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The photo-ionization cross sections of the 1 S and 2'S states of He were evaluated in the

energy regions 0.20-2. 40 Ry and 3.15-3.30 Ry. The 56-term Sbound-state wave functions
obtained by Pekeris were used for the initial states. An expansion into a complete discrete
basis set (a modification of the close-coupling method used in electron-atom scattering) was
carried out for the P final-state continuum wave functions. Particular attention was given
to the processes where the ejected photoelectron leaves the He' ion in an n = 2 excited state.
The results obtained from the length and velocity expressions for the photo-ionization cross
sections show an agreement ta within 1% in the lower-energy region. Good accuracy is
achieved for the negative-power moments of the oscillator-strength distributions.

I. INTRODUCTION

Although the photo-ionization of He has been the
subject of extensive theoretical investigations for
over thirty years, ' the emphasis in the earlier cal-
culations has been primarily on the ordinary
photo-ionization process where the ejected photo-
electron leaves the residual He' ion in its ground
state. The availability of improved far-ultraviolet
absorption-spectroscopy techniques enabled Madden
and Codling'6 to make systematic observations of
double-electron excitation processes in the con-
tinuous absorption spectrum of He. They identified
several Rydberg series of 'P doubly excited states
which converge onto the n=2, 3, and 4 excitation
thresholds of He' (ionization thresholds of He).
These observations stimulated detailed theoretical
calculations of the He photo-ionization spectrum
below the n= 2 threshold by Burke and McVicar'
and by Altick and Moore. Quite elaborate wave
functions for both the initial and final states of the
two-electron system were used in these calcula-
tions. The doubly excited (resonance) states of He

below the n = 2 excitation threshold of He' were
thoroughly investigated. There is now renewed in-
terest in the double-electron excitation processes
just above the n = 2 threshold as a result of Sam-
son's recent measurement of the partial photo-
ionization cross section for the processes in which
the residual He' ion is left in an n = 2 excited state.

This paper presents some accurate calculations
of the He photo-ionization cross sections for in-
cident photon energies in the nonresonant regions
below the n = 2 threshold and between the n = 2 and
n = 3 thresholds. The partial photo-ionization cross
sections for the processes where the residual He'
ion is left in the 1s, 2s, and 2p states are evaluated
and compared with Samson's experimental results.
Less accurate calculations are carried out at
higher energies. These calculations are based on
an independent-particle approximation for the
continuum states, and they enable an evaluation of

the oscillator-strength sum rules to be made.
%e also consider the photo-ionization of the He

2'S metastable state, where the partial photo-ion-
ization cross sections for the transitions to the
n = 2 excited states of the ion are an order of mag-
nitude larger than the partial photo-ionization
cross section for the transition in which the ion is
left in its ground state. No experimental results
for the photo-ionization of He in the 2'S state are
available at the present time. Pearl, ' however,
has recently reported an experimental value of
(38+8)&10 'sec for the lifetime of the He 2'S
state.

II. FINAL-STATE CONTINUUM WAVE FUNCTION

The major effort in our calculations is associ-
ated with the difficulty in obtaining accurate con-
tinuum wave functions for the final states of the
two-electron system in the photo-ionization process.
This task is simplified considerably by restricting
our primary interest to an energy region where
only a few singly ionized final states are energet-
ically accessible. In this section, we focus our
attention on the electron scattering by the residual
He' ion. This scattering is described by the final
states in the photo-ionization of He. Although the
main emphasis in our discussion of e -He' scat-
tering will be on the asymptotic region of the wave
function, we are motivated by the need to obtain a
reasonably accurate representation of the inner
region of the wave function.

The 'P two-electron states in the continuum can
be expanded in a complete orthonormal basis S„»(r,)
with undetermined functions F„„(r2)as expansion
coefficients in the form
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e „=k „rl —lsv/2+ [(Z —1)/k „]In2k„rs

+arg{l&+ 1 —i[(Z —I)/k„]) ~ (3)

The nuclear charge Z equals 2 in the present case.
0„ is the wave number in the open channel p, = nl&lz

and is defined by

k „=- 2E + Z /n (E in a. u. ) .

where P,~ interchanges the spatial coordinates of
the two electrons. The index p specifies the in-
dependent energetically accessible continuum
states (open channels) at the given total energy E.
We require only the continuum states with total
orbital angular momentumL = 1(Mi= 0), because
only this single partial wave gives a nonvanishing
contribution to the dipole photo-ionization cross
sections of the 'S states.

In electron-scattering calculations, the expan-
sion basis is usually restricted to include only
the first few discrete eigenstates of the target
(He' ion in our discussion) Hamiltonian. This ap-
proach, originally introduced by Massey and

Mohr, "goes under the name of "close-coupling"
and has considerable intuitive appeal. However,
extensive numerical calculations by Burke and his
co-workers' have demonstrated that the expansion
in target eigenstates is very slowly convergent,
especially. for excitation cross sections. ' The
slow convergence of the target eigenstate expan-
sion is associated with the difficulty of represent-
ing the contributions from the continuum target
eigenstates in a numerical calculation. In recent
calculations of elastic positron-hydrogen scat-
tering by Rotenberg'4 and Perkins, ' and of elas-
tic electron-hydrogen scattering by Burke, Gal-
laher, and Geltman, '6 only the first few bound
target eigenstates were retained, while the re-
maining contributions were represented by states
selected from a certain complete discrete basis
set.

It is natural for the expansion Eq. (1) to contain
the target eigenstates corresponding to the open
channels. ' This automatically ensures that the
trial wave function will have the correct asymptotic
behavior, provided the open-channel functions
+„„(r2)(fork„)0) satisfy the boundary conditions

& „„(r&)„.„- [I/(vk„)"'](sine „6„„+cose „Z„„), (2)

where K„„is the reactance matrix. ' The asymptot-
ic phase 8„ is given by

d l1(l1+ 1) 2Z
S„,,(r, ) „, — '

~ + — S„,, (r,)dr,

(6)

TABLE I. Expansion states S„&,(r) which are not
eigenstates of the one-electron Hamiltonian.

S„,, (r)

2g = —4(Z /3) [r —(3/2Z) r] e

2p 2(Z5/3) 1/2 2

3s = —{11664Z/[2187 —8192

a„& (Z=2) a.u.

0.666 667

which are complete for any value of the parameter
o. ' The desired complete discrete expansion basis
S„, (r,) is obtained by orthogonalizing the indepen-

n1g

dent functions to each other and to the He' eigen-
states included:

f S„,,(r,)S„,, (r,)dr, = ()„. (6)

In our calculations, 1s, 2s, 2p and 1s, 2s, 2P,

3s, 3p expansions were carried out for the energy
regions below the n = 2 threshold and between the
n=2 and s=3 thresholds, respectively. (The nota-
tion Hl& will be used throughout this paper to indi-
cate the expansion states which are not He' eigen-
states. ) The independent function r e 2" was used
to construct the 2s, 2P, 3s, and 3P states. These
closed-ehannelstates are given in Table I. The 1s
and Ks (or 3s) states are members of the complete
discrete basis set y"e ", while the 2P and 3p states
are members of the complete discrete basis set
y'j' e ' "

& ". Our choice for the 2p state differs
from that of Burke, Gallaher, and Geltman, ' who

follow the suggestion made by Damburg and Karule. '~

Their motivation was to take into account the fact
that low-energy electron scattering is strongly in-
fluenced by the long-range polarization potential
o,y . Their 2p state gives the full dipole polariz-
ability of the hydrogen atom ground state, replacing
the infinite summation over intermediate p states
in the expression for n, .

Our computational procedures are identical to
those used by Burke, Gallaher, and Geltman, '
once the expansion basis S„,,(r,) has been selected.
Our limited expansion basis automatically diagonal-
izes the matrix representation of the one-electron
Hamiltonian:

(4)

We employ a modified expansion basis which in-
cludes only the He' eigenstates corresponding to
open channels. Contributions from higher bound
and continuum He' eigenstates are represented by
independent f»nctions selected from either of the
two discrete radial basis sets y" e " and y'&' e

x(1 8/3Z)2)) f/2 (r2ezr-
—(3/2Z) re "-(16/81Z )

&&(3Z —8) [r —(Z/2)r ] e

3P = —[(78732Z /26281)] r
x [e-z~ (32/243) e r j2

j

1.498 39

0.623 416
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This simplifies the numerical procedures. The
energies e„, equal —Z~/2n~ only for the He' eigen-
states. The closed-channel functions F„„(rz)[cor
responding to the expansion states S„&,(r, ) which
are not eigenstates of the one-electron Hamiltonian]
are obtained subject to boundary conditions which
represent exponentially decaying waves:

F"(ra)., „= exp'. —l~. Iran+ [(Z- I)/I&. l]»21&.lr2) .
(7)

The closed-channel states used in our calculations
have effective energies e„, (see Table I) which sat-

1
isfy the conditions

)t„—= 2(E —e„, ) (0 (s)

over the energy range of interest. The constraints
given by Eq. (8) are required by the boundary con-
ditions of Eq. (7}.

The appropriate form of the Kohn variational
principle is

5[(q„,lH Zl y„-, ,) (K„„-./2s)) = O,
where the variation 5 is taken with respect to the
expansion functions F „„(r~), subject to the boundary
conditions at infinity given by Eqs. (2) and ( I) and
the required behavior at the origin:

F „„(r~)„.0 —r~l' (for all iL)"2

Carrying out the indicated variation results in a
set of coupled integrodifferential equations for the
functions F„„(r2):

+ —+k„F„„(r,)
d lm(f2+ 1) 2Z a

2 y'2

=Z [V».(rz)F„,„(rm)+ J W„„.(rz, rm)F„.„dr'2] .p 2 0

F„„(r2)„.„=[f/2(v&„)' [e
' ~S'„„-e' ~5„„] . (12)

After introducing the real orthogonal matrix U

which diagonalizes both the scattering matrix S and
the reactance matrix K:

(U SU)„„=e '"~5„„,
( U KU) „„=tang „5„„

(IS)

(14)

the required states $„' ~ are obtained by transform-
irg the functions F„„(r2)according to

F„„(rm)=Z F„(rz}U ~e '"~cosq~U„B . (15)

The states g'„'& now have the normalization per
unit Ry energy adopted in the photo-ionization cal-
culation:

5(E-E') . (16)

The eigenphases q„, defined as the arctangents
of the diagonalized K matrix, cannot be associated
exclusively with any particular channel and have
no direct physical meaning. It has been rigorously
established~ ~' that these eigenphases increase
monotonically toward their exact values with the
successive enlargement of the expansion basis
S„,,(r,), provided all target eigenstates correspond-
ing to the open channels are included in the trial
function. This minimum principle is of consider-
able practical importance in the numerical calcu-
lations, even though it does not provide any assur-
ance that the cross sections of interest are im-
proved with the addition of more expansion states.

The minimum principle is well illustrated by
comparing our values for the P wave e -He' elas-
tic scattering phase shift, evaluated with the 1s,
2s, 2p expansion, with the corresponding values ob-
tained by Burke and McVicar using a is, 2s, 2P
target eigenstate expansion (see Table II). We con-
clude that the expansion states selected from a

The quantities V and S' are given in detail by Burke,
Gallaher, and Geltman. ' The functions F „„(rz)
were obtained using the computer code of Burke,
which proceeds essentially according to the method
described by Burke and Schey, except that the
exchange integral terms are represented by addi-
tional coupled differential equations which are
solved simultaneously with those for the functions
F..(ra)

The continuum states g„e, with functions F„„(rm)
having the asymptotic behavior given by Eq. (2),
do not correspond to the correct physical final states
in the photo-ionization process. Formal considera-
tion i have established that the final states should
be represented by the incoming wave modification
g„' e. ' The corresponding functions F„„(rm) have the
asymptotic behavior

u', (Ry)

0. 2
0, 4
0. 6
0. 8
1.0
1.2

l. 4
1.6
1.8
2. 0
2. 2

2. 4

n(1s, 2s, 2p)(Ref. 7)
—0. 0605
—0. 0631
—0. 0641
—0. 0636
—0. 0622
—0. 0600
—0. 0571
—0. 0536
—0. 0495
—0. 0447
—0. 0388
—0. 0302

q(1s, 2s, 2P)

—0. 0464
—0. 0485
—0. 0490
—0. 0482
—0. 0466
—0. 0441
—0. 0410
—0. 0373
—0. 0331
—0. 0285
—0, 0234
—0. 0178

TABLE II. P wave e -He' elastic scattering phase
shift g evaluated in the nonresonant region below n = 2
threshold using He' eigenstate expansion and complete
discrete expansion.
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complete discrete basis led to a significant im-
provement over the results obtained with an equal
number of bound target states, even in this very
restricted calculation. Our 1s, 2s, 2p phase shifts
are 5-10% lower than the polarized orbital phase
shifts presented by Sloan. ' Unfortunately, no
highly accurate variational calculations, similar
to those done by Schwartzoo (L = 0) and by Arm-
steado~ (L = 1) on e —H elastic scattering, are
available for comparison. The eigenphases in the
energy region between the n= 2 and n= 3 thresholds,
evaluated with the 1s, 2s, 2p, 3s, 3p expansion,
are compared in Table III with the corresponding
values obtained using a 1s, 2s, 2p target eigen-
state expansion. We observe that one of the four
eigenphases (go) has undergone an improvement
comparable to that undergone by the elastic scat-
tering phase shift. Perhaps this eigenphase is
mainly associated with the elastic channel.

III. PHOTO-IONIZATION CROSS SECTIONS

We feel that the results presented in the preced-
ing section indicate that good accuracy has been
achieved for the final-state continuum wave func-
tions in the asymptotic region. We now proceed
with the calculation of the photo-ionization cross
sections which depend on the inner region of the
continuum wave functions. The results of this
section are presented by giving the differential
oscillator strengths corresponding to the energet-
ically allowed transitions as a function of k„ the
kinetic energy in rydbergs of an ejected photoelec-
tron which leaves the residual He' ion in its ground
state. The incident photon wavelength is given by

911.754 (17)
k +I

where I is the ionization potential of the initial
(bound) state of the two-electron system measured
in rydbergs.

TABLE III. I' wave e -He' scattering eigenphases g„
evaluated in the nonresonant region between n =2 and
n = 3 thresholds using ls, 2s, 2p and ls, 2s, 2p, 3s, 3p ex-
pansions.

k2&(Ry)

&„', (k', ) = 18v'o. (f+k', )-'

8 8
&0

where & is the fine structure constant. f~ is a
'S bound-state wave function. g„'$g$ Q is a 'P con-
tinuum wave function defined with )he asymptotic
form given by Eq. (12), which represents an out-

going spherical wave in the channel nE&lz and in-
coming spherical waves in all other open channels.
The photoelectron is ejected with kinetic energy

k„,, = k, —Z (1 —n ) Ry and relative orbital angular
momentum l~. The total photo-ionization cross
section is obtained by summing over all energet-
ically accessible states of the residual ion:

o,(k', ) = Z a„r,(k', ) .
"~1

The 'S bound-state wave functions obtained by
Pekeris ' can be rearranged in the form

(20)

$s =N(1+P„)e "~ '" Q C,»r,'ror'„, (21)
Oa

Chandrasekhar gives three alternative expres-
sions for the dipole photo-ionization cross sections
which would give identical results if they could

be evaluated using exact wave functions for the

initial and final states. The dipole length and di-

pole velocityexpressions have been found to give
the best results when approximate wave functions

are used, and a close agreement between the re-
sults obtained using these two expressions usually

gives a certain confidence in the accuracy of the

wave functions. We do not evaluate the dipole ac-
celeration expression, because it usually gives
disappointing results compared with the other two

expressions due to its emphasis on the region near
the nucleus where the bound-state wave functions
are known to be not so well represented. We can

write, for the length and velocity partial photo-
ionization cross sections when the residual He'

ion is left in the nip state:

o ~q(k&) =4" o(&+k&)~
I (t ~Irido.

&lzt+zol4)l so
lg

3. 15
3.20
3.25
3.30

3. 15
3.20
3.25
3.30

0. 447
0. 449
0.452
0. 451

0.461
0. 465
0.470
0. 475

ls, 2s, 2p expansion

0. 0501
0. 0499
0. 0497
0. 0493

—0. 639
—0. 609
—0. 584
—0. 560

—1.38
—l. 44
—1.50
—1.54

0. 0268
0. 0264
0. 0258
0. 0250

—0. 630
—0. 600
—0. 575
—0. 553

—1.37
—1.44
—1.49
—1.54

ls, 2s, 2p, 3s, Fp expansion

where X is defined by the condition that Ps be nor-
malized to unity. In the 1'S ground-state wave
function, a = 5 = ( —Es)'~, where —Es is the bind-
ing energy in a. u. In the 2~S metastable-state wave
function, a =Z, while 5 was optimized to obtain the
best energy eigenvalue with a given number of
terms in the expansion. ' We feel that the 56-term
expansions used in our computations were entirely
adequate. The use of larger bound-state expansions
should probably be deferred until a more accurate
continuum wave function is obtained.
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F (») = & sin k&»+
k

ln2kz» Z &g»
(2' —1) $Qt mp

XI1 Pa0

(Z —1) yp -P
+cos kr+ &»&ir ~ P pgr

PIIO

+ 8 exp —lk, l»+»2lkil»
ik„l PO

(2S)

where there are m, and m~ different independent
wave numbers k„above and below threshold, re-

TABLE IV. Oscillator strength df/dE for He liS
ground state evaluated in the nonresonant energy region
below n = 2 threshold using 1s, 2s, 2p and 1s, 2s, 2p ex-
pansions.

n', (Ry)

1s, 2s, 2p expansion

(:.). (:.),
ls, 2s, 2p expansion

(" ).
0. 2

0, 4
0. 6
0. 8
1.0
1, 2

1.4
1, 6
1.8
2. 0
2. 2

2. 4

0. 7796
0.6655
0. 5719
0. 4950
0. 4316
0.3791
0. 3352
0. 2982
0.2668
0.2404
0. 2184
0.2018

0. 7625
0.6525
0. 5619
0. 4867
0.4243
0. 3722
0. 3284
0.2915
0.2603
0.2339
0.2121
0. 1957

0. 7830
0. 6669
0. 5716
0. 4937
0, 4298
0. 3769
0. 3327
0.2955
0.2639
0.2370
0.2139
0. 1942

0. 7748
0. 6621
0. 5690
0. 4923
0. 4288
0. 3758
0. 3314
0.2939
0.2621
0.2350
0. 2118
0. 1921

energies their length results are as much as 4%
higher than our length results, whereas for the
higher energies their results approach ours to with-
in 1%. Table V presents the differential oscillator
strength for the He 2'S state below the n = 2 thres-
hold. Whereas the 1s, 2s, 2p expansion yields re-
sults for the 2 S state which are as good as those
for the I'S state, the Is, 2s, 2P expansion gives
disappointing values at the higher energies. Huang
carried out calculations for the He I'S and 2'S
states using a bound-state wave function containing
the r» variable, and a product of hydrogenic wave
functions for the continuum. Our I'S results are
in good agreement with those of Huang, but our
2'S results are substantially different from his.

Although the major contributions to the photo-
ionization cross sections come from the region of
space near the nucleus, the He 2 S weight functions
were found to have appreciable amplitudes at dis-
tances as large as r=20 a. u. Therefore, it was
necessary to evaluate the asymptotic expansions
for the functions F„„(»)to obtain the values at large
distances. These asymptotic expansions, which
are used by Burke's code, have the form

TABLE V. Oscillator strength df/dE for He 2 S meta-
stable state evaluated in the nonresonant energy region
below n =2 threshold using 1s, 2s, 2p and 1s, 2s, 2p ex-
pansions.

k2g Qy)

0. 2

0. 4
0. 6
0. 8
1.0
1, 2
1.4
1.6
1, 8
2. 0
2. 2
2. 4

1s, 2s, 2p expansion

d~ ~d

0.472 6
0, 257 2
0, 1523
0. 098 75
0. 067 65
0. 047 85
0. 03562
0. 02634
0. 019 08
0, 01672
0. 013 72
0. 008 809

0.478 6
0.251 9
0. 1501
0. 097 17
0. 06635
0. 046 95
0. 033 98
0. 024 80
0, 01796
0. 015 03
0. 012 53
0. 007 697

1s, 2s, 2p

0. 4769
0. 2586
0. 1527
0. 09909
0. 068 06
0. 049 06
0. 03645
0, 02747
0, 02062
0, 01591
0. 012 16
0. 008 726

expansion

(:.),
0.483 2
0.254 3
0.152 1
0. 099 12
0. 06841
0. 049 12
0. 03628
0. 02728
0. 02071
0. 01575
0. 01184
0. 008 615

spectively. The coefficients are determined by the
recurrence relations derived by Burke and Schey,
except for a modification subsequently made by
Burke' to account for the residual Coulombic in-
teraction for 8 t i. This procedure is clearly more
economical than that of enlarging the region of
space in which the coupled equations are solved
beyond the limit where the solutions are obtained
with significantly greater precision.

In the energy region between the n = 2 and n = 3
thresholds, a photoelectron can be ejected from
He with kinetic energy k& leaving the residual He'
ion in its ground state, or it can be ejected with
kinetic energy k, —3 leaving the ion in an n = 2 ex-
cited state. Samson observed that 0.08+ 0. 02 of
the total number of photoelectrons detected at kz
= 3. 088 Ry were ejected with the lower energy. In
his experiment, it was not possible to distinguish
between the transition to the 2s state of the ion
and the transition to the PP state of the ion. From
our results for the oscillator strengths for the He
I'S state presented in Table Vt, we obtain 0. 095
(L) and 0. 094 (V) at k2= 3. 20 Ry, and 0. 093 (L) and
0. 092 (V) at k, =3. 15 Ry for this ratio. These val-
ues seem to extrapolate within the error limits of
Samson's experimental value. Brown carried
out calculations using a product of hydrogenic wave
functions for the final state. He obtained results of
the correct order of magnitude for this ratio, but
his df/dE values for the transitions to the n = 2
excited states of the ion are quite different from
ours. The success, in certain situations, of the
treatment using a product of hydrogenic wave func-
tions for the final state may be attributed to the
dominance of the nonvanishing centrifugal potential
lm(12+1)/»' near the nucleus, where the photo-ion-
ization process mainly occurs. This point has



LOW- ENERGY PHOTO-IONIZATION OF THE 1 S AND 2 S' ' ' 295

TABLE VI. Oscillator strengths for the He 1 S ground state, corresponding to transitions in which the He ion is
left in 1s, 2s, and 2p states, evaluated in the nonresonant region between n = 2 and n = 3 thresholds.

3. 15
3.20
3.25
3.30

0. 1312
0. 1278
0. 1244
0. 1213

0. 1263
0. 1230
0. 1197
0. 1167

1s, 2s, 2p expansion

0. 003 375
0.003 485
0.003 570
0. 003 638

0. 003 376
0. 003 485
0.003 571
0. 003 643

0. 010 48
0. 01046
0. 010 44
0, 01042

0.010 53
0. 010 51
0. 01047
0. 01033

1s, 2s, 2p, 3s, 3p expansion

3. 15
3.20
3.25
3.30

0. 1296
0. 1262
0. 1229
0. 1197

0. 1278
0. 1245
0. 1212
0. 1181

0. 003 321
0.003 429
0. 003 509
0.003 566

0. 003 246
0. 003 350
0. 003 426
0.003 481

0. 009 891
0.009 839
0.009 763
0. 009 674

0, 009 606
0. 009 542
0. 009 455
0. 009 355

been stressed by Massey and Bates.
Table VII presents our results for the He 2'S

metastable state in the energy region between the
n= 2 and n = 3 thresholds. Our values of the oscil-
lator strengths for the transitions to the s states
of the He' ion are significantly different from
those obtained by Suh and Zaidi. ' Their procedures
for the continuum are based on the numerical so-
lution of the Hartree differential equations.

For He 2'S, we find that the oscillator strengths
for the transitions to the n = 2 excited states of the
ion are an order of magnitude larger than the os-
cillator strength for the transition in which the ion
is left in its ground state. This is explained by
noting that the 1s amplitude is larger than that of
the 2s near the nucleus, where the photo-ionization
process mainly occurs.

Figure 2 presents the photo-ionization cross
sections for the 1'S and 2'S states, obtained from
the velocity expression. Calculations could not be
carried out for energies less than 0. 15 Ry above
threshold, because for very small values of k„
the asymptotic expansions Eq. (28) provide a good

representation of the wave function only for very
large values of r.

IV. OSCILLATOR-STRENGTH SUMS

In the preceding section, the agreement between
the results obtained from the length and velocity
expressions has served as a criterion for judging
the accuracy of our computed values for the os-
cillator strengths df/dE. An additional check on
our computed df/dE values is provided by an eval-
uation of the oscillator-strength sums. The various
moments of the oscillator-strength distribution
can be defined as

where Eo, E„, and E denote the energies in ryd-
bergs of a '8 initialstate, a('P —n) thdiscretestate,
and a iP continuum state, respectively, and E
=I+0,. Some of these moments are related to prop-
erties of the He atom in the initial state by the
following oscillator-strength sum rules:

TABLE VII. Oscillator strengths for theHe 2 Smetastable state, corresponding to transitions in which the He' ion is
left in 1s, 2s, and 2p states, evaluated in the nonresonant region between n = 2 and n =3 thresholds.

3.15
3.20
3.25
3.30

0. 007 167
0. 006 863
0. 006 629
0. 006 434

0. 006 218
0. 005 949
0. 005 754
0. 005 600

1s, 2s, 2p expansion

0. 069 19
0. 062 90
0. 059 15
0. 057 26

0. 06730
0. 061 08
0. 05745
0. 05567

0. 070 05
0. 06726
0. 063 40
0. 062 56

0. 067 58
0. 06472
0. 061 92
0. 060 11

1s, 2s, 2p, 3s, 3P expansion

3. 15
3.20
3.25
3.30

0. 007 629
0. 007 374
0. 007201
0. 007 081

0. 007 429
0. 007 198
0. 007 051
0. 006 961

0. 071 42
0. 065 56
0, 062 26
0. 060 76

0. 07020
0. 06453
0.06150
0. 06029

0. 071 25
0. 068 97
0. 066 38
0. 064 14

0. 070 03
0. 06869
0.06530
0. 06339
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FIG. 2. Velocity results for photo-ionization cross
sections of He. k~ is energy of an ejected photoelectron
which leaves He' ion in its ground state.

2(Z —1) dff.o n-=
0

(36)

s(2) = V v2 (0
I
5'"(r,) + I&'"(r,)

I
0) . (33)

5, is the momentum of the ith electron, and &, is
the dipole polarizability of the initial state of He
measured in units of ao. In the sum rule given by
Eq. (30), P, is the coefficient of the nonadiabatic
contribution of order r in the asymptotic expan-
sion for the potential experienced by an electron
incident upon the initial state of He. This sum rule
has been recently derived; the others are well
kno

A highly accurate computation of the expectation
values which occur in the expressions for S( —1),
S(1), and S(2) has been carried out by Pekeris. m'

This enables a precise evaluation of these sums to
be made for the 1'S and 2'S states. Victor, Dal-
garno, and Taylor ' have recently computed S(- 3),
S(- 2), and S(-1) for these states by replacing the
infinite summations over the intermediate states
(including the integrations over the continua) by
finite summations over the eigenvectors of the Ham-
iltonian matrix in a Hylleraas basis. This pro-
cedure is expected to give accurate results for
those sums S(k) which weight heavily the lower-
energy part of the oscillator-strength distribution.

Our evaluation of the sums S(k), which is summa. -
rized in Table VIII, utilizes the accurate f values
obtained by Schiff, Accad, and Pekeris ~ for the
dipole transitions to the lowest four discrete 'P
states. In order to est@pate the contributions from
the remaining discrete states, we have used the
asymptotic result

TABLE VIII. Various contributions to the sums S(k).

Zn=2&~n- 0&'fno Zn. 6 & n-Eo&'f 0 J,2. N-&0&' f 2 (E —Eo&
Pg=2e 4

x —dE

Total Exact
values

Previous
evalua-
tions

S(- 3)
S(- 2)
S(- 1)
S(0)
S(1)
S(2)

S(—3)
S(-2)
S(- 1)
s(o)
S(1)
S(2)

0. 096 11
0. 1536
0, 2459
0.3944
0.633 9
1.021

4372
198.0

9.640
0. 599 2
0. 061 07
0. 009745

0. 005 14
0. 009 21
0. 016 5
0. 029 5
0. 052 9
o. 0948

1.90
0. 530
0. 141
0. 038 8
0.010 6
0. 002 94

0. 073 44
0. 169 0
0. 407 5
1.037
2.795
7. 997

5.558
1.899
0. 736 6
0.357 0
0.243 4
0.245 8

He 1~S

0. 002 50
0. 013 5
0. 0799
0. 514
4. 542

110.5

He 2~$

0. 004 9
0. 019 7
0. 122 9
0.683 6
4. 423

84. 64

0. 1772
0.3453
0.7498
1.975
8. 025

119.6

4380
200. 5

10.64
1.679
4. 738

84. 90

~ ~ ~

0. 752 50
2
8. 167 5

121.34b

~ ~ 4

10.685~
2

5.773 3
87.761'

0. 1766'
0.3455
0.7520a
2. 054~
7. 923

117 7~

4b 87
200. 6

10 70
2. o3e'
5.e42'

88. 07
'See Ref. 41. See Ref. 40. 'See Ref. 46. See Ref. 30. 'See Ref. 37.
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Since we were unable to obtain the threshold values
of df/dE from our computations, we have taken for
the 1'S state the value 0. 900 (halfway between the
length and velocity results of Stewart and Webb ),
and for the 2'S state we have chosen the value 1.125
(used by Dalgarno and Kingston '}. These numbers
are unlikely to be in error by more than +0.

The main purpose of our evaluation of the sums
S(k) is to check our computed values of df/dE in
the energy range 0. 2 & k, & 2. 4. Although the major
interest of this paper is in double-electron excita-
tions, we have obtained reliable results for these
processes only over an energy range which makes
insignificant contributions to the sums S(k}. Lacking
a more satisfactory approach for higher energies
in the continuum, we have adopted the procedures
used by Salpeter and Zaidi ~ and Suh and Zaidi3~

in order to estimate the contributions from the
continua for k, ~ 2. 4. As expected, we obtain good
accuracy for the sums S(-3}, S(-2), and S(-1),
which weight most heavily the lower energy part of
the oscillator strength distribution. Our estimates
of the sums S(0), S(l), and S(2) for the 2~S meta-
stable state are quite poor compared with those for
the 1'S state, most probably because the double-
electron excitations which are inadequately treated
by the independent-particle approximation are of
much greater importance in the 2'S continuous ab-
sorption spectrum. These considerations would
be of great importance in an accurate evaluation

of the Lamb-shift mean-excitation energy of the
2'S metastable state.

V. CONCLUSIONS

We have been able to obtain significantly im-
proved results for photo-ionization processes at
low energies before exceeding the limits of our
computing facilities. A more detailed experimen-
tal investigation of the double-electron excitation
processes just above the n = 2 threshold would be
of great help in judging the accuracy of our results.
Should greater precision be warranted, it would

probably be best to abandon the expansion in product
functions and include the r» variable in the con-
tinuum trial wave function.
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One of the oldest methods suggested for treating the effect of charge polarization on elastic
scattering is revived by the use of certain physically reasonable assumptions, and is shown
to lead to results, in the limit of small scattering angles and high incident energies, which are
in quantitative agreement with experimental and theoretical expectations. The theory is
worked out in detail for one- and two-electron atoms, and the extension to more complex sys-
tems is also discussed. The effect of charge polarization on the elastic differential cross
section for 500-eV incident electrons on He is calculated and compared with the experimental
results of Bromberg and the theoretical results of LaBahn and Callaway. The agreement is
good over the angular range 0 ~ 8&6' if exchange scattering contributions are included.

I. INTRODUCTION

Numerous treatments of charge polarization or
charge distortion of the target on scattering by
charged particles have been considered. ' These
methods can be put into two classifications. The
first will consist of the so-called rigorous methods
which are designed for use in the region of low in-
cident energy of the bombarding charged particle.
Such methods, in the case of electron scattering
from atoms and molecules, become computation-
ally messy at energies above 100 eV because of
the proliferation of open excitation channels. The
second class of methods, generally more empirical
in nature, either simplify rigorous theory by the
use of approximations or use parametrized models
to represent the polarizing process.

One of the oldest methods of the second type,
which is here called "the infinite-channel close-
coupling theory in the second Born approximation, "
was first suggested by Massey and Mohr and is
the method to be dealt with in this paper. It simply
consists of writing the coupled-channel differential
equations, neglecting exchange and relativistic
effects, in the form

(V k )f (r) = E U, (r)f, (r)
l~o

(V +k, )f&(r) = P U»(r)f, (r)
fao

0

(V +k„)f„(r)=Z U„,(r)f, (r)
2=0

where k is the incident energy, k„=k —&Eo„ is the
scattered energy after exciting the target to the
state n, and f„(r) is the wave function for the scat-
tering process where the scatterer is initially in
its ground state and is left in its nth excited state.
The interaction potential U„,(r) is given as

2m
U„&(r) = g„(r~, . . . , r„)

mo

where m/mo is the electron mass ratio (l —v /c )
introduced to provide the main relativistic effects
on the scattered electron in the forward scattering
direction with incident energies less than 50 keV.


