p, p", e}

=M(P}5 (p-p" },
where

e 1 e 1
fi(p) ==' —=+—psp P sp m

(8)

(9)
Jpt) (k, t) —=— dpd pd V, (k, pd, t)

P
(15)

d„, (k, tl= fdp fdpk, —P, G', (k, p, p, t), (14)

is the well-known Fokker-Planck operator. Thus
Eq. (8) is similar to the Fourier-Laplace transform
of the usual Fokker-Planck equation with the dif-
ference that the friction coefficient m(do@ (k, e) in
Eq. (8) depends on both k and e.

Two limiting situations clearly emerge from Eq.
(8). In the absence of any interactions, C (k, e) is
zero and Eq. (8) reduces to the correct ideal-gas
description. For a dilute and weakly interacting
gas, the memory function 4 (k, r) can be approxi-
mated by a 5 function in time so that C (k, e) is ex-
actly 1. In this limit, Eq. (8) reduces to the usual
Fokker- Planck equation. This result is consistent
with the fact that in the limit of weak interactions,
the dilute-gas Boltzmann equation reduces to the
ordinary Fokker-Planck equation. This description
is also equivalent to the model in which (r'(t)) is

f} p/m (f) (0) e fk'8)( ) P (i) e(k'r)(t))

(18)

J„(k,t) fdp"fdpp, "p, G. (k=,
—p, p", t),

d, (k, t) f dp, X, (k, p„t) (18)

J„t (k, (()) = ((m P(()' S, (k, (() ) / k',

In the limit k —0, both eT p and Z» reduce to 4'(t).
However, for nonzero 4 they satisfy different equa-
tions and are, in general, different. It can be
shown that the longitudinal current correlation func-
tion is related to S, (k, (()) as
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where

cT ~ (k, w) = lim Re Z, ( (k, c =i w+ (7).
$7 e 0+

(20)

[c —tkp, /m -moo»o C(k, c) D (p,}]

'& Y, (k,p„c)=M(p, ), (21)

Starting from Eq. (8) and using the definitions in
Eqs. (12), (15), and (18), it is seen that Y„V„
and X, satisfy the following equations:

with

X= (k D„)'/ (P m),

U= (P/2m)"' p, ,

D», = [(do (k (k, c)]

(30)

(31)

(32)

and where H„(Z) are the Hermite polynomials. Us-

ing these results, it is easy to show that the solution
to Eq. (21) is given by

Y» (k, p»1 c) =+ Y»(k, c) +»(ki c,p»}, (33)
f1~0

[c-fkp, /m m~, 4(k, c) 0 (p }]

&& V, (k, p„c)=p, M (p, ), (22)

where

Y„(k, c) = C„(k, c) / [c —A„(k, c )], (34)

[c—ikP /m —m(do (k(k, c) A, (P,)]

&& X, (k,p„c)= M(p, }, (23)

C„(k,a( = „e*f d (, »„(k, e,», ),2' 2"nf

p
1/»

( t)((
C„(k, c) -=„e"(2X)"~'.

2 2"

(35)

(3&)

where A (p, ) is the one-dimensional analog of the
three-dimensional Fokker- Planck operator defined
in Eq. (9) and

The above solution for Y, (k,p„c), taking Eq. (12)
into account, implies that

(24)

(-X)" 1

(
(37)

In the k-0 limit, starting from either Eq. (22) or
Eq. (23), we can show after integration with respect
to p, that (k(c) is given by

4 (c) = [c+(do, 4 (k = 0, )]c', (25)

0 (p, ) 4 „(k,c,p, ) = A„(k, c) q „(k, c,p, ),

where

(27)

A„(kc) = —((g+X}/D», , n = 0, 1, 2, . . . , (28)

e (k c p)=H (u i(2X)"'} '"e' ' "' '
(

which is identical to the exact form derived by
Berne, Boon, and Rice. ' Thus, (do@(0, c) is the
memory function for which various simple forms' '"
have been tried and which is also numerically avail-
able from the molecular-dynamics experiments. ""
Moreover, it has recently been a subject of some
first principles studies. ' ' We note that Eq. (25)
has also been obtained by Lebowitz et al. [see Ref.
24, Eq. (&. 13)].

In what follows we restrict ourselves to Y, (k, P„c)
and V,(k, p„c) although Eqs. (8) and (21)-(23)
can be solved along similar lines. The solutions
of Eqs. (21) and (22) are found by constructing the
eigenvalues and eigenfunctions of the non-Hermitian
operator

e(p, ) -=[tkp, /m + m~'o 4 (k, c) n (p,)] . (28)

Treating k', E as parameters, the solution can be
found by following a procedure identical to that used
by Resibois with the result

Similar analysis for Eq. (22) leads to the result
that

J (k c) =cD e g (-X)" (1+ n/X}
(38)((=o n( c A (k c)

which is consistent with the expected relation

J«(k, c) = Pmc [1 —S, (k, c)]/k . (39)

S, (k, c) = (c+k' D„/ Pm) '

which gives

1 [D'(k, w) k ]
7( [D' (k, w) k']'+ [w +D" (k, w ) k ']'

(40)

(41)

where we have defined the real functions D' and D"
as

D», —, Pm [D' (k, w) +t D" (k, w)]
Std+ 0

(42)

In the hydrodynamic limit, one expects Ao to be the
dominant eigenvalue; also D'(k, w) would approach

Solutions for S, (k, c), J„((k,c), and J,» (k, c) have
also been obtained by Lebowitz, Percus, and Sykes
in Sec. VIII of their paper.

When (k (k, c) and D», are replaced by constant
values, the exact result in Eq. (37) reduces to the
previously known ' Langevin equation result for
S, (k, w). Also, if in Eq. (37) one replaces all the
eigenvalues by the smallest magnitude eigenvalue
Ao(k, c), then one gets the simple result
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(w') =1, (42a)

(42b)

(42c)

(42d)

(w') = (kvo)',

(w') = 3(kvo)'+(uo(kvo)

(w') = 15 (kvo)' [(kv )' 0(o+',]+B(kvo)',

where vo=(pm) '. &oo is defined previously, and B
is (X, (0) ) /(X, (0)3) as given by Nijboer and Rah-
man. " For liquid argon at 85. 5 'K, they estimate
that cop is about 45X10 ' sec and B is about
[4!x277x10's] sec '. For the description given by
Eq. (8) or equivalently by Eq. (21) or Eq. (37), we
have evaluated the first six frequency moments.
For an arbitrary 4 (k, 7), the description gives
{w") correctly for n~ 4, provided C (k, 0)=1. If
we define 4'"' (k) by the small time expansion

@(k, r) = 1+ g 4'"' (k)—
nial nl

then

(w'(k)) = —i (kvo) (oo 4'"(k),

(43)

(44)

(w (k)) = 15 (kvo) +10(kvo) (uo

+ (kvo)'(uo [a&0 —4 +'(k)] (45)

Thus one way of satisfying the first six moments of
S, (k, u) is to choose such a function 4 (k, r) in Eq.
(7) that

4"'(k)=0, (46a)

the self-diffusion coefficient Do, and D" (k, u) would

go to zero, giving the well-known hydrodynamic
form for S, (k, w).

Recently, Chung and Yip have used the general-
ized hydrodynamic approach on the basis of Martin' s
formal. ism' to write down various correlation func-
tions. Their form of S, (k, w) is the same as that
in Eq. (40). Thus, within the present framework
of the memory-function formalism with the approxi-
mation in Eq. (7), the Chung- Yip study ignores the
distribution of eigenvalues A„(k, e). For the range
of k, u encountered in the incoherent-neutron-scat-
tering experiments and used in the mol. ecular-dy-
namics studies, the absolute magnitude of X is of
the order of 10 —10 '. Thus, we can see from
Eqs. (28) and (37) that the relative importance of
A„(k, e), n e 0, may not be great.

It is also of interest to note that Eq. (38) reduces
to Eq. (25) in the limit k = 0; only the n = 1 term in

Eq. (38) survives in this limit.
To conclude this section, we consider the fre-

quency moments of S, (k, w). [For the remaining
part of this section, (~ ~ ) denotes an average over
S, (k, w). ] These moments have been calculated
exactly by many authors. 7 For a classical fluid,
all odd-order frequency moments vanish and the
first few even moments are given as

4'+(k) = [5(kvo) +B/(oo —(oo]
(46b)

In the Sec. IV, we show the results of the numerical
study for S, (k, w) from Eq. (37) and compare them
with the molecular dynamics results of Nijboer
and Rahman. '

IV. RESULTS AND DISCUSSION OF THE NUMERICAL
STUDY FOR S,(k.~)

(- 1)"S„(k,w)
X {47a}

where

w) (k / v )2n (DI2 Dzt2)no 1/2

x cos [8- $„+{2n+I) y]/(A„'+B')' '

with

y = arctan [D' (k, w) / D' (k, w) ]
8= 2(k/vo)' D'(k, w) D" (k, w),

$„=arctan (B/A„)

A„=n —wD' /vo+(k/vo) (D —D '2)

(48a)

(48b)

(48c)

(48d)

, [w + 2(k/v ~)'D "]
vz

0
(48e)

We have used this analytical form to calculate
S, (k, w), S, (k, 0), and w, /z(k), the half-width of
S, (k, w), under various conditions. In all the cases
S, (k, w) is a monotonically decreasing function of
se as expected. Thus most of the information is
revealed by examining the two dimensionless func-
tions [w»z(k)/Dok ] and [vDok S, (k, 0)]. For the
case of a diffusing atom both these functions (labeled
SD in all the figures} are unity for all values of k;
whereas for en ideal gas, the former decreases as
1/k and the latter increases linearly as k.

NR have computed the half-width w, /I (k) of S, (k, w)
and also the half-width of S, (k, w), which is S, (k, w),
under the Gaussian approximation. We reproduce

The molecular-dynamics experiment with which
we compare our results is the one reported by
Nijboer and Rahman (NR). It simulates liquid ar-
gon at 85. 5 'K with a density of 1.407 g cm with
exp(- 6) potential. Thus in all our calculations we
use a value of 0. 188x10 cm /sec for Do (the
self-diffusion coefficient) and a value of 45x10~'
sec ~ for coo (the frequency related to the mean-
square force).

Using Eqs. (10), (37), (42), (28), and (30) we have

2

S, (k, w) = (vvo) ' exp — (D"—D"')
Vp
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FIG. 1. The half-width function w&~ 2/Dok versus k for
the full non-Gaussian S, (k, ce}. EXT 1 —molecular-dynam-
ics results of NH; GM6 —4G ~ with && (k) determined
from the exact sixth frequency moment of S,(k, u); G1S-
@'Oa„~ with v&(k) determined from S,(k, 0) of NR; E1S—@'e~,
with v2(k) determined from Ss(k, 0) of NR; SD —simple
diffusion.

o II

ys
(ll

O
O

0.9

0.80 2 3
4

l(in A

FIG. 3. The zero-frequency function 7faok Ss(k, 0)
versus k for the full non-Gaussian calculation. EXT 1,
GM6, and SD same as in Fig. 1; G1W —4G~„~ with w&(k)

determined from zo&g2(k) of EXT 1 in Fig. 1; E1W —@,~
with v&(k) determined from m&~2(k) of EXT 1 in Fig. 1;
CY —using Eqs. (4. 6) and (4. 16) and z(k) in curve C of
Fig. (4. 2) in the work of Chung and Yip (Ref. 33).

S, (k, gv) = — dtcos(urt) F, (k, t),
1

0
(4ga)

the former half-width in Fig. 1 (labeled EXT 1) and
the latter one in Fig. 2 (labeled EXT 2}. The char-
acteristic features of the half-width are the mini-
mum around k = 1.8L ' in the EXT 1 curve and the
maxima around k = 4A ' in both EXT 1 and EXT 2
curves. Since S, (k, 0) values have not been given
by NB, we have computed them numerically from
the relation'

where

F, (k, t) = exp (-y ) (1+a, (t) (y'/ 2! )

with

v = k-k'(r'(t)),
„(t)=( '"(t)) /C. ( '(t))"-1,

(4ob)

(4gc)

(4gd)

—[a, (t) —3a, (t)] (y'/3})

+ [a, (t) —4a, (t) +6a, (t)] (y'/4} ) —~ ~ J

C„=1 x 3 x 5 x (2n + 1)/ 3" (4ge)

l,2—

SDI.O

DG~ ~e
0.9— LTA XXI

~~0.8-
oi ~o

I I

0 I 2 4 5 6

0.7—
I

k lnA

FIG. 2. The half-wi9th function so&~2/DP versus k for
the Gaussian approximation S~(k, se). EXT 2 —molecular-
dynamics results of NR; G2S —46~ with v&(k) deter-
mined from S~(k, 0) of NR; E2S —4, with w2(k) determined
from S~(k, 0) of NR; DG —dilute-gas model; LTA III —long
time approximation of Sears (Ref. 37); G3 —4 G ~ with
Tf (k) = w( (0) = 0.235 & 10 sec; E3 —@'4'~ with v2(k) = v2(0)
= 0. 208 & 10 sec; SD —simple diffusion.

In Eq. (49), ( ~ ~ ~ ) implies an average over the cor-
relationfunction G, (r, t). The result in the Gaussian
approximation, S, (k, ur), is obtained by setting
a„(t)= 0. The numerical procedure is described
elsewhere. " (r (t}) is taken from NR; the non-
Gaussian corrections a„(t), n = 2, 3, 4 are taken
from an earlier calculation by Rahman for liquid
argon under slightly different conditions. Since
these corrections are found to be quantitatively
similar in gases and liquids, ' the slight difference
in the two ' molecular-dynamics calculations is
not expected to change a„(t) significantly. The
results for [vDok~S, (k, 0)] and [vDok S, (k, 0)] are
shown in Figs. 3 and 4 and are denoted by EXT 1
and EKT 2, respectively. Both are qualitatively
similar with a minimum around k = 2. 5 A, the
minimum being much deeper in the function with a
Gaussian approximation.

In studying the solution given in Eqs. (47) and
(48), we have used two simple forms for the memo-
ry function 4 (k, t) which is defined in Eq. (7} and
which is related to D'(k, sv) and D (k, gu). These
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of S, (k, a ) automatically. 4, violates the fifth fre-
quency sum rule and if this violation is ignored,
then a purely imaginary value of v2 (k) is required
in order to satisfy the sixth frequency sum rule.
Thus in determining rz (k}, these sum rules have to
be ignored. On the other hand, 4«„„gives the
fifth frequency moment correctly, and the exact
value of the sixth frequency moment can be used as
one of the ways to determine r, (k). Using Eq. (46b),
such a determination gives

0.9
l

2 3
k in K-)

v, (k) = [-,' vok'+ —,'(B/(u'—0 (oo)]

(s 2k2+ [& (0)]-2}- 1/2

(54a)

(54b)

forms are the generalizations of the earlier mod-
els' '" for the memory function C (k = 0, t) used in
evaluating the velocity autocorrelation function
4'(t). These two forms are

4, „(k,f)=exp(-[f/v, (k)]'] (50)

4,~ (k, t) = exp [- t / 7 2 (k )] (51)

It is easy to show using Eqs. (32), (42), and (50)
that

2(u o r, (k ) —,
' v exp (- 2r') + [F(x)]

(52a)

(oov, (k) —,'v exp (- 2x~)+ [F(x)]'

(52b)

where

x(k, cu) = 222 r, (k) (52c)

F(x)-=e " f dt e' (52d)

is the Dawson's integral. Similarly, for the ex-
ponential form we find

D,'~ (k, ru) = vo/(oo r2 (k) (53a)

D," (k, tv ) = vo gu / &o o (53b)

Both the Gaussian and the exponential forms in Eqs.
(50) and (51}satisfy the requirement that 4 (k, 0) = 1
and thus satisfy the first four frequency moments

FIG. 4. The zero-frequency function xDok Ss (k, 0)
versus k for the calculation with Gaussian approximation
(Ref. 4). EXT 2, G3, E3, SD same as in Fig. 2. G2W-
@«„~with v&(k) determined from ae&y2(k) of EXT 2 in Fig.
2; E2W —4,~ with y&(k) determined from w&g2(k) of EXT 2
in Fig. 2.

For given values of Do and &uo, the values of 7, (0)
and vz(0) are fixed from Eqs. (52) and (53), since
D' (0, 0) = Do For .our case, r, (0) = 0235 x 10 "
sec and r2(0)=0. 208x10 ' sec. These values are
used in our calculations. Thus from Eq. (54) we
would estimate the value of the constant 8 to be
about 3660x10' sec ' which compares favorably
with the value 6650x 10 ' sec ' quoted by NR. 7, (k)
as determined by Eq. (54b) is shown in Fig. 5
(labeled GM6).

Once the form of 4 (k, t) is determined, calcula-
tion of S, (k, ar) is self-contained in Eqs. (47) and

(48); the desired functions [w»2/Dok'] and
[vDok S, (k, 0)] can be determined from S, (k, w).
These functions are shown in Figs. 1 and 3 (both
denoted by GM6), respectively, for 4o,„„[with
7., (k) obtained from the sixth frequency moment].
When compared with the exact NR result (EXT 1),
w, &z(k) is overestimated while the zero-frequency
value of S, (k, ge) is underestimated for all values
of k in this calculation. Because of the non-Gaus-
sian effects, the characteristic minimum in the
half-width is not reproduced. This is not entirely
unexpected, since the leading non-Gaussian correc-
tion a~(t) behaves as t' for small t. Thus in order
to reproduce the minimum quantitatively one would
need a description which gives the correct eighth fre-
quency moment, in addition to the features of the
present solution. Apart from the lack of this mini-
mum, the GM6 results do bear a qualitative re-
semblance to the EXT 1 results.

Another way of determining both r, (k) and r2 (k)
is to require that the NR results for S, (k, 0) [EXT
1 curve in Fig. 3] are reproduced exactly for all
k values. We find numerically that such a deter-
mination of 7 (k) is unique [i.e. , S, (k, 0) is a single-
valued functional of r( )k]. r, (k) so found is shown
in Fig. 5 (labeled G18) and r2 (k) so found is shown
in Fig. 6 (labeled E18). The half-widths of S, (k, w)
as determined by using r, (k) and r2(k) and the ap-
propriate forms of @ (k, t) are shown in Fig. 1, de-
noted, respectively, as G1S and E1S. The expo-
nential form of 4 (k, f) gives the half-width (E18)
which qualitatively resembles the exact results of



SINGLE- PARTICLE MOTION IN SIMPLE CLASSICAL LIQUIDS

.20

, l5
CP
4I

CV

I

D IP

I .05—
2W)

GIS

G2S

GIW

G2W
G Mfj

0
0 2 3

k inAI

FIG. 5. Tf(k), the relaxation time of @o~~~(k, t) versus
k. G1S, GM6 as in Fig. 1, G2S as in Fig. 2, G1W as in
Fig. 3, G2W as in Fig. 4. (G1W-G2W) —difference of
G1W and G2W; (G18-G28) —difference of GlS and G2S.

NR (EXT 1) with the positions of the minimum and

the maximum remarkably close; actual magnitudes
of [w, &, / Dok ] however disagree by about 10%.
The Gaussian form of @ (k, t) does not reproduce the
minimum and underestimates the position of the
maximum slightly; the difference in the actual mag-
nitude of [m, &z/ Dok ) is again about 10%.

An identical calculation is also made using the
Gaussian-approximation molecular-dynamics re-
sults So (k, 0), which were obtained using (r' (f))
of NR (EXT 2 curve in Fig. 4). The determined

r, (k) and r2 (k) are shown in Fig. 5 (labeled G2S)
and in Fig. 6 (labeled E2S). Corresponding half-
widths are shown in Fig. 2 under the labels G2S
for 4o~„(k, t) and E2S for 4„,(k, t}. Again the re-
sults are qualitatively similar to that of NR, the
quantitative difference being about 10% or less; the
position of the maximum is reproduced slightly
better by the exponential form.

Curves labeled G3 and E3 in Figs. 2 and 4 show
the results of the two calculations, where 7, (k} and

vz(k} were assumed to be k independent with their
values fixed at r, (0) and rz(0), respectively. These
results do not show the characteristic behavior of
NR results (EXT 2), thereby indicating that in the
present formalism [with the approximation in Eq.
(7)] the k dependence in the memory function 4 (k, i)
is essential for reproducing the results obtained
with the phenomenological Gaussian approximation
for G, (r, t). It is also interesting to compare these
results (E3, G3) with those obtained from a dilute-
gas model (labeled DG in Figs. 2 and 4), as dis-
cussed in Sec. II, in which we assume 0 (k, t) to be
a 6 function in time. This calculation [which is
equivalent to Langevin equation coupJed with the
Gaussian approximation] gives rise to [vDok~ S, (k, 0)]
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FIG. 6. T2(k), the relaxation time of 4,~(k, t) versus
k. E1S as in Fig. 1, E2S as in Fig. 2, E1W and CY as in
Fig. 3, E2W as in Fig. 4. (E1W-E2W) —difference of
E1W and E2W; (E1S-E2S) —difference of E1S and E2S.

which is almost identical to that given by G3, E3.
The difference in the time dependence of the memo-

ry function has some consequence only in the half-
width (Fig. 2). Also shown in Fig. 2 are the re-
sults of Sears" (curve labeled LTA III) who has ap-
plied Mori's continued fraction representation in
order to calculate, among other quantities, the
half-width of S, (k, w). In Sear's notation, the DG
model is identical to the LTA II representation and

the SD model to LTA I.
We have also performed another set of calcula-

tions via a procedure which is the same as that
followed by Chung and Yip." In this procedure, by
repeating the trials for each value of k, we find
the value of r(k) that precisely gives the value of
the half-width obtained in molecular-dynamics
calculations of NR. The results are shown in Figs.
3-6 under the labels of G1W, G2W, E1W, and E2W.
Results with G in the label use 4o,„„and the re-
sults with E in the label use 4, ; results with 1

reproduce the non-Gaussian half-width EXT 1 of
Fig. 1 and those with 2 reproduce the Gaussian
approximation half-width EXT 2 of Fig. 2. Chung
and Yip have used the formalism by Martin;
curves labeled CY in Figs. 3 and 6 are obtained by
using (i) their Eqs, (4. 6) and (4. 16) and (ii) the
curve labeled C in their Fig. 4. 2. The conditions
under which the CY calculations were done cor-
respond quite closely to those for the E1W calcula-
tion. Again the CY values of r2(k) in Fig. 6 are
chosen to reproduce the non-Gaussian half-widths
of NR (EXT 1 in Fig. 1) exactly. The qualitative
similarity of [vDok S, (k, 0)] in Fig. 3 for the three
curves G1W, E1W, and CY is striking. All the
three show an extra maximum and an extra mini-
mum as compared to the molecular-dynamics re-
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suit EXT 1. The difference arising due to the two
different forms of 4 (k, t) used is of the same order
as the difference arising from the approximation,
[A„(k, s)=AD(k, s) for all n] which is needed to re-
duce our results to those of Chung and Yip, as
discussed in Sec. III.

Comparing the various results for the relaxation
times r, (k) and rz(k) [Figs. 5 and 6], we see that
they are all qualitatively similar. The effect of
the non-Gaussian corrections is to make r (k)
larger, implying a longer memory time during
which the initial phase information is retained by
the test particle. In Figs. 5 and 6 we also show

the quantities (To,v To-gv), (To,s To~), (Tag' Tszv),
and (rs,s —ress), all of which arise because of the
non-Gaussian effects. Although these effects arise
mainly because of the dynamical correlations, the

0

striking peaks around k = 2 A in (Togs —Togv) and

(rs,„vs2v) -tend to make us speculate that this be-
havior is the manifestation of the local structure
of the bath particles around the test particle. Around

0k=2 A ', when the surrounding local structure is

favorable, the test particle tends to retain the ini-
tial phase memory longer.

In conclusion we can make a general remark
about the simple approximation in Eq. (7) for the
memory function. By using the simple forms for
4 (k, t), one is capable of reproducing most of the
qualitative features of the molecular-dynamics
results; quantitative agreements are within about
10%. All the details regarding the connection
with the basic interaction are however hidden in the
average relaxation time r(k) Th.us, we can specu-
late that for better basic and quantitative under-
standing of S, (k, ro) and its half-width, one requires
an ansatz for P (k, p, p', t) that uses Eqs. (3) and (4)
explicitly and which describes the behavior of the
test particle in momentum space more accurately
than Eq. (7), rather than more involved forms for
0 (k, f) within the framework of the approximation
in Eq. (7). The calculations presented here can
also be extended to study the correlations in the
rotational single-particle motion. Work is in prog-
ress in both these directions.
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