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The problem of the two-channe) positron-hydrogen rearrangement collision is studied with

the formalism of the generalized variational bounds. For the zero total partial wave, a reason-
ably complete treatment of this scattering system is presented, including a detailed discussion
of the energy spectrum of the closed-channel Hamiltonian M. The coupling of the open channels
to the closed channels gives rise to the effective interaction potentials, and these distortion
terms are estimated variationally using the bound property of M. The orthogonality of M to
the open-channel space is maintained by the presence of the energy-shift operator S, and the
role of S is demonstrated in detail numerically, which produces essential cancellation of vari-
ous terms. Partly owing to the crudity of the trial functions used, we have not been able to
find resonance states below the first excitation threshold. Bounds on the diagonal K matrix
elements and eigenphase shifts are presented.

I. INTRODUCTION

This is the second part of a series of studies on

the positron-hydrogen rearrangement collision.
We have reported in I ' the result of a calculation
in the coupled-static approximation (CSA) in which

the effect of distortions due to the coupling of the
open channels to other closed channels is complete-
ly neglected. A rigorous treatment of this scatter-
ing system using the formalism of the generalized
variational bounds~ (GVB) requires the exact solu-
tion in the CSA, and we complete the program here
by incorporating the effect of distortions to the re-
sult of I. It is well known' that the e'H scattering
system demands a careful treatment of the distor-
tion effect before a meaningful result can be ob-
tained. This system, which is probably the sim-
plest three-particle scatters ing problem v here the
rearrangement process is possib1. e, has been a. very
fertile ground for the development of theoretical
methods even for the single-channel case, and, as
will be seen below, this is certainly the case when

two channels are open.
We are interested in the ze".o total partial-wave

scattering of the form

e' +(e qp') —(e'+e )+p'

with the scattering energies E in the range EI ~ E
(E~, where EI, = —0. 250 a. ~. and E~ = —0. 125 a. u.
As discussed in I, the closed-channel projection
operator Q is not readily available for (1. 1), and
thus the Q-space effect cannot easily be incorpo-
rated into the theory. The GVB formalism circum-
vents this difficulty and a!so allows one to evaluate
directly the resonance energies variationally. In-
stead of the closed-channel Han;iltonian QHQ, we
use the operator M which implicitly contains the
effect of Q. Various orthogonality properties of the

operator M and the function N are maintained through
remarkable cancellations built into the theory, and
this peculiarity of the GVB is demonstrated in the
followiag.

The formalism of the GVB provides, in general,
bounds on the diagonal elements of the E matrix
and also on the eigenphase shifts. However, such
bounds are only valid if the lowest value of the
spectrum E~ of M is above E. If any number of
E~ lie below E, then one has to improve the trial
functions sufficiently to account for these states,
Therefore, it is essential for the GVB to first esti-
mate the approximate location of these states, which
may give rise to resonances when coupled with the
open-channel space.

We briefly summarize in Sec. II the formalisms
which are needed for the present part of the calcu-
lation, with fuller discussion of several points of
interest than was given in I. The evaluation of the
Green's function G~ in the CSA is replacedby the cal-
culation of the auxiliary function Y, , and this is
given in Sec. III. Sections IV and V give results of
the calculation of the spectrum of M and evaluation
of amplitudes using the functions Y& .

II. EFFECTIVE POTENTIALS AND GVB

We have already given a general discussion of the
GVB for the e'H system in I and thus will collect
here only those results which are relevant to the
Q-space calculation, modified in the way used here,
and also make several additional remarks on the
orthogonality property of M and ¹

The P part of the problem in the CSA, as re-
ported in I, requires the exact numerical solution
of the equations

P( (H —E) flI = 0,

which completely neglects the Q-space effect. On
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Pg [H- E+ W]PC=0, (2. 2)

the other hand, the original scattering problem can
be written in terms of the effective potentials 8' as

of these discrete energies, then 6 becomes infinite
and we usually have a resonance in the open channels.
To study the discrete spectrum more explicitly, we

may diagonalize the matrix M» defined by
with

W = (H - E}Go(H - E), G'= [q(E - H) q] -', Mar = (X a, MX i) . (2. 15)

P@-=P,+, +P,4, .

Equation (2. 2) can be modified to assume the
form

Pg(H- E)P4'=P((H- E)M 'N,

where M and N are given, as before, as

M=H —E+S(E), S =(H —E)G (H-E)

(2. 3)

(2. 4)

(2.5}

Here, the correct normalization of g, is not known,

but, as will be discussed in Sec. IV, the resonance
energies are independent of the normalization.
The coordinates used and the energy integrals in-
volved in (2. 15) are given in Appendices A and B,
respectively. Thus, we have

AMA = ED,

where EI, is the diagonal matrix with elements E„„
and A is the orthogonal matrix composed of eigen-
functions

X„=P A„ (2. 17)
N=(H-E}Pe, P4 =P,4, +P, 4', .

In (2. 5), G (E}satisfies the equations

P, (H-E)G~ =-P,

(2. 8)

(2. 'I)

The correct "resonance" energies are then given
by I (2. 42),

E„,(E}=E„,+E =E,

The amplitudes are defined as

x=x~+z,
with

(2. 8)

X= —K ~ Ra, 6= —(N, M 'N)=(N, B N), (2. 9)

where the factor 2m in X disappeared because of the
particular integration used in b. For the scattering
energy E chosen below the lowest spectrum of M,
we have

M&0, (2. 10)

(2. 11)

M=QM=MQ, PM=MP=O,

while (2. 9) follows from the property

PN=O, QN=N.

(2. 12)

(2. 13)

The properties (2. 12), (2. 13), and (2. 10) have al-
ready been discussed in I. The GVB is then given
by

The inequality (2. 10) is a result of the orthogonality
property

4, =Q„(N, X„)(E—Eo, ) '(X„,N) . (2. 20)

In (2. 14) with (2. 20), it is assumed that Eo & E for
all n. However, if there are a finite number N of
Eo which lie below given E, then (2. 14) is not valid
in general and (2. 20) requires N subtractions. '5

This requirement may be met automatically if the
trial functions X„are good enough so that

if E„, lie below E~. In this diagonalization proce-
dure, it is essential that we keep the same E
throughout M until the last step (2. 18); otherwise
the orthogonality property (2. 12) will be lost and
we will have nonsensical results. The shift oper-
ator S, defined by (2. 5), would of course be exact
only when E in it is replaced by a particular E, .
However, in general the E dependence of S is not
so drastic and one has reasonable values of E,
without finer adjustment, although this can be done
easily. (This is not the case in the present problem,
as will be seen in Sec. IV. )

Once the M» matrix is diagonalized, we can im-
mediately write g, in the form I (2.43),

g', =L (X„)(E—E„',)-'(X„~ (2. 19)

and thus

hc ht=(N, GqN), (2. 14} E & E~, (E) & Eo(E)
which does not require P or Q.

By definition of the Q space, and because of
(2. 12) and (2. 13), the operator M has its continu-
um spectrum startingat the energy corresponding to
the first excitation threshold E~= —0. 125 a.u. and
may also possess a number of discrete spectra be-
low this threshold. Now, if E is equal to any one

for al/ n =1, ... , N, where the last inequality in
(2. 21) follows from the Hylleraas-Undheim theo-
rem. With this additional constraint, (2. 14) may
be still valid. This can also be seen physically
since

E~ ~ E~~ & E, n = 1, 2, ... , N
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E~t &E„&E, n&N

gives

(E —E„') '- (E E—et) '

(2. 22)

(2. 23)

for all n = 1, ... , N, ... , irrespective of the signs of
each term, Therefore, in order to make a definite
statement of the bound property of b,„ it is neces-
sary to know in advance the locations and the num-
ber of resonance levels which lie below E. In this
respect, the availability of the operator M in the

Q space is very important, so that one can judge
whether (2. 14) is valid or not.

Now, the evaluation of M „ is rather involved for
the present problem mainly owing to the presence
of S (E). However, for the purpose of evaluating only
M„„, we do not need G in its full generality but
only as combined with (H-E)x„. Therefore, if we

solve instead'

P~ (H —E)(P, F,„+P F „)=—P, (H —E)x„(2.24)

for each X„, then

(x,Mx„) = H„—E —„+S „,
where

(a. 25)

N„= (X„,N) =N,„+N2„,
where

Ng„= (X„,[H —E)Pi 4'( ),

(a. as)

(a. ao)

S „=(X, [H —E][P,Y,„+Pa Fs,]}. (2. 26)

[We use F,„(r2}and P, Y,„(r2,r, ) = $0(r, )F,„(rz) in-
terchangeably in the following. ] PF„satisfies the
same boundary conditions as G~, and (2. 24) is very
much like (2. 1) for 4 and the same technique as
explained in I may be used to obtain PY„. It is also
obvious that PY„are independent of choice of the
initial boundary conditions a' and a" . Explicitly,
we have, for i Wj,

Pq(K- E)P( F(„+P((H- E)P~ Y~„-——dP((H- E)X„,
(2. 27)

where d is an arbitrary constant. Since X„contains
a large amount of the P component in general, the
right-hand side can be abnormally large and disturb
the convergence of the iteration series. A constant
d can be included to improve the convergence and
its effect divided out at the end (Sec. III).

From (2. 25) it is clear that, for M to have the
energy spectrum we have stated above, there should
be subtle cancellations between H „and S „, since
the full Hamiltonian H has the continuum starting at
—0. 50, and thus H~„alone will dip down near this
value. Details of this cancellation and the indication
of the boundedness of M will be discussed in Sec.
IV.

Similar cancellation should also appear in the
matrix elements (X„,N) in (2. 20). If we write

then N,„or N~ alone may be large since X„ is not
preorthogonalized to P, but the sum of the two
should cancel in such a way that any part of X„ in
the P space should disappear in N„. This cancel-
lation, combined with the one in M „, results in the
bound (2. 14}. We will come back to this point more
fully in Sec. V.

The cancellation as in (2. 25) and (2. 28) can also
be seen in the complete wave function 4, . If we
define the function for a given X, ,

P4, = Pe'+G'(H E)x,-, (a. 30)

then the solution of the equation P(H —E)4, = 0 may
be written in the form

4~=P~, +X, =P~'+G'«-E)X, +X~.

If we let

Xg=PXt +QXg ~

then

(2. 32)

4's = [Pq + G (H - E)(PX ~ + QX g)1+ (PX g
+ QXt }

=[P~'-PXt +G'(H-E}QX~]+PX&+QXt.

(2. 33)
Thus, —PX, in the square bracket cancels the PX,
component of X, , giving

4, =P~'+ G'(H- E)qX& +qX ~, (a. s4)

which is the correct form, and we could have used it
if P and Q were explicitly known. Of course,
throughout the calculation, we never see QX, and
we are not able to decompose x, as (2. 32), but the
use of M and N in (2. 14) will do the same automati-
cally.

For the calculation of 4, , one can do better by
not using (2. 20) as it is given, which requires the
calculation of Y„ for each X„. One can first diag-
onalize the matrix'

W = W, =Z'„ (H- E)~&„)(-e„)-'(&„~(H-E), (a. SS)

where e„and ( are the eigenvalues and eigenvectors
of D „. With this in (2. 2), we have to solve for
PC, just once. This will considerably improve the
accuracy of the calculation, but the information on
the resonance energies is then lost and we will not
be able to make a definite statement on the bound
property. Furthermore, D „has spurious zeros
due to the continuum spectrum of H, although these
singularities should cancel at the end and thus not
affect the final result.

Finally, we should point out one important ex-
ception to the discussion on the resonance energies

(a. s5)

without S „of (2. 25). This will give an approxima-
tion to 8'in the form
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given above, with the result (2. 18). This has to do
with the particular normalization of the wave func-
tions P%~ and $% and the peculiarity of the trigo-
nometric functions tan6, involved in K,&. The par-
ticular normalization of the wave function chosen
in the present study, as given by I (2. 14), corre-
sponds to 8 =

& (2n+ 1)v of Ref. 5 for n an integer.
Therefore, whenever the situation arises in which

6, &6) &6, with the above 8, we expect to have one
spurious state of M below E. This state has nothing
to do with the true physical resonances, but never-
theless would affect the bound property of K«, and

This indeed is the case with K and 6z, as
shown in Sec. IV.

III. ENERGY SHIFT OPERATOR $(E)

The function PY„needed in M„„ is given by

PYyf -=P, Y&n +P& Y (3. l)

Fg„—- Pg (H —E)X„ (3. 3)

are given in Table I for a typical choice of a„=0.6
and P„=0.4 for 0 =O. aao ', and P, Y&„ for this X„
are also given there. P, Y,„satisfy the same as-
ymptotic boundary conditions as G~, and thus it is
clear that they are independent of the initial condi-
tions a' and a". This is borne out by the calcula-
tion. They are first calculated by solving (2. 2V)
with the usual boundary conditions

P, Y',„-(a', isknr~ b+', cosbxz)&0(r, )/ra,
(3.4)

Pz Y2„- (am sinpR +bi cospR)y(S )/R,

and similarly for the second set a". By linear
combinations with coefficients (C', , C2) and (C", ,

Cz'}, we obtain the sets PF'„and PY'„', with

and satisfies the coupled equations (2. 27), with d
=1. An exactly identical form without the X„ term
was solved in I to obtain C~, and we have used the
identical procedure for PY„. Equation (2. 27) again
involves the complicated coupling kernel P, (H —E)PI
-K,z(rz, R), and thus the limit of accuracy of PY„
is placed by that of K». Eventually E„, and the am-
plitudes will be affected by the same limitation.

The trial functions X„are chosen to be of the
form

(3. 2)

where C„=(2a„P„)~, and r, and s are the coordi-
nates of the electron from the proton and the posi-
tron, respectively. This form is especially con-
venient not only because it contains all l contribu-
tions for the total angular momentum L = 0, but
most of the integrations can also be done easily.
%'e switch back and forth between different sets of
variables (r, , rz, s), (s, R, r, ), (s, R, rz), and (r„R,
—,s}, etc. , as listed in Appendix A. The explicit
form of equations for Y&„ is given in Appendix C.
The inhomogeneous terms

TABLE I. Values of 1 «(r2), I'2„(R) and Y&„(r2), Y&„(R)

at 0=0. Sao ' for the parameterse„=0. 6ao ' and P„=0.4ao

0. 20
0. 40
0. 60
0. 80
1.00
1.20
1.40
1.60
1.80
2. 00
2.20
2. 40
2. 60
2. 80
3.00
3.20
3.40
3.60
3.80
4. 00
4. 40
4. 80
5.20
5. 60
6. 00
6. 40
6. 80
7.20
7. 60
8. 00
8. 80
9.60

10.40
11.20
12.00
12. 80
13.60
14.40
15.20
16.00
17.60
19.20
20. 80
22, 40
24. 00
25. 60
27. 20
28. 80
30.40
32. 00

0. 18770
0. 142 06
0. 09947
0. 06190
0. 028 49
0. 00020

—0. 02424
—0. 044 40
—0. 06140
—0. 075 10
—0. 08634
—0. 095 13
—0. 102 06
—0. 107 19
—0. 110g4
—0. 11338
—0. 11481
—0. 11531
—0. 11507
—0. 11416
—0. 11085
—0. 106 06
—0. 10030
—0. 093 95
—0. 08732
—0. 08062
—0. 074 02
—0. 06762
—0. 061 50
—0. 05572
—0. 045 30
—0. 036 42
—0. 02901
—0. 022 93
—0. 018 01
—0. 014 07
—0. 010g3
—0. 00846
—0. 006 52
—0. 005 01
—0. 002 93
—0. 001 70
—0. 00098
—0. 00056
—0. 00032
—0. 000 18
—0. 000 10
—0. 00006
—0. 000 03
—0.000 02

0. 013 78
0. 014 16
0. 00627

—0. 007 95
—0. 023 73
—0. 038 06
—0. 050 77
—0. 059 85
—0. 066 88
—0. 07072
—0. 073 01
—0. 073 16
—0. 072 40
—0. 07039
—0. 067 93
—0. 064 84
—0. 061 60
—0, 058 12
—0. 054 66
—0. 051 16
—0. 044 47
—0. 03830
—0. 032 76
—0. 027 85
—0. 023 57
— 0. 019 86
—0. 016 68
—0. 013 96
—0. 01165
—0. 009 70
—0. 006 68
—0. 004 56
—0. 003 08
—0. 002 07
—0. 001 39
—0. 000 92
—0. 00061
—0. 00040
—0. 00027
—0. 000 17
—0.000 07
—0. 000 03
—0. 000 01
—0. 000 01
—0. 00000
—0. 000 00
—0. 000 00
—0. 000 00
—0. 000 00
—0. 000 00

Y(

—0. 00564
—0. 00g 11
—0.01110
—0. 012 37
—0. 013 57
—0. 01521
—0. 01758
—0. 02086
—0. 025 04
—0. 03004
—0. 03566
—0. 04167
—0. 04781
—0. 053 81
—0. 05939
—0. 06431
—0.06832
—0. 07125
—0. 072 94
—Q. 073 26
—0. 06959
—0. 06034
—0. 046 17
—0. 028 54
—0. 00926

0. 009 56
0. 02575
0. 03746
0. 043 13
0. 04191
0. 018 92

—0. 02428
—0. 07169
—0. 10485
—0. 11023
—0. 08479
—0. 03730

0. 01489
0. 052 61
0. 062 37

—0, 00033
—0. 076 15
—0. 05158

0. 04175
0. 07276

—0. 00158
—0. 074 53
—0 ~ 041 62

0. 05041
0. 0703S

Y2

—0. 042 61
—0. 083 22
—0. ~.21 ll
—0. 156 55
—0. 19065
—0. 224 92
—0. 260 87
—0.299 SS
—0.342 95
—0. 390 71
—0.443 39
—0. 50091
—0. 562 79
—0. 628 31
—0. 696 65
—0.766 75
—0. 837 50
—0. 907 73
—0. 976 18
—1.04168
—1.15920
—l. 25144
—1.31097
—1.33193
—1.31062
—1,24538
—1.136 91
—0. 988 06
—0. 803 85
—0.591 05
—0. 11391

0.366 60
0. 770 89
1.03129
1.10436
0. 978 90
0. 67827
0.256 34

—0. 21188
—0. 643 38
—1.11069
—0. 829 03

0. 01191
0. 84467
1.10723
0.622 38

—0. 282 5g
—0. 996 83
—1.03822
—0.378 78

0)
and

(, li
The desired functions are then given by

(3. 5)

Y,„=(P, Y',„-P, e", )/(d(C', + C', )t, (3.5)

and similarly with the second set on the right-hand
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P@,=E% +Z„C„PY„, (3. 8)

side of (3.6). Two sets give identical P, F,„ to bet-
ter than one part in 10' at their maxima. While the
coupling kernel H, m(ra, R) decays rapidly to be neg-
ligible beyond 32ao, F&„with n or P small have

long tails and we limited our calculation to a cutoff
at 80ao, and &, $)0.2ao.

Since the rest of the calculation depends on the
goodness of P& Y,„, much effort has gone into a
proper evaluation of this function. Any further im-
provements of the present calculation require better
evaluation of E,z(r„R) and 1',„.

The total wave function P4', may now be expressed
in terms of PY„as follows: Since PC, satisfies
the equations

P(H- E)P4' + g r„[(E-H),']„(r,P4 ) = 0,

(3.7)

we have immediately

TABLE III. Most reliable values of E«and E2t ob-
tained by the two-term diagonalization of the energy
matrix Mnn. The parameters for E&, are (0.2, 0.6) and
(0.4, 0.4) for (o.'„, P„).

E (a.u. )

—0.2372
—0.2188
—0. 1997
—0. 1800
—0. 1597
—0. 1388

ka, '

0.725
0.750
0.775
0. 800
0. 825
0. 850

—0. 222
—0. 204
—0. 185
—0. 167

—0. 148

—0.20
—0. 17
-0.15
—0. 12

—0. 12

ter over the energy range down to —0. 5 a. u. In
each case, however, S„„have the correct signs and
magnitudes to bring the sums H„„+S„„upto the
values near E~= —0. 125 a. u. Of course, by defi-
nition, E~ depends on the value of E chosen. For
E = —0. 1388 a. u. , e. g. (or k = 0. 86), we have the
minimum

where Eq~ & E)~ = —0. 1473 (4. 2)

C„=-p [(M) ]„(r,per),
M„=(x, , [H- E])t,)+(r„py, ) .

(3.8)

(3. 10)

IV. SPECTRUM OF OPERATOR ill

Evaluation of M „and its diagonalization is now a
simple matter using P& Y&„obtained in Sec. III. In
order to examine the cancellation between H „and
S „, we have listed the one-term values in
Table I. at k =0. 85ao ', where

S'„'„'= (X„,[H —E]P 1',„)
= (r,„,J, r, „) . (4. 1)

Since we do not have the explicit Q operator in the
calculation of M „, H„„, for example, are to scat-

TABLE II. Components of M and E~« for various sets
of parameters (~n, P„) E= —0. 1388 a. u. (k=0. 85ap ).
Set (n, P) H (i)

Snn g(2)
nn

(o. 4,
(o. 4,
(o. 4,
(o. 4,
(o. 4,
(o.6,
(o. 6,
(0.9,

O. 2) —O. 3170
O. 4) —O. 3100
O. 5) —0. 2929
O. 6) —O. 2624
O. 7) —O. 2166
O. 2) —0.4019
O. 4) —O. 3624
O. 9) —0. 0225

0.2161
O. 2459
0.2306
O. 2044
O. 1746
O. 3625
O. 4135
O. 2144

—0. 0255
—O. 0832
—O. 0789
—O. 0597
—O. 0345
—O. 0949
—O. 1969

O. 0366

—O. 1265
—O. 1473
-O. 1412
—O. 1177
—O. 0765
—0. 1343
—O. 1458

O. 2285

The solutions (3.8) are given formally, but can
easily be written out in detail in terms of the P, and

P2 components of the various quantities. We could
have solved (3. 7) once for each E and predetermined
I'n, but we are equally interested in the eigenvalues
of M„ in (3. 10), and thus (3. 7) was not used in our
calculation.

for o. =0. 4 and P=0. 4. This already shows two im-
portant results: (i) The operator M is most likely
bounded from below with the continuum spectrum
starting at E=Ev. (ii) There exists at least one
state of M below E with the upper bound on E&~ giv-
en by (4. 2). The result (ii) is rigorous so long as
we are only interested in the spectrum of M. Its
connection to resonance states will be clarified
later. The point (i) is not a rigorous proof but the
values in Table II certainly provide a strong indi-
cation.

We can improve on the values of E~«given in Ta-
ble II by including more than one terms in M „and
diagonalizing it. In general, S"„' are not symmet-
ric, i. e. ,

(l&
Smn ~ Snm 4 (4. 3)

since we have no way of separating the Q, part in
However, we expect that

(1) (2)Smn=Snm=Snm +S n (4. 4)

This is borne out by the calculation. Owing to in-
sufficient accuracy in our calculation of P, Y,n, I',„,
and subsequent integrations, and more importantly,
owing to a simple choice of the trial functions X „
introduced in (3. 2), we have encountered a severe
cancellation problem in the diagonalization proce-
dure, and, as a result, it has not been possible to
include more than two terms with consistent results.
Table III shows the energy values E~, using the best
two-term sets at different values of E. The accu-
racies of E„and Ez, are roughly +0. 005 and +0.01,
respectively.

Various checks on the accuracy of E, come from
the symmetry (4. 4), improvement of E~et as another
function is added, and the change in K«„as de-
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FQ
I

of Y&„. The cancellations in the diagonalization may
be eased somewhat by a better choice of the trial
functions, such as

y„=C„r,$ e (4. 6)

~ 22

".22
I

-.I4
F (+.tt0

scribed in Sec. V. We have evaluated $ „with Y„
and S„with I'; (4. 3) is well satisfied to accu-
racy of a few parts in 10 . The result with three-
term diagonalizations, although unreliable in most
cases, has provided further indications of the ex-
tent to which cancellations spoiled the diagonaliza-
tion, and also the convergence of E~, as functions
of the number of terms.

As we have stressed earlier, the eigenstates of
M(E) do not necessarily manifest themselves as
resonances unless any one of E equals E. We
have also noted that the normalization of the wave
function may sometimes give rise to one spurious
state of M. Reserving this latter point for later
discussion, we thus define the resonance state as
the point spectrum of M with E =E in a self-con-
sistent way. From the several values of E where
EP, is estimated, we can interpolate to obtain E, (E)
=E. This is shown in Fig. 1, with the result

FIG. 1. Energy dependence of the energy E&~ (E) of
the operator M(E) at various E's. The point E~, (E) =E
should be above the exact value E = —0. 156 a. u. according
to the assumption that E~& is a spurious state caused by
the particular normalization used.

The variation of E~o(E) as a function of E is the out-
standing feature of this problem. The rapid E de-
pendence seems to come from the fact that the sec-
ond (e'e ) channel momentum p =k2 changes rapidly
in this region, while, as in the e H case, k =k,
varies rather slowly. The proximity of E~ to the
E line also makes it difficult to determine whether
any E~ may come down below E. Such a possibility
is left open insofar as the present calculation is
concerned, and definitely points to the desirability
of obtaining a lower bound on E~.

We now come to the question of the spurious state.
We recall that, in the CSA of I, the eigenphase shift
5~ of the second channel assumes the value ——,

'
w at

k =0. 830 giving K»= ~. This corresponds to E
= —0. 156 a. u. , which is rather close totheestimate
of E, given by (4. 5). In fact, for 5„ to increase
from the value 52 at all according to the bound state-
ment, we expect that, for E& —0. 156, K», will
sooner or later assume the values+ ~. Taking into
consideration the E dependence of 5~, as obtained
in Sec. V, we believe, therefore, that the lowest
state of M, E, observed in our calculation is not
a resonance but the spurious state coming from the
particular normalization chosen. Thus, we have
E~o (E) = E -=—0. 156. Although we could have avoided
this singularity from the beginning by choosing a
different normalization, such as 8=5~, the fact that
the estimate (4. 5) is very close to the exact value
gives a strong indication that the sets of trial func-
tions used are reasonable and also that M is indeed
bounded. The two-term functions contain essen-
tially four nonlinear and two linear parameters
which have been searched rather carefully, so that
we feel the resulting K«, are probably of compara-
ble accuracy as EP, of (4. 5).

E~ & -0.153~0.005 a. u.
or

E~ -—0. 160+ 0. 010 a. u. , (4. 5)

V. BOUNDS ON K MATRIX AND SCATTERING
AMPLITUDES

where the second value in (4. 5) is an estimate of
Eg if an inf inite number of terms were included in
the diagonalization. The result with two- and three-
term diagonalizations indicates also that there may
be another state of M at higher energy, separated
by approximately 0. 03 a. u. , but our calculation
does not have enough accuracy to make a definite
statement on E~. Further improvement of E„, by
addition of more functions in M „would thus be
most desirable. This requires first of all better
evaluation of the static coupling kernel K(xa, R).
The functions I',„are evaluated numerically and
they have to be improved as well, giving abetter set

For the discussion in this section, we assume
that the estimate on the position of E, given by
(4. 5) is correct. The change in its position would
not alter the qualitative conclusions reached here.
For E&E, , we then expect that

E&E

E& E~&

(5. I)

(5. 3)

for all possible forms of the trial functions. On the
other hand, for E in the range E~ &E & E~, we have

E& E) (5. 3)

but
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(5. 4)

only for those cases in which E,~ & E. A similar
argument can be given when more than one state of

M is below E.
Using the definitions of X and X, as given by

I (2. 45) and I (2. 38), we can rewrite (5. 1) and(5. 2)

for the K-matrix elements as

(5. 5)

Kta ~n Nll (E Ent) Ntl

K2, Ka—„=K2,—2 Q„N„"(E—E„,) 'N„.

In (5. 5) and (5. 6), we have the initial conditions a
and a ' given by (3. 5), and we used fhe quantities

N' -(PC ' [H E]X„), -
N"-(P4 " [H E)X„)-.

(5. &)

TABLE IV. K-matrix elements K&&, for k=0. 85ao '

for various sets of (n„, P„). Only the sets 2, 3, and 7 give
bounds on K«, while the set 0 is the static values K;, .
Set (Q f y Pj) Kf fg Kf2t =K2«K22]
o (, ) - o36v 10.290
1 (0. 4, 0. 2) —0.351 18.394
2 (0. 4, 0.4) —0. 389 —25. 612
3 (0.4, 0. 5) —0. 967
4 (0.4, 0. 6) —0. 160 23.748
5 (o. 4, o. v) —o. 225 13.835
6 (0. 6, 0. 2) —0. 363 45. 482
v (o. 6, o. 4) -o. 5v2 —49. 495
8 (0. 9, 0. 9) —0. 184 10.316

0. 106
0. 466
0. 992
8. 912

—l. 565
—0. 606

0.487
3.608
0. 036

(5. 6) is obtained by the mixture of a' and a'i. These
are completely equivalent to those obtained directly
from b,' and b', by studying the asymptotic behavior
of P%', . Note that the a- and P-dependent terms
on the right-hand sides of (5. 5) are positive definite,
while the analogous terms in (5. 6) are not.

We give in Table IV the result of the one-term
calculation of K,~, for k=0. 85ao ', where Eg&E
&E~z is assumed. We immediately note that, for
all those cases in which E~I & E, K«, still increased
from the values K«. However, this does not mean
that K«, and K«are the bounds on K«. On the
other hand, for those cases in which Ei, & E, K«,
usually decrease from K„, but, from (5. 3), K «
are not bounds so that nothing is violated. Instead,
K«, are now bounds, and we can correctly deter-
mine the best K«, by choosing the highest value
among the sets with E,~ & E. The only complication
here is that one function may be effective in im-
proving K» while another function is good only for
K». Therefore, it seems to be necessary to have
sets with at least two functions in order to obtain

TABLE V. Search for the two-function sets for K;;t
at E = —0. 1388 a. u. The bound property is determined
from the E«&E by the various sets considered. The
set with (0. 4, 0. 4) (0. 9, 0. 9) gives the most reliable
values. If E& & E and E2t) E, then the bound property
will have to be modified.

Parameters KI2t = K21] K&2, Bounds

(o. 6,
(o. 6,
(o. 6,
(0. 4,
(o. 4,
(0. 4,
(0, 2,
(O. 2,
(0. 2,

0. 2) (0. 4, 0, 4)
o. 2) (o. 9, o. 9)
o. 4) (o. 9, o. 9)
0. 7) (0. 9, 0. 9)
0. 4) (0. 9, 0. 9)
0. 2) (0, 9, 0. 9)
0. 4) (0. 4, 0. 2)

o. 4) (o. 4, o. 4)

0. 6) (0.4, 0. 4)

—0. 366
—0. 182
—0. 184
—0. 184
—0. 185
—0. 183
—0. 351
—0. 387
—0, 367

0 957
0. 336

—0. 018
0. 030

—0, 105
0, 153
0. 426
1.092
1.028

—25. 56
45. 61
15 59
23. 88

—19.71
18.98
22. 49

—19' 13
—25. 55

Yes
No

Yes
No

Yes
No

No

Yes
Yes

the best K», and K», simultaneously. Incidentally,
it is clear from Tables II and IV that the set with

best Ett is not necessarily the one with best K«, .
In Sec. IV, we have seen that the cancellation

among the elements of M „produces the bound

property which comes about by the orthogonality
(2. 12). It was also stressed in Sec. II that N, as
defined by (2. 6), also has the property (2. 13).
This is achieved in practice through the cancella-
tion between the two components of N. For exam-
ple, at k =0. 85ao ', we have for the second set with

II

N", = —1. 1QQ and N 2' = 1.277 for a = Q. 6, p = 0. 4,

N", = —0. 813 and N &' = 0. 958 for e = 0. 4, P = Q. 6

The cancellation is less severe with the first set
(a ), which indicates that (H- E)4't' contains very
little of the P component, while most of (H —E)+rttt
are in the P space and irrelevant for the calcula-
tion.

The two-term sets give improvedK«, over those
values with a one-term trial function and K~« for E & E, .
Both K», and K», increase simultaneously as new

functions are added. Thus, the best one-function
sets for K», and K», give, when combined, im-
proved values on both. For E & Ei, the improve-
ment with two-function sets is possible, of course,
only if EI~, &E as well. Therefore, we have many
inequalities among K«, with different numbers of
functions, and these give extremely sensitive checks
on the accuracy of the diagonalization procedure
and final values. We have listed several sample
cases in Table V for k =0. 85ao '. Unfortunately,
the bounds on the diagonal K-matrix elements (5. 5)
do not improve the values K», very much. The sit-
uation would improve as we add more functions,
however. Table VI contains the best K,&, obtained
with two-function sets at different values of E. In
all cases, we have chosen those sets with Eyt &E
if E, &E or E&E &E„, so that Kraft are the lower
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bounds on K«. Since we do not have the boundprop-
erty on the off-diagonal K», it is not possible to
choose the best K» separately. We simply assume,
therefore, that K,@ obtained from the set with the
best K&« is probably better. (This would certainly
be the case in the limit of a large number of trial
functions. ) Because of the smallness of K,z at all
E, its value is not well settled with two functions.
The eigenphase shifts 5«and the coupling param-
eter E, are also listed in Table VI for the best two-
function sets, and Table VII contains the cross sec-
tions for all four processes, 1 —1, 1—2, 2 —2.
We should remark here that we can choose two
trial functions, both of which improve only Kfgt,
for example, and not Kzz„ thus obtaining slightly
better values than those quoted in Table VI.

Finally, we compare our results with those ob-
tained previously by various authors. ' '" Since the
distortion effect is usually included by introducing
various phenomenological effective potentials, their
results do not give bounds on K«, and the resonance
states were not found. However„ the cross sections
with different choices of parameters involved in the
polarization potentials are given to indicate the pos-
sible ranges of values. Our result on the elastic
cross sections g», and o», is expected to be relia-
ble since K«, are reasonably large and converged
well. On the other hand, K», is small and still
fluctuates even with two-function sets, and we have
no way of judging whether it has converged. Thus,
our values on g», and 0~«are not conclusive, ex-
cept perhaps to indicate that they are probably
small compared with 0«, .

For example, at E= —0. 18 a. u. , we have the
elastic cross section Q'»t 0, 48ao which is prob-
ably an upper bound since K», is negative and in-
creasing (i. e. , decreasing in absolute magnitude).
This value may be compared with Q'» 0. 6ao of
Fels and Mittleman which seems to be a little too
high and 0» =0. 13ao' of Bransden and Jundi which
seems to be too low, The pickup cross section
c»=10 'ao is more or less consistent with the es-
timate of Fels and Mittleman and much smaller than
that given by Bransden and Jundi. However, our
results on o21t and 0»t are less conclusive owing
to the inaccuracy in our trial functions used.

VI. DISCUSSION AND SUMMARY

In the Paper I and here, we have given a com-
prehensive treatment of the three-particle two-
channel scattering system e' H, and learned a great
deal about its spectral structure and dynamical be-
havior as manifested in the amplitudes. As in the
single-channel elastic scattering below the pickup
threshold, the process (l. 1) requires a careful
treatment of the distortion effects, which not only
modify the amplitude in a significant way, but may
also produce resonances, although we were not able
to find them here.

Specifically, we have shown that the M operator
is indeed in the Q space and bounded from below,
with the continuum starting at E~. The GVB for-
mulation is capable of giving reliable amplitudes
provided the numerical calculation is carried out
with sufficient accuracy. The complication due to
the presence of the shift operator 8 can be over-
come and reliable resonance energies can be ob-
tained if they exist below E.

The present study falls short of the complete so-
lution, however. First of all, the calculation of
Y,„ is not accurate enough to further improve the
energy spectrum of M. As pointed out earlier, the
limitation here has to do with the capacity of com-
puters available and the limited machine time.
Some improvements may be possible with initially
combining the functions with proper constants mul-
tiplication, as stated in Sec. III.

Secondly, we have restricted our discussion only
to the zero total partial wave. In order to compare
the theoretical values with possible future experi-
ments, higher partial waves have to be estimated
also. Preliminary study by Bransden and Jundi'
indicates that their contributions are significant.

In addition to obtaining the estimate on the spec-
trum of M, obtaining bounds on the K-matrix ele-
ments, and demonstrating that GVB can be effec-
tively applied to this problem, the result presented
here may alsobe useful for other purposes:

(i) Various theoretical approaches such as the
DWBA and the coupled-equations method with local
optical potentials may be examined in detail as to
their regions of validity. This may then facilitate

TABLE VI. K;,&
elements obtained by the two-function sets with (0. 9, 0.9) (0.4, 0.4), and the eigenphase shifts and

coupling parameter calculated from them. All the elements K«t given satisfy the bound property K«~ &K«(except at
A=0. 850 if E~p &E and E2t &E).

0. 725
0. 750
0. 775
0. 800
0. 825
0. 850

—0. 2372
—0.2188
—0. 1997
—0. 1800
—0. 1597
—0. 1388

—0. 119
—0. 133
—0. 146
—0. 159
—0. 172
—0. 185

f2t 2ft

—0. 0012
—0. 0027
—0. 0063
—0. 0087

—0. 1052

—0.306
—0. 805
—1.430
—2. 448

—19.713

—0. 118
—0. 132
—0. 145
—0. 158
—0. 170
—0. 182

—0.297
—0. 678
—0. 961
—1.183
—1.37
—1.520

0. 006
0. 004
0, 005
0. 004

0. 005
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TABLE VII. Cross sections calculated from E&&t of Table VI, at various energies E, in the units ao .
U
ii 0'22U

—0.2372
—0.2188
—0. 1997
—0. 1800
—0. 1597
—0. 1388

0.332
0.386
0. 438
0.483
0 ~ 52
0. 572

0. 0000
0. 0001
0. 0003
0. 0002

0. 0005

0.0003
0.0004
0.0008
0.0005

0. 0008

21.05
39.55
41.94
38.46
33.6
28. 17

23. 91
22. 34
20. 92
19.64
18.46
17.39

245. 20
100.53
62. 44
44. 88
34.79
28. 24

the theoretical analyses of experiments without
carrying out extensive calculations. Especially,
the nonlocality and the energy dependence of the ef-
fective potentials 8' and the nonorthogonality of re-
arrangement channels should be carefully examined.

(ii) Better understanding of the approximation
methods reached by studying the present solution
should help in formulating the e' He scattering case,
where experimental results are already available.
Similarly, nuclear (d, P) reactions may be analyzed
better to give improved understanding of the forces
and nuclear structures.
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The volume integral operators used are

f dr~ =2 f RdR f sds f"2 '' r2dra
0 0 r2 )R -s/2 )

= J dTr1r2 ' (AV)

Owing to their symmetry, r, and r2 can be inter-
changed.

APPENDIX B: ENERGY INTEGRATION

In order to obtain the energy matrix value H „,
we need the following formula:

E l r2~ r1+ s
I= r dr, sds r2 dr2

0 0 r2= Ir1-sl

A 8 C -bsx —+—+ —+D e 'e
r2 S

f dr„,„=["r, dr, f rsdr2 f'"""~ s ds,
0 s~ ~r1~2I

(A6)

APPENDIX A: COORDINATE SYSTEM
AND TRANSFORMATIONS

We write the Hamiltonian H as

H= T+ V = Tp+ Tx + V (Al)

)~ [(aA+bB+ 2D)(a+b)ah a+b

+(a'b+3a b +ab')C] .

where

Tp = T0, 12+ Tp 23+ Tp, 31,

Most of the integrals needed in the matrix elements
M „are reduced to a form similar to this, and then
coded on a computer.

82 1 a 2 8
0 jg ig28zf& rf& ertg 0r

x x12+ x23+ x31

(A2)
APPENDIX C: COMPLETE GVB EQUATIONS FOR

p.+. and p. Y.,

The integrodifferential equations which were
solved with the computer are

~2 2 2 2«a +raj
x, tJ apl g rgb r4i t

a2
, (A2)

er~p er
d 2 1

2 +k —2 —+ 1 e "s F,(rs)dr 2 r2

Z1Z2e Z2Z3e Z3Z1e
+ + t

r12 r23 r31
(A4) R dR K12 r2, R F2 R +2d 2V2e ia4'1)r1 dr 1

0

1 1 1
mt m~

(AS)
s&r2+ r1

e s' ds V(r„ra, s, a, P, k),
(Cl)
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where

= 2R l r z dr, Kz&(R, r&)+,(r2)

(8+ 1/3)s ds

V(r„r„s,a, P, s) =[(a —l)s+r, s/r2+(2P —1)

—-'(a +2P +k —1)r,s ——,'(r, +s —rz)aP]

and, as defined previously,

(C2)

&y~ R+ S/2
X e "'dr, V(r„r2, s, a, P, k),

l& -8/& (C2)

K»(r 2, R) = K2,(R, r2) =K(r p, R) . (c4)
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