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One of the oldest methods suggested for treating the effect of charge polarization on elastic
scattering is revived by the use of certain physically reasonable assumptions, and is shown
to lead to results, in the limit of small scattering angles and high incident energies, which are
in quantitative agreement with experimental and theoretical expectations. The theory is
worked out in detail for one- and two-electron atoms, and the extension to more complex sys-
tems is also discussed. The effect of charge polarization on the elastic differential cross
section for 500-eV incident electrons on He is calculated and compared with the experimental
results of Bromberg and the theoretical results of LaBahn and Callaway. The agreement is
good over the angular range 0 ~ 8&6' if exchange scattering contributions are included.

I. INTRODUCTION

Numerous treatments of charge polarization or
charge distortion of the target on scattering by
charged particles have been considered. ' These
methods can be put into two classifications. The
first will consist of the so-called rigorous methods
which are designed for use in the region of low in-
cident energy of the bombarding charged particle.
Such methods, in the case of electron scattering
from atoms and molecules, become computation-
ally messy at energies above 100 eV because of
the proliferation of open excitation channels. The
second class of methods, generally more empirical
in nature, either simplify rigorous theory by the
use of approximations or use parametrized models
to represent the polarizing process.

One of the oldest methods of the second type,
which is here called "the infinite-channel close-
coupling theory in the second Born approximation, "
was first suggested by Massey and Mohr and is
the method to be dealt with in this paper. It simply
consists of writing the coupled-channel differential
equations, neglecting exchange and relativistic
effects, in the form

(V k )f (r) = E U, (r)f, (r)
l~o

(V +k, )f&(r) = P U»(r)f, (r)
fao

0

(V +k„)f„(r)=Z U„,(r)f, (r)
2=0

where k is the incident energy, k„=k —&Eo„ is the
scattered energy after exciting the target to the
state n, and f„(r) is the wave function for the scat-
tering process where the scatterer is initially in
its ground state and is left in its nth excited state.
The interaction potential U„,(r) is given as

2m
U„&(r) = g„(r~, . . . , r„)

mo

where m/mo is the electron mass ratio (l —v /c )
introduced to provide the main relativistic effects
on the scattered electron in the forward scattering
direction with incident energies less than 50 keV.
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Note, also, that the relativistic value of k = 2v/l&

for the incident electron is used throughout. The
approximate method of treating relativistic effects
is good to at least 2% or better for incident ener-
gies less than 50 keV. The interaction potential

is given here for the case of atomic scattering and

|t)„and |t, are the stationary-state eigenfunctions
for the nth and lth bound state of the scatterer,
respectively. Equation (l) can be put into the form
of an integral equation as

(;"5 r
(V'+k'} 'U (r), (V +k') 'U«(r} (V +k ) 'UoN(r}.

(V +k,) 'U, o(r), (V +k,) 'U»(r) (V +k&) U»(r)
0

l
(err rr) 'r), (r), (v' k')'(), (r) (&' ~r')'() (r) j

o

(fr)&r)
mO

e ' " ——dr' Uoo(r) e '"oo' "
4w

where e'~' is an incident plane wave, the super-
scripts n and n —1 denote successive approxima-
tions to a particular wave function, and the integral
operators are the usual Green's functions for an
outgoing scattered wave. In order to obtain the
first Born approximation, the column vector on
the right-hand side of Eq. (3) is replaced by the
column vector containing the incident plane wave
for fo &(r} and zero for the other elements. This
zeroth-order guess produces, upon carrying out
the indicated operations, the following familiar
asymptotic results at large distances from the
scatterer:

f'"(k —q) -- (l/4v) fdr' Uz(r')e'

f,'o (q-k, ) = —(l/4v}f dr' Uo, (r')e

(4)

2m2
f~i(e}= 4 a+ mp

dq
2 2

where k& is the incident wave vector and k, is the
scattered wave vector and both have the same mag-
nitude k. In order to obtain a simple approximation
for the charge polarization, it will be assumed
that the incident energy is sufficiently high so that
closure can be approximately invoked (Es= k ~ ~).
This is what is meant by infinite-channel close-
coupling theory. Since the charge polarization de-
pends only on the terms for which 1 40, the result
for the polarization amplitude is

f(1)(p)

e'a„r
4g

der U (f)) (Rior rr

~0

F U„o(r') e ""o

~«~, -4& v &«C-a & sf, f,
0

fr 1 f~i

where the terms in square brackets in the column
vector on the right-hand side are just the first
Born scattering amplitudes. The second Born ap-
proximation is obtained by iteration from the non-
asymptotic form of the first, and can be written
for elastic scattering as

J~p 2N

dqfi&o" (k~ —q to(I)(q -k }
q -kr -iE2 2

where the energy for the quantum state labeled M
is k, E„=k, and the double-subscript notation in-
dicates that the f 's are now asymptotic scattered
amplitudes. The second Born approximation for
the scattered amplitude thus depends only on a
knowledge of the first-Born-approximation ampli-
tudes

x (5}

where not only must a complete set of states be
assumed to be available but k, = k —&Ep, must be
replaced by an average value independent of l de-
noted as k, .

The main reason why this approach has not been
widely used previously is because of the ambiguity
in the choice of k, and, in part, because of the sup-
posed numerical complexity of the resultant inte-
grals.

Massey and Mohr were able to show that the
real part of f„,given in Eq. (5} behaved as if it
were determined by an effective potential which
varied in the limit of large r as —c/r', as expected,
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and they speculated that the imaginary part must
be closely related to the inelastic scattering.
Moiseweitsch showed that if k, were simply chosen
as k then the resultant integrals would be singular
at the origin. The author attempted to evaluate Eq.
(5) including corrections for the inclusion of ex-
cited states not accessible to the incident energy by
interpreting the infinity discussed by Moiseweitsch
as a constant phase factor and choosing the constant
so that the polarization amplitude vanished in the
limit of large scattering angles. This last work
contains an error because of the retention of the
nuclear interaction in the potential [see Eq. (5)
for the correct form].

A further effort to utilize this approach in a
meaningful way is dictated by the wealth of exper-
imental data accumulated over the past few years, '
which seems to indicate that the first Born ampli-
tude provides an excellent description of the op-
tically allowed inelastic processes which, for
high incident energy, constitute the major contri-
bution to the total inelastic scattering in the small-
angle region. Note, that if foI1 is in fact exact, then
the Born series converges at this point and Eq.
(5) provides the exact description of charge polar-
ization except for corrections from the two ap-
proximations made in its derivation. Therefore,
experimental results would seem to indicate strong-
ly that the use of Eq. (5) is justified in the small-
scattering-angle region at incident energies of
200 eV or more in the case of electron scattering.

It was recently pointed out by the author, that
by use of the plane-wave approximation a simple
form for the absorptive part (imaginary part) of
Eq. (5) could be obtained if $, was chosen to be
given by k, = (k —&Eo,)'I'cosB The resu. lt was not
only finite at the origin, but yielded an amplitude
such that (4s/k)f~, (0) reduced to the expression for
the total inelastic scattering

o„,= (4N/aok ) f dK S(K)/K,
min

where a is the relativistic Bohr radius I'/me',
S(K) is the Heisenberg (Thomas-Fermi) inelastic
scattering factor, and K „=nEo,/4k with r1Eo, the
resonance energy of the atom. The reason for the
choice was that k cos8 gives the proper approximate
angular dependence of the average energy loss on
scattering, with the added condition that all inelas-
tic scattering vanishes at 90'. The addition of
&Ep, was needed to eliminate the singularity at
8= 0 by limiting the momentum transfer to its min-
imum allowed value. The choice of k, can be further
improved by choosing an effective or mean excita-
tion energy in place of 4Epj as 4F in such a way
that the closure result for the total inelastic dif-
ferential cross section has the exact asymptotic

value in the limit as 8-0 and k-~. ' This choice
results in the expression

~& =[3(—1)/&( —3)j'",
where S( —1) and S (- 3) are the oscillator strength
sums

N N

~(-((=Z C. E *, ((. (. E *, ((.)nO 1 1 y1

N

$p Zjzg fp
jsf go(

w N Ns(-n=z (. r., (. . („z*,q),
n((O 1~ 1 On g 1

where z j is the projection of the position vector
r j of the ith electron on the z axis. Va.lues for
3'( —1) and S ( —3) can be obtained from the wave-
length dependence of the refractive index or from
theoretical calculation in the case of He. The value
of &E for He is 28. 0 eV and 11.6 eV for H. An

even better choice may be to choose &E so that the
total inelastic scattering cross section is given
exactly in the first Born approximation up to order
1/k, where k is the incident electron energy. This
choice leads to &E =e ~' " ' ", which for He is
31.7 and 12. 6 eV for H. These values are not sig-
nificantly different in their effect on the polariza-
tion amplitude (+ 5%) from the previously quoted
values. The optical quantity Z( —1) is given as

OO N Nn(-()=r (, r *, 4 (&E ('. .r *,.()n% j=1 $~1

and is discussed in Ref. 9.
With the encouraging result obtained for the

absorptive part of the polarization amplitude, it
seemed worth while to attempt a more detailed
calculation of f~„ including both real and imaginary
parts using a Hartree-Fock description of the scat-
tered field.

The most recent accurate theoretical treatment
so far appears to be the extended polarization po-
tential method of LaBahn and Callaway. ' This
method suffers from the fact that a large number
of phase shifts are required, and extension to more
complex systems appears to be somewhat more
difficult. The results of this method appear to be
in good qualitative agreement with the experiment
of Bromberg. "' Further references to earlier
works along the same lines can be found in Ref. 10.
The results of the two approaches are compared
in Sec. IV.

II. APPLICATION OF THEORY TO ONE- AND TWO-

ELECTRON SYSTEMS

& this section, Eq. (5) is applied to scattering
of electrons by He and H atoms initially in their
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ground state. To do this, the Hartree-Fock wave
function for He is chosen in the form

p (1, 2) =-' v 2p",'(I) p, '(2)[n(1)p(2) —p(1)n(2)]

and for hydrogen the exact ground-state wave func-
tion is taken as

A(n, P)

(q' —~', —iz)(n'+ lk, q—l')(fl'+ I q —f, I'),

4(I) = 4 1.(I}[n(I)» P(I)] .
Equation (5) can then be written as

2Xmz dq[f(K} —f(k, —q) f(q —k,}]
v'm', (qz- p-iz) (t, -q~'(q-f,

~

(6)

since
2 N N

f„,(e)=, E E r, r, (A(0, 0)[f(K) —1]
mo

+A(0, X,)+A(X„O) -A(X„y )] (10)

where N is the number of electrons and is 1 and 2
for H and He, respectively, K= k, -k, is proportion-
al to the elastic momentum transfer, and

f(&& 4)= f&"le"'"'~~&l'~'"' "'
Since, for the two cases considered here, I p"„™(r)lz

is the one-electron density divided by the number
of electrons in the atom, it is unnecessary to use
the explicit analytical forms for P„(r) since very
accurate and simple analytical expressions for
the electron density in terms of Yukawa functions
are available. ' These expressions are of the form

p(v') p „z
N $~1

with

1
i~i

where I= 3 for H and 5 for He. The parameters
giveninRef. 13 give values for p(r) for H and He
with an average error of about 0. 1%. In terms of
these density expressions, Eq. (6) can be reduced
to the form

2Nmz dq
z'm'~mo q

[f(K)-i] " r,
k] —q X~+ lq —ks

The integral A(n, p) can be obtained in closed ana-
lytical form by use of standard techniques. A Feyn-
man identity is first used to rewrite the reciprocal
of the product (nz+ I k, —q I

z) (P'+ I q —k, I ) as

1
(n'+ IRq —

q, I ')(p'+
I q —k, I

')

1
dz

(q' —2pqx+ p'+ r')'

where

p = z kq(1+z) + z k,(l —z)

is chosen as the z direction for the integration
over q with x the cosine of the angle between p and
q, and v is given as

rz l(nz+ pz) + l(n2 pz)z + 1 Kz(I zz)

The integration over q can thenbe carried out in the
upper-half complex q plane after changing the limits
of integration from 0-~ to —~ . The term —i E

designates the choice of contour which corresponds
to an outgoing scattered wave, and the two poles
contained in the contour are at q, =k, +it/2k, +0(z )
and qz =px+ i[r +p (1 —x )]'i . By application of
the Cauchy residue theorem and integrating over
the angular coordinates of q, Eq. (10) can be re-
duced to the single integration over z of areal (Re)
and imaginary (Im) part as

ReA(n, p) =A„(n, I3)

lq f I'(x'+ lf, —q~')

N N
Y~ Yg

(6)

1 l dz(P+r —k )
4 J [(kz+P v) +—4Ppz]r ~ (12)

-1

where
ImA(n, P) =Ann, P)

All integrals in Eq. (8) are expressible in terms of
the general integral

[(&i+P'+ &')' 4k'p']-
(Is)

The remaining integrations, although messy, can
be carried out in closed form by noting that all
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terms in square roots or brackets are at most
quadratic functions of z. The final results are
given in Appendix A.

Before proceeding to a discussion of the numeri-

cal results obtained from Eqs. (12) and (13), it is
of interest to consider the limit of E[I. (13) as
8 0. The result for lim(4v/k) Imf~o, (8) as 8 0
for He can be written as

4m
Iim —rmf...(8)

k

16m " y, 1+X', /(k k, )'
a k ).q X( I+][,~q/(k+$, )

-2kk, Z y', /([Xl, +(k —k, ) )[X~[+(k+k,) ]j
fbi

}~ 7k', } [1 ~ k,/(k —k,} ][} k,/(k k,} ]
)2 &~g.g &g-]]q [1+&',/(k+k, )'][I+]]q/(k —$))3] (14)

which can be compared with the estimate of the total inelastic scattering factor obtained from the Morse
expression S(K) =N —F(K) /N for He as

N

&~+k' &&+ k-k, ' —— ' -' ' ln
$~1 f&g~i j y

I+ ~'/(k —k, )' I + ~', /k'
1+]].g/k' 1+&g/(k —k, )

(15)

The two expressions are not exactly equivalent,
because in Eq. (15) the large-angle Bethe behavior
Ik, l =k cosa has been used and the integration was
carried out between 0 - e & ~m. Still, at energies
where k» & the two results will be essentially
identical. At 500 eV for He, Eq. (14) yields a val-
ue of 0. 355 A~ and E[I. (15) the value 0. 351 A,
for a difference of about 1%. A more accurate
value including estimates for electron correlation
is 0. 324 A . ' The imaginary or absorptive part of
the polarization amplitude overestimates the actual
value, but the error is probably less than 15%. It
is also pleasing to note that the pole at q = k, pro-
duces the absorptive part of the polarization amp-
litude and depends in a sensitive manner on the

A

choice of kg.
The real part of f„,(8), on the other hand, should

depend more strongly on the choice of the inverse
range parameters ~& and, therefore, the shape of
the electron density. Rather than attempt an ana-
lytical analysis of the complicated formula of the
real part to determine the asymptotic form at
large r for the polarization potential, a numerical
procedure discussed in Sec. III will be employed.

III. NUMERICAL RESULTS FOR H AND HE

The main results presented in this paper have

= 2
~f ~

[cosy(Ref„+Ref~, ) + sing(lmf„+ Imf~&)]

+Ref2, + 2Ref„Ref~, +Ref,

+Imf„+ 2Imf„lmf~, + Imf (16)

where Ref„, Imf„are the real and imaginary parts
of the exchange amplitude, Ref, and Imf„, are
the real and imaginary parts of the polarization

been computed for an incident energy of 500 eV,
for He in order to compare with the most definitive
experimental results so far available, obtained
by Bromberg. "These data consist of absolute
measurements of the elastic differential cross
section, to an accuracy of 4% or better, over the
angular range 2' 5 8 ~ 60' with an extrapolated es-
timate for the value at 8=0'. In order to compare
theory with experiment, the difference between
the differential partial-wave elastic scattering
cross section for the Hartree-Fock static poten-
tial field for He and the experimental result is
calculated. This difference should be given by the
expression

dol do

[ffi).~k dfl y w .u oar. .
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amplitude, and iji and g are the magnitude and

phase of the partial-wave amplitude (tjle ").
Note that the use of square terms in the theoretical
expression is usually not justified for a perturba-
tion-type calculation because there are neglected
higher-order terms of the same order (i.e. , the
cross term between the real part of the third Born
amplitude and the real part of the first may be of
the same order of magnitude as the square of the
real part of the second Born amplitude). Nonethe-
less, these square terms are employed here in
the expectation that the Born series is rapidly con-
vergent. This point is discussed in more detail in
a later paragraph. The assumption has been made
that the effects of exchange on the polarization
amplitude and vice versa are negligible. Two corn-
parisons will be made. In the first, the exchange
amplitude will be set equal to zero in order to see
more easily what fraction of the total correction
is due to polarization. In the second comparison,
the exchange amplitude will be replaced by its
approximate Born value" j„=2mF(K)/mok2which,
since it is real, means that Imj„will be zero.

In Table I, the calculated values of Rej„, and

Imj„, at 100 and 500 eV, and 40 keV are given for
both H and He. The 40-keV values are given here
mainly as a check on the energy dependence of the
scattered amplitude. In Fig. 1, the angular depen-
dence of the real and imaginary contributions are
shown for incident energies of 100 and 500 eV for
the case of He. The inset of Fig. 1 contains a
plot of the logarithm of the Rej~, (e) at 100 and 500
eV against K. The linear behavior exhibited in

10-

.50

.45

.40

.30-
Clh

'1a~
~ .2S- Itn &soi (8)(MOeV)

20

e flu (e)(50044)

00 .l0 .20 30 4~~+ .60

x (A')

FIG. 1. Plot of the real and imaginary parts of f~& (8)
in A as a function of E in A, in the small-angle region
for He at incident electron energies of 1QQ and 500 eV.
The inset is a plot of the logarithm of the real part of the
polarization amplitude against K showering linear behavior
in the small. -angle region. The limiting slopes BR&f~, (8)/
BEin A. as8 0 are given in the figure.

this plot is suggestive of the behavior of a I/r'
polarization potential. That is if, after Bromberg, '
it is assumed that the polarization potential for the
real part is of the form

TABLE I. Imaginary and real parts of the polarization amplitude in A for H and He at incident electron energies of
100, 50Q, and 40000 eV.

100 eV 500 eV 40 kev

Imf
&
(8) Ref 1(8) lmf, (8) Ref~i (8) Imf, (8) Ref~&(8)

0. 0
l. 0
2. 0
4. 0
8, 0

16. Q

32. 0

0. 0
1.0
2. 0
4. 0
8. 0

16.0
32. 0

0. 731
0. 724
0. 703
0.632
0.452
0. 195
0. 031

0.412
0.411
0. 409
0.399
0.363
0.260
0. 096

0. 640
0. 556
0. 475
0. 336
0. 163
0. 049
0. 015

0. 515
0. 488
0.461
0. 408
0.309
0. 164
0. 048

0.475
0. 410
0.313
Q. 183
0. 068
0. 01C
0. 001

He

0.309
0.299
0.273
0.208
0, 112
0. 033
0. 004

0.281
0. 124
0. 055
0. 018
0. 006
0. 003
0. 001

0.223
0. 165
0. 116
Q. 058
0. 019
0. 006
0. 003

0. 110
0. 0065
8. 8x10 4

8. 1x10 5

3.5x10 6

2. 5x10 7

1.3x10 7

0. 079
0. 011
0. 0031
4.2 x10 4

4. 1x10 ~

1.8x10
2 Qx10-8

0. 035
6.5x10 5

3.5x10 5

5.0x10 6

1.5x10 7

4. 4x10 '0

—5.5 x 10-&0

0. 027
1.0 x10-'
8. 8 x10-'
3.1x10 5

3, ] x10-6
9.4x10
1.4x10 9
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in rydberg energy units, where & is the static
polarizability of the atom and ro is the range of the
potential, then the scattered amplitude in the first
Born approximation will have the form

f'",(8) = (av/4r, ) e «"0 (16)

From the slope of the plot of Ref~, (8) versus K in

Fig. 1, & was found to be i. 52 and 1.51 at 500
and 100 eV, respectively, in Ry compared to the
Hartree-Fock (HF) value" of 1.49 and exact value"
of 1.38. The range at 500 eV turned out to be
"0.90 A, which means that —a/x' represents the
potential of Eq. (17) to an accuracy of better than

10% for r &3 A.
This result suggests that the expression for

Ref~, (8) be expanded in a power series in K of the
form

ln Ref~, (8) = ln Ref~, (0)

K Reef, (0) (]9)
Ref &(0) 8K e.o

(r ) = 1.52, (20)

in Ry, which is quite close to the HF value of I.49.
The possibility of using a different effective energy
for the real and imaginary parts suggests itself.
That is, for the real part an effective energy,
given by &E„=B(—1)/e5'( —2), would guarantee that
the limiting slope would be equal to the exact value
of the polarizability, since —,(r ) is just the HF
estimate of e5'( —1) for the case of He so that n is
x exp [ —L( —1)/8(-1)j depending on the choice of

It is very encouraging that the model investigated
here not only has the proper asymptotic behavior
as 0-0, as pointed out previously by Massey and

Mohr, but, in fact, yields quantitative estimates
of the total inelastic scattering cross section and

the atomic polarizability in the process. Since
accurate values of a and cr,",t' are available, it is
possible to estimate that the real and imaginary
parts are in error by at most 10', assuming that
the choice of the range parameter ro is exact. It
may be that ro is sensitive to electron correlation
within the target system, so that the magnitude of
the real part at small angles must be considered
to be uncertain.

Besides electron correlation, this leaves only

and the coefficients compared with the result given
in Eq. (16). The polarizability is found in this way
to be given by the formula

—4 Reef, 16 ~ y,Q=
E'eo fft i~ 1

TABLE II. Comparison of the difference between the
absolute experimental elastic differential cross section
for He at 500 eV in A2 and the partial-wave results for
a Hartree-Fock atomic field with first Born exchange and
infinite-channel close-coupling charge-polarization
corrections in the second Born approximation.

0
2

4
6
8

10
14
20
30

M6 (expt) ~ A Exchange
dQ

0.354
0.245
0.137
0.087
0.055
0.036
0.019
0.006
0.001

+ 0.030'
+ 0.013
+ 0.009
~0.007
+ 0.005
+ 0.004
~0.003
+0.002
+ 0.0007

0.051
0.050
0.048
0.044
0.040
0.035
0.025
0.014
0.005

Polarization Polarization
+ exchange

0.378 0.455
0.226 0. 299
0.124 0.178
0.072 0.119
0.044 0.086
0.028 0.064
0.014 0.039
0.005 0.019
0.001 0.006

Difference between the data of Bromberg (Ref. 11) and
the partial-wave differential cross section (Ref. 14).

bThis column includes the cross term arising between
the exchange and polarization, 2Ref~oy(e)f~(e), which is im-
portant only for 8& 6 .

'Author's own estimate of the uncertainty in the extrap-
olated experimental value. The remaining uncertainties
are those given by Bromberg.

the failure of the Born series as a source of error
in the theory. Since the Born series generally con-
verges much faster at small scattering angles than
at large, the small-angle results can be regarded
as being the most accurate in the present calcu-
lation.

The sensitivity of the results to the choice of the
atomic field was investigated. The inverse-range-
potential parameters (X,'s) were systematically
varied over a range of 2%% of their original values.
lt was found that the sensitivity of Ref~, (8) to vari-
ation in the X s was the same as that of the vari-
ation (2%), and hence cannot account for any large
deviations between the present theory and experi-
ment at small scattering angles.

In Table II, the intensity difference function for
He at 500 eV and defined by Eq. (16) is tabulated
along with the contributions from the real and

imaginary parts of the polarization amplitude and
the Born exchange amplitude. The agreement be-
tween experiment and theory for angles less than
6' is qualitatively pleasing. It is also interesting
to note that the experimental values fall below the
theoretical values, since the theoretical estimates
at 8=0' are probably too high.

It can also be concluded, assuming that the de-
scription of exchange scattering employed in this
paper is valid, that the inclusion of square terms
in the theoretical correction is probably justified
for angles less than 6' in the present case. The
behavior of the amplitudes for H and He appeared
to be quite reasonable for all the angles and energies
studied. In addition to the values reported here,
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the polarization amplitude was calculated for both
H and He at values just above the mean excitation
energy.

As the incident energy is lowered the real part
of the polarization becomes greater than the
imaginary part, while at high energy the situation
is reversed. (See Fig. 1 for an example. ) Despite
the fact that the imaginary part is dominant at high

energy, the contribution to the cross section is
generally smaller than that for the real part, since
the phase q(8) in the main contributing term
2 If(8) I sing(8) Imf~, (8) is generally a very small
number in the limits of high incident energy and

small scattering angle. The extension of the present
treatment to more complex cases is straightforward
and only involves the computation of the needed
integrals. These can be related to the integrals
given in this study, and the methods for doing so
are discussed in Appendix B.

IY. COMPARISON WITH PREYIOUS CALCULATIONS

The calculations of LaBahn and Callaway for the
differential cross section have been compared with
the recent results of Bromberg and are 10% too
high in the angular region 8 &10' discussed here.
A rough comparison of these results with those of
the present study are given in Table III. In general,
the results of this work are closer to those given
in Ref. 12 despite the use of a more approximate
treatment of exchange in the present study. Vfhile
not presented here, the results of the present study
are also in good agreement with the results of the
extended polarization potential model' at lower
energies. It is interesting to note that both theories
seem to predict an appreciably higher intensity at
zero scattering angle than observed in Bromberg's"
experiment. It should be noted, as pointed out in
Sec. III, that further improvements in the present
theory are likely to lead to smaller results in the
small-angle region so that better agreement might

TABLE III. Comparison of the Results of LaBahn and

Callaway with the present results and Bromberg's
experiment for do//'d& (a2$.

9' Bromberg EP Present results

0
2
4
6
8

10
14

1.89
1.49
1.08
0.863
0.700
0.576
0.405

2.45
1.87
1.33
1.08
0.82
0.65
0.39

2. 25
1.69
1.23
0.976
0.817
0.675
0.478

~Values taken from Ref. 11 and are in units of ao.
Extended polarization potential model (EP) values

were estimated from Fig. 1 in Ref. 12.
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be expected (i. e. , the total inelastic cross section
and static polarizability are both too large in the
present work).

The principal advantages of the present approach,
besides the somewhat better agreement with exper-
iment shown in Table III, lie in the simplicity of
the calculation and ability to easily extend the
theory to more complex systems. This approach,
excepting relativistic corrections, should also
furnish an increasingly accurate description of the
polarization correction in the high-energy limit
where all the assumptions involved in its derivation
become more valid.

APPENDIX A: INTEGRALS A((a,p) AND AR (a.p)

The final forms of the integral A/(a, P) can be written as

1 (k +k, +a )(k +$, +P ) —4k~P, cos8+ 2kk, (u) /

4k(u)' ' (k'+$'+a')(k'+$'+P') —4k'$', cos8 —2k$ (u)' ' (Al)

with

u = (k + k
&

+ a ) + (k + k& + p ) —2 cos 8(k~+ k~& + am) (k~ + k2+ 8 ) —4k k sin 8 (A2}

The special cases A/(0, 0) and A/(a, a) can be written as

1 k,K+ [(k —k, ) +k,K ]~/

2K[(k2 $2)2 ~ PK2]1/2 $ K [(P $2)2 ~ PK2].'I /2 (As)
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1 g K 4 [(k2 k2)2+ 2n2(k2+ P) 4. n4+P+2]l/2
A (~ ~&= 2K[(k'- P)'+ 2a'(k'+ P) + a'+ PK']' ' $ K [-(k' —P)'+ 2a'(k'+ P) + a'+ PK']"'ln 1 . (A4)

Finally, the values at zero angle can be written as

1 (k —k+) +a (k+8, ) +P (k —5,) +a P
1(~z P) 4k(n2 p2) (k2 P)2+n2(k $")2+p2(k+}[z }2 n2p2 («P) (AS)

z(kk

k,lim A,(n, a) =
(k, P)2 2,(k, P) 4, (A6)

limA/(0, 0) = $,/(k —kk)
e-0

(A7)

k, i(&E )1/
»m /(a, tl) = »m 2P2 2P2k»0 ap ep (A8)

i(nE )1/2
lim A/(n, a) = lim 4
k»0 k-0

(Ae)

The terms A,(n, 0) or A/(0, p) for &k-'0 and 8=0,
which are equivalent if n = P, follow trivially from
Eqs. (Al) and (A5), and hence are not shown here.
In some applications it is of interest to know (A5)
and (A6) at zero incident energy. These results
are

1
lim A/(az 0) =lim «2)
k»0 k»P g)($+ Qf

(&E )'"(1+n') ' (A10)

lim A/(0, 0) = i/&E2/
k»P

(A11)

We have saved the real part for last because it
is the more difficult of the two results and requires
special handling in carrying out its numerical
evaluation in the two cases Az(n, P), and As(a, 0)
or Az(0, P). The general result can be obtained by
rewriting the integral over z, which is of the basic
form

dz(A. +Bz+k —k,)
4 [A+Bz+gK (1 —z2)]1 [(k —P1) +2(k +P)(A+Bz)+(A+Bz) +k,K(1 —z )]

'
(A12)

where

A= 2(a +P2) and B= 2(a2-P2),

as

1 A+B +k~—
1 dz

Skk ( )'z ( ' ' [A ~ Bz ~ -')('(1 — ')[ zz (z —* )

—(A + Bzz+ kz —k2)
f dz

[A Bz ~ —,'K'(1 —+*')/z (z —z, ) ) (A13)

where 44 is given in Eq. (A2) and z, and zz are the
roots of the quadratic form in z in the square brack-
ets on the right-hand side of the denominator of
Eq. (A12), and can be written as

k (n2 P2) [k2 + k2 4. k (n 2 4. P2) ]+ kk (44)1/2
1 1 (n2 P2)2 PK2

(A14)

k(n2 p2)[k2+k2+ k(nzk p2)] kk (14)1/2
2 k (n2 P2)2 PK2

(A15)

I

suit will remain finite, however, since both numer-
ator and denominator contain the same largest
power of z& or z&. The sign of the term depending
on Zz will change when this happens, although the
sign of the Z& term will not.

By use of the substitutions y = 1/(z —z1) and
y'=1/(z -zz), the integrals in (All} can be trans-
formed to the forms

1 dz
[A+Bz+ —'K (1 —z )]' (z —z,)-i

Note that these roots are real but that the sign may
change as a function of increasing K and will be
singular when K2= (az —P }2/4k, . The over-all re-

(sg-1) ~

(e +1) k
1

dy
(sy2 f)y +c)1/2
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dz
[(4+Bz +-'K (1—z )] / (z —2 )

Q=B —2k z1 &

1 2 Q' = B—qjp z2

with

a =A+ —,'K2+ Bz~ —~~K2z2&,

a =A+4K +Bz2 —4Kz2,1 2 1 2 2

(AIV)
C=C = —gK

Note that

i))2 4(2c k)2 4 42)cz 1(o(2 P2)2+ &K2(o(2+P2) + IK4

which is always ~ 0. Since the special cases As(0, 0)
and Az(n, (2) can be treated in a simpler manner,
only the case where b —4ac&0 need be considered
here (i.e. , a44 p440). The results are

dp

ul&. 1 (42y —by+ c)2 1/2

122

1 (z, 2+ 1)[(3n( + p + K )+(oS —p' —K )z, 2+ 4a(a)' ]
(42)' (z, ,2 —1)[((2'+3p'+K )+(a —p +K )z, 2+4p((2) ]

(4a' ~ ((' )/') ~ (a' —(( —((')z, , )([42[) / 442()42[) /

1 (42 + 3p + K ) (+aS —p + K2)z, 2 1(

() [
)1/2 arctan

4p() )
)1/2 I Ior 8 & 0 ~

In the limit as 8-0 and k-0 Eq. (A13) can be com-
bined with the results of Eq. (A18), with the results
that

1
limA„((2, p) = „(~ ~)

x arctan — - + arctan

—arctan — — —arctan—

(42 -K)z2+3Q +Kx a«tan -

r( 1/2 -2»ign(22+ I)40.(la I j

(A20)

where only the arctan form was found to be neces-
sary and where sign(z, + 1) was —1 and sign(z, + 1)
was +1 in all the calculations made so far. In the
limit as 8 and k -0, Eq. (A20) reduces to

1 Q
limn„(~, 0) = + arctan

2k

(A19)
1 D

+ + arctan —, , (A21)a+~,

)( 4 (u, (l)= ~ @ ( ~)
0

lim As(a, 0) = I )/42(n. E —Q) .
(I) 02k 0

(A22)

The case where e c0, P= 0 can also be obtained in
a similar fashion as

( )
I z4+B~z+ k - kl

Skk (44)"2 (~ (2~ )'/'

(a' —(('), ~ Zu'+ ((')arctan
4

%hen e= PWO the real part can be expressed in the
relatively simple form

A„(o, o) = K -'[(k' k', p+ 2n'(k'+ k')—+ o'+ k2K2]-'/2

K(k —k, + o( )
2o([(k2 k2)2+ 2(22(k2+ $2)+ (244 $2K2]1/2

which reduces to

~ —&', + +
2(2[(k —k P+2n (k +k ) a']

2 "2
( '2 st~(z I) z4+Bzz+k1+ i & 1/2il a I) in the limit of zero angle, and
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limA»»(a, a)=(dE + o )/2»2(DE —2a nE +»2')
0

{»» as)

in the limit of zero incident energy. Finally, the
case of A»» (0, 0) can be shown to be expressible as

A»» (0, 0) = »»/2K[(k —k, ) + k»K ]'~ {A26)

In the foregoing it should be noted that cases
(A18) and (A20) have multiple forms depending on
the choice of parameters. Since these forms may
be ambiguous within an additive factor of ~ to the
argument of the arctan function, it is essential to
test the continuity of the results for Aa (»2, P) and

A»»(a, 0) to determine if an additive factor is needed.
The limit as E-0 is unambiguous in all cases, and

the demand that A& be continuous from 8= 0 to
larger val«s of 8 is sufficient to determine if any
additive factors of ~ are needed. A check showed
that in all the calculations reported here only the
arctan forms were used. All computations were
carried out on the University of Tokyo Hitac 5020
computer using both 32- and 64-bit word lengths.

APPENDIX B: INTEGRALS INUOLUED IN EXTENSION OF
PRESENT TREATMENT OF POLARIZATION

TO MORE COMPLEX ATOMS

It is convenient with little, if any, loss in gen-
erality to write the Hartree-Fock atomic orbitals
for more complex atoms as linear combinations of
analytic Slater-type orbitals (STO's) of the form

(r) =(»2', /»»)' 'e-

$2»& (r) = (»Sz/3v)' re

(Bl)
(Ba)

(Ba)&i»STO(r) (»25 /»»)1»2 re-&I gt'

for normalized 1s-, 2s-, and 2P, -type STO's, re-
spectively.

For the case of s-type orbitals, the integrals for
the first Born matrix elements are

&wi',"&~)l~"'lel.*'& ))=4 l(-»&) (z,~~),
(B4)

(V»',"(r)
~

e"'~ VS."(r))

(Bs)

3

&~P. '&~)le"'I & K &~) & »a» -d» '@=,~ ),
(B6)

where L is a generalized momentum transfer vari-
able which, in this case, can take on the values
%» —q, q —k„and k, —k, . The constant P is aa„
n&+~2, and 2n~, respectively, for the three cases
given above. It is clear from Eqs. (B4)-{B6)that

(B8)

(O», '(r) ~e
'"' " '~VSS'(r))

zd 4/ 3 g ii/p d 1
4%+ f +3 I

dp p2 (g
~

)
2 p B9

(+sro( )
~

e»»8»-8) 8
~

~8~To(r))

( 8To(
)

I

» &'f 8)'
8~ 8TG( ))

dk, &3
dg P +Ik — ~, B11

where P is a&+o, s, oz+e3, and 2a„respectively.
Similar results can be obtained for the terms de-
pending on q -%, by differentiation with respect to
k„, and the extension to 2P„, 2p„, and higher sym-
metry cases is trivial. It should be noted, however,
that the results for the amplitude will depend on the
various orientation angles of Tc» and%, to the coor-
dinate axis on the atom. After the differential cross
section is computed utilizing all the terms, then it
must be averaged over all angles of orientation of
the atomic coordinate axis system with respect to
the fixed plane determined by k, and k, . Any con-
venient coordinate system can be chosen for this
integration as, for example, letting the fixed-z axis
be parallel to k& with either the fixed-x or fixed-Y
axis in the k, k, plane.

Since Eqs. (B9)-(Bll) are in the same form as
Eqs. (B4)-(B6), all polarization contributions will

all terms in the integrals involved in computing
the polarization amplitude will reduce to parametric
differentiation of the terms A»»(c», p) and A, (»2, p)

given in Appendix A. This means that the present
treatment can be extended at the Hartree-Fock level
to the cases of atomic Li and Be, where only s or-
bitals are involved.

In the case of aP, orbital, we can always select
an arbitrary coordinate axis with center on the nu-

cleus for the integration over q and note that

(r cose)"e '2»' "= (- id/dk, )"e"{' ~, (Bv)

(rcos&)"e "»'8= (id/dk )"e»22 8, '

where k, is the z component of k& and k„ is the z
component of k, with respect to the coordinate axis
on the atom. Other components can be used in the
same way to eliminate the angular factors from
2P„and 2P, orbitals. Similar tricks involving higher
derivatives with respect to the Cartesian coordinates
of k, and k, can be used to reduce orbitals of even
higher symmetry to 1s orbital form. The results
for all combinations with the 2P, orbital are
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again be expressible as parametric derivatives of without some bookkeeping problems, to any atom
the results for A„(a, P) and A, (a, P). Thus it is pos- for which the analytic Hartree-Fock wave function
sible to extend the present analysis, obviously not has been given in terms of STO's. '9
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