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Hyperfine and Zeeman Studies of Low-Lying Atomic Levels of La'39

and the Nuclear Electric-Quadrupole Moment*
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(Received 24 August 1970)

The atomic-beam magnetic-resonance technique has been used to determine the hyperfine-
interaction constants A, J3, and C and electron g values g& for all previously unstudied atomic
levels of La below 9000 cm '. The results are analyzed in detail in terms of a set of eigen-
vectors spanning the three configurations 5d6s, 5d 6s, and 5d . Corrections for hyperfine
and Zeeman interactions between all low-lying states are carried out in intermediate coupling.
The value deduced from the observed hyperfine structure for Q, the La nuclear ground-
state electric-quadrupole moment, is influenced strongly by taking account of (a) the large
recently found configuration mixing between 5d6s, 5d 6s, and 5d and (b) the rather substantial
Sternheimer shielding effects. The effects (a) and (b), though both about 30%, are in opposite
directions and partially cancel. The value obtained is Q = (+0.22 + 0.03)b. Although the order
of consistency between the experimental results and theory is encouraging, a number of
problems remain.

I. INTRODUCTION

The neutral lanthanum atom, coming just before
the 4f shell in the Periodic Table, has interested
a number of authors over the years for various
reasons. The (5d+6s}' electron scheme, while
providing a number of low-lying closely spaced
levels which interact strongly with each other, is
still sufficiently simple to be susceptible to the-
oretical attack. In addition to investigations of the
atomic structure, both optical and atomic-beam
magnetic-resonance studies have been made' ' to
determine the electric-quadrupole moment of the
La' nuclear ground state.

While the presence of closely packed interacting
levels may be regarded as a complication, it may
also be considered as a challenge to make use of
the interactions to understand the atomic structure.
The hyperfine structure (hfs) of the 5d6s 3D,&3,&z

ground doublet has been studied in detail by Ting. '
The present study extends his experimental work
to all levels up to about 9000 cm-'. Eigenvectors
that span the three configurations 5d6s~, 5d 6s, and
5d' in intermediate coupling have been developed
by Wilson by computer fitting of observed term
values. The eigenvectors, in addition to satisfying
the known excitation energies, should also be con-
sistent with the electron g factors gl and the hy-
perfine-interaction constants A and B of all the low
levels examined. Effective operator Hamiltonians
are used for analysis of the hfs interactions. While

the over-all consistency is good, a number of prob-
lems remain.

II. THEORY UNDERLYING METHOD

The atomic-beam magnetic-resonance technique
devised by Rabi, Zacharias, Millman, and Kusch, '
and modified by Zacharias is now so classic as to
require a minimum of description. Atoms of the
material under investigation effuse individuall. y
through a thin slit in the source and pass in turn
through three magnetic fields. The first and third
fields are strong and inhomogeneous, with their
gradients in the same direction, and the central
field is variable and homogeneous. Individual
atoms of the atomic beam are deflected away from
the detector (if they have a magnetic moment} un-
less a suitable change of state occurs between the
two deflecting magnets. The atomic-beam appara-
tus is normally adjusted so that the required tran-
sition causes the atom to have opposite effective
magnetic moments in the two deflecting fields, and
results in a resonant refocusing of the beam to a
detector. For an energy difference hv between the
two atomic levels involved, this "flop" is induced
by an rf field of frequency v superimposed on the
homogeneous central magnetic field.

If one limits his attention to a single fine-struc-
ture state I oSLJ), the appropriate Hamiltonian
for analyzing the hyperfine and Zeeman energies
is

3
~I ~ J(21 ~ J +1} I(I+1)J(J+1} -g 3 pK=~1 ~ J +hB +hC —(8(I ~ J) +16(1 ~ J) ++1 ~ J)[-3I(I 1)J+(J+1)

+I(I+ 1) +J(J+ 1) + 3]-41(I+1)J'(J+1}}[I(I—1}(2I—1)J(J' —1}(2J—1)] + psH(g~ Jg+g~I,),
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TABLE I. Excitation energies and relative Boltzmann

factors of the lower levels of La I. The Boltzmann factors
are calculated for the approximate oven temperature of
1927 C, for which the vapor pressure is about 0.1 Torr.
The relative intensities of the rf transitions seen are
roughly proportional to the Boltzmann factors.

Electron con- State Excitation Relative
figuration energy Boltzmann

(cm-') factor

5d6s
5d6s2
Gd26s

5d 6s
5d26s

Gd 6s
Gd26s

5d26s
5d26s
5d26s
Gd 6s
5d26s
5d26s
Gd26s

Gd 6s
5d26s
5d26s

2D, /,
2
D~/2

4

,+3/2
+s/2

4

4
+s/2

2

4
Pf/2

4
P3/2

4
P~/2

2F
2D, /,
2Pi /2
2
Ds/2

2
P3/2

2
Gs/2

2
G7/2

0
1053
2668
3010
3495
4122
7012
7231
7490
7680
8052
8446
9044
9184
9719
9919
9961

1.000
0.502
0.175
0.140
0, 102
0.068
0.010
0.0088
0.0075
0.0066
0.0052
0.0040
0.0027
0.0025
0.0017
0.0015
0.0015

III. APPARATUS

The atomic-beam machine used for the experi-
ment has been described before' and no essential
changes have been made. Lanthanum metal was
cleaved and kept in kerosene until just before use.
After washing it in benzene, it was placed in a
sharp-lipped tantalum crucible to limit creeping,
and the crucible was placed inside a Ta oven which
was heated by electron bombardment to produce the
beam. Considerable difficulty was caused by La
activation of the bombardment filaments, and it
was necessary to keep them as far from the front
of the oven as possible. The problem was reduced
by regulating the total power to the oven rather than
the emission current from the heater filaments.
Whenever the emission current attempted to change,
the high voltage applied was altered such that the

where A, 8, and C are the magnetic-dipole, electric-
quadrupole, and magnetic -octupole hyperfine-in-
teraction constants, respectively, I and J are the
nuclear and electronic angular momentum opera-
tors, p, ~ and h are the Bohr magneton and Planck's
constant, H is the magnetic field, andg~ andg,
are the electron and nuclear g factors, respectively.

Two computer programs based on Eq. (1) are
used repeatedly; the first simply calculates the re-
quired transition frequencies v as functions of H,
and the second accepts an ensemble of observations
of v and H, and varies the quantities A, B,C, g~,
andg& to make a least-squares fit to the observed
values of v.

total power used to heat the oven was kept constant.
The homogeneous magnetic field was set to the

desired value by observing a suitable transition in

a K' beam effusing from a separate oven. The
radio frequency used for La was repeatedly swept
in small steps (usually 10 kHz) through the fre-
quency span of interest. The detector is described
in Ref. 8, and the multichannel sealer, data-hand-
ling techniques, and digital noise filter used have
also been described. &

Radio frequencies below 50 MHz were produced
directly; those between 50 MHz and 1 GHz were
obtained by multiplication of lower crystal-stabil-
ized frequencies and those between 1 and 8 GHz

by phase-locked magnetrons and backward-wave
oscillators with appropriate microwave amplifiers.

IV. EXPERIMENTAL PROCEDURE

Since the metastable atomic states were populated
thermally in our apparatus, the intensities observed
were strongly correlated with excitation energy,
and were approximately proportional to the relative
Boltzmann factors. These are summarized in
Table I for 1927 C, for which the vapor pressure
of La is approximately 0. 1 Torr. Thus, the ex-
pected intensity for transitions in the 5d 6s D«~
state at 9184 cm ', for example, was only 1/400
of that for the ground state. To avoid confusing
poorly refocused or nearly forbidden transitions
in the well-populated states with normal transitions
in highly excited states, the stronger states were
investigated first. Figures 1 and 2 illustrate the
relative intensities typically observed for two pairs
of states. The signal-to-noise ratio can be im-
proved almost arbitrarily for any state by length-
ening the time of data collection. Thus, Fig. 2

was obtained while collecting data for the F, /&

state; the signal-to-noise ratio for the D, /, state
could have been improved by a longer count.

Since the zero-field hyperfine intervals of the
5d6s D levels of the ground term had been accu-
rately measured by Ting, ' it was only necessary
to make observations at reasonably strong values
of H to determine the values of g~.

No previous measurements of atomic-beam ac-
curacy had been made on any levels of the 5d 6s
configuration, however, and the procedure followed
was virtually the same for each state. It can be
shown from Eq. (1) that at small values of H (such
as 10 G) the nF = 0 transition frequencies are al-
most independent of the hyperfine-interaction con-
stants A, B, and C, and can be predicted closely
for any state from the known" optical value of g~.
As such hF = 0, ~F= + 1 transitions are followed
to higher fields their dependence on the hyperfine-
inter action constants increases rapidly. At each
step, the computer programs produced best-fit
values of the parameters and predicted the transi-
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FIG. 1. Appearance of rf transitions in the 5d6s
and 5d 6s F&~2statesof La' at 20 G. The difference in
intensity between the two peaks is due primarily to the
fact that the two levels lie at different excitation energies
and consequently have different thermal populations. A

much longer data collection ~ould have revealed a transi-
tion in the much less populated 5d 6s D&~2 state (9184
cm ') at about 11.5 MHz.

tion frequencies for still higher fields. When the
uncertainties in the values of A and 8 were suffi-
ciently small that the zero-field b, F = +1 intervals
could be predicted with little error, these "direct"
transitions were searched for. Figure 3 shows the
appearance of several components of the F = 3—4
transition in the 'F,

&~ state as observed at 1 G.
As the degree of excitation increased, intensity
became the limiting consideration, and the proce-
dure outlined was of necessity carried out with less
completeness.

For some states, experimental difficulties were
encountered because the computer programs de-
scribed above were unable to produce acceptably
good fits to the observed data or to make valid
predictions of resonance frequencies for as yet
unobserved transitions. It is shown below that
when interactions with nearby atomic states are
properly taken into account, such difficulties are
resolved. For this purpose it is necessary to gen-
eralize Eq. (l) as discussed in Sec. VE. Certain
new parameters which occur play an important
role in determining the transition frequencies at
high field, and, conversely, high-field observa-
tions can be very helpful in evaluating the new
parameters.

Because the central field in our atomic-beam
apparatus is not as homogeneous as might be de-
sired, it was found that above 400 G the observed
linewidth is proportional to H, and hence little
could be gained by observing field-dependent tran-

APPLIED rf FREQUENCY ( MHz)

FIG. 2. Transitions in the 'I
5~2 and D3~2 levels of

the 5d26s configuration at 10 G. The curve was obtained

to determine the resonance frequency of the Esg2 transi-
tion and required about 30 min of data collection; still
longer collections were required to yield an adequate
signal-to-noise ratio for the very weakly populated

D3)) state.
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FIG. 3. Seven components of the I'=4 to F= 3 transi-
tion in the F3~2 state at 1 G. The vertical dashed line
indicates the frequency that corresponds to the zero-
field hyperfine interval &v.

sitions at higher fields. Calculations showed, how-

ever, that many of the bt = + 1 transition frequen-
cies have extrema (mostly minima) at certain val-
ues of H, and in these regions ev/&H is 0 to within
a few kHz over a range of several G. A number of
these transitions were observed at the appropriate
values of H, and these data were useful in reducing
the uncertainties on certain of the hfs parameters
discussed below. For these almost field-indepen-
dent observations, the field was set by means of
a rotating-coil gaussmeter rather than by K' res-
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onances, but the gaussmeter was cross calibrated
against the K' transition frequency to within +1.5 G
at several fields up to 3000 G.

V. DATA ANALYSIS AND COMPARISON KITH THEORY

A. Introduction

As pointed out in Sec. IV, the observed resonance
frequencies may be computer analyzed with the aid
of Eq. (1), the traditional Hamiltonian for atomic-
beam studies. The computer, while constraining
g, to be consistent with the NMR value, ' varies
A, B, C and g& for each state independently to pro-
duce a best least-squares fit to the observed res-
onance frequencies. The first of the two columns
of residuals in Table II gives the differences be-
tween the observed and the calculated resonance
frequencies according to this procedure. It is
clear that the residual is very much larger than
the experimental uncertainty for many observations,
particularly for those at large H. The best-fit
values of the quantities A, B, C, andg~ for these
fits are listed in the fourth column of Table III,
together with the y found. The large values of y

found for the fits to the F', &&, 'P, &&, and F,&& data
illustrate the same point.

It is clear that the resonance frequencies calcu-
lated on the basis of Eq. (1) are not in agreement

I2000—

4F
7/2

5/2
5/2

S/f
5/2

6000—
EO
R
laJ
X
lal

X
O
I-
I-

X
laJ 4000—

5/2
7/2

P

5/2

5/2
5/2

5/2
5d60 Sd 6s 5d
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FIG. 4. Scale drawing of the low even-pa. rity atomic
energy levels of the neutral La atom. All the levels of
the Sd6s, 5d 6s, and 5d configuration that have been
observed are shown. The intermingling of multiplets of
5d Gs is apparent.2

with experiment, particularly at large H. The
source of the trouble is that Eq. (1) ignores hfs
and Zeeman interactions with neighboring atomic
levels. Equation (1) also fails to tell us anything
of the way in which the hyperfine-interaction con-
stants may be expected to vary from state to state.
Clearly, the theoretical treatment must be refined.

B. Eigenvectors and gj Values

Figure 4 shows the low even-parity energy levels
of the neutral lanthanum atom, including the re-
cently observed' 5d F term. It can immediately
be seen that the departure from the LS limit' is
important; in fact, the spin-orbit interaction has
caused substantial intermingling of terms in the
5d 6s configuration. In addition to this complica-
tion, the three low even configurations are close
in energy, and some configuration interaction can
be expected between like terms. Coulomb inter-
action with higher configurations and smaller mag-
netic effects might also be important. In 1966
Stein" made a least-squares fit to all the known

levels of the 5d6s, Sd 6s, and 5d configurations;
all the levels but one were fitted to within 100 cm '.

Wilson' has recently determined the phases and

approximate values of the required R integrals by
Hartree -Fock calculations. With this information,
and with several sets of assumptions to keep the
number of free parameters reasonably small, he
has also fitted the known levels of the three con-
figurations simultaneously. Of these LS eigenvec-
tor sets, the set that gives the smallest mean dif-
ference between observed and calculated term val-
ues (set A of Ref. 4) is the one this paper consis-
tently uses in the analysis.

The Wilson eigenvectors show that although the
'F term of 5d 6s is rather pure, the higher more
closely packed states of 5d 6s are considerably
mixed. The 5d6s D ground term contains a large
admixture of 5d 6s D. The g~ values predicted
from the eigenvectors for the low-lying 5d6s D
and 5d 6s F terms are in very good agreement with
the experimental values. The agreement is less
satisfactory for the higher J= -,', —', states of 5d' 6s
which can mix with 5d6s 2D. Details of the develop-
ment of the eigenvectors and the theoretical values
of g~ are given in Ref. 4.

Judd and Lindgren" have given an expression
which the g~ values of an LS multiplet should obey.
The expression, in addition to satisfying the Lande
formula with the Schwinger correction, also takes
account of spin-orbit mixing through second order
and of relativistic and diamagnetic corrections to
the g factors. Although it disregards the effects of
configuration interaction, such effects are normally
small since in lowest order the states mixed by the
Coulomb interaction have the same S, L, and J and
consequently the same g~. The relation is
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TABLE G. Resonance frequencies observed in low-lying levels of La"". Two columns of residuals (differences
between observed and calculated resonance frequencies) are given at the right of the table, both in kHz. The calculated
frequencies used for the first column are from Eq. (1); i.e. , they presuppose the atomic state to be completely pure and

isolated. Those used for calculating the residuals of the second column are corrected for hyperfine and Zeeman inter-
actions with all neighboring levels. The parameters used for the correction are those of the upper right-hand section
of Table VIII, except that the value of a~ (5d 6s) was very slightly altered for the P&~2 and E3~2 states to be consistent
with Eqs. (17) and (18), respectively. The corrections calculated for Gd6s D3~2 5~2 and Gd 6s D&~2, & are so small
that the residuals for the corrected and uncorrected cases are the same. Values of H given without a decimal point in
the table were precisely set by using the K39 calibration resonance. Those marked b„- an asterisk were set to within
+1.5 G by a rotating-coil gaussmeter. As discussed in the text, the value of Bv/8H is very nearly zero in the vicinity
of those values of H marked by asterisks.

Configuration
and state

Transition
(E, X—E', M')

Observed res-
onance fre-

quency
(Mm)

Uncor-
rected
(1 Vz)

&obs &care
Corrected

(kVz)

5d6s D3~2

Gd6s Ds(2

4
4
5 3~
5
5 —3~t

4 -3~
6, —3
4 —1

5 -3~

4, —3
4, —3

4
5 4
5 4
4 —3
5 —4

6, —4

4, —2

5, —3

5, —3
6, —4

10
20
40

100
200
200
400

200
200
200
400
400

2. 272(4)
4. 646(4)

13.828(6)
36.282 (5)
78. 523(6)
65. 215(7)

183.660(10)

155.555(13)
146.317(13)
154. 080{13)
372. 878(17)
345. 137(13)

—4
—1

3
3

—5
—1

5

1
—1
11

—11
1

—4
—1

3
3

—5
—1

5

1
—1
11

—11
1

Gd 6s E3(p

5d 6s Espy

5, 4 5, 3
4, 3 4, 2

5, 4 5, 3
4 3~4
5, 4 5, 3
5, 4 5, 3
4, 3 4, 2

5, 4 5, 3
4, 3~4, 2

5, 4 5, 3
4, 3 4, 2

5, 4 5, 3
4, 3 4, 2

3, 2 4, 2

3 1~4 1
3, 0 4, 0
3 —1 4 —1
3 —2 4 —2

-3~4
3 3~4 4
3 2~4
3, 1 4, 1
3 0~4 0
3, —3 4, —3
3, 2 4, 2

3, 1 4, 1

3, 2 4, 1
4 3~5 3
3, 0 4, 1
3, 1 4, 2

6, —3 6, —4
6, —3 6, —4
6, —3 6, —4
6, —3 6, —4

20
20
40
40
80

100
100
200
200
400
400
799.932
799.932

1
1
1
1
1
1
1
6
6
6
6

2397. 5*
1454. 5*
2190.5*
2873. 0*
1054. 0*
1934.0*

20
40

100
200

3.39S(5)
2. 267(5)
6. 804(5)
4. 554(10)

13.675(12)
17. 151(4)
11.590(6)
34. 727(7)
23. S69(7)
71.282 (10)
50. 553 (14)

149.939(20)
112.640{15)

1925.284(11)
1925.393(14)
1925.514{11)
1925.625(8)
1925.744(13)
1925.858(14)
1925.968(14)
1924. 162 (16)
1924. 826 (16)
1925.508(20)
1927.538(13)
1472.637 (20)
1818.375(20)
1751.014(16)
2100. 162 (11)
1850.990(14)
1595.660(13)

12.077(5)
24. 278 (10)
61.777{9)

127. 114(13)

4
1

—1
—5
—5

7
—13
—4

—28
28

—41
107

—42
—48
—52
—44
—46
—41
—40
—42
—39
—54
—51
—61
124
53

—486
j4

300
635

—8
—7

—29

4
4

—3
0

—9
3

—1
—14
—4
—1
—2

17
9
0

3
1
7
7
5

10
—6
—4

—16
3

—3
0

—10
7

7
—5

4
—3
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C onfiguration
and state

Transition
(F, M F', M')

TABLE II (conhnued) .
Observed res-

onance fre-
quency
(MHz)

"ops "ca.lc
Uncor- Corrected
rected
(kHz)

5,
5,
4,
4,
5,
4,
4
4
4,
4,
4
4,
4
4,
5,

6,
5,
4

—2~ 5
2~5

—1~4
—1~4
2~ 5~

—] ~4
—1 3,

P~ 3
1 3,
2~ 3~
1~3

3~ 3
4~3

-2~4
—3~ 5

—3~5
—2~ 4
—1~3~

0 3s

3
3

—2
—2
—3
—2

0
1
2
3
0
1
2

3

—3
—2

0
1

20
40
40

100
200
200

1
1
1
1
1
1
1
1
1
1

532. 5*
662. 5*
622. 5*
420. 5*
231.5*

11.139(10)
22. 517(6)
19.342 (7)
50. 612 (8)

121.407(14)
108. 558(9)

1199.315(12)
1199.487(8)
1199.651(15)
1199,830(20)
1200.262 (20)
1200.427(10)
1200. 602 (10)
1200.768(13)
1503.028(18)
1808.793(12)
978. 915(25)

1746.972 (20)
1396.259(25)
1001.597(16)
1150.437 (15)

—11
—2

2
11
3

12
2
5
0
9

13
10
16
13

—43
0

—14
26

—33
—49
—31

—11
—2

0
4
5

—4
—7

—9
1
4
1
7
4
0

—2
—9

8
3
9
2

5d 6s F&/2 6,

7j
6,
5,
7f

6,
4,
7 g

6,
5,
4
4
5,
6,
7
4
4
4,

Q~
3

3~
2
0~
3
2~

—]~
p~

3
Q~

6,
4,
7.
6,
5,
7

6,
4
7 f

6,
5,
4
3
4,
5,
6,
3
3
3,

3
—1
—4
—3
—2
—4

3
—1
—4
—3
—2
—1
—1
—1
—2
—3

1
3
2

20
20
40
40
40

100
100
100
200
200
200
200

1
1
1
1

469. 5*
138.5*
272. 5*

iv. 3v3(io)
17, 373 (10)
34. 826(8)
34. 910(8)
34. 983 (10)
8v. 8iv(v)
88.325(10)
88. 426(11)

178.128(14)
180.208(16)
182.315(14)
180.915(15)

1847. 831(12)
2312.530{20)
2779. 047 {7)
3247. 744 (6)
1495.801(20)
1788. 522 (22)
1712.095 (16)

—12
—14
—2

0
—6

0
—5

9
—3

0
0
9

18
9

—2

0
—46

8
—14

—11
—16

0
0

—7
5

—4
3
7
2

—6
—2
—5
—1

0
0

—1
9
5

5d 6s 4F9/2 8,
7
6,
5,
8,
7
6,
8,
7 f

6,
8,
7.
6,
5,
4,
5,

3~

Q~
3~

3

]
3~

0~
0~

8,
7
6,
5,
8,
7

6,
8,
7.
6,
8,
7.
6,
5,

5,

—4
—3
—2
—1
—4
—3
—2
—4
—3
—2
—4
—3
—2
—1

0
—1

20
20
20
20
40
40
40

100
100
100
200
200
200
200
200
399.976

21, 012{9)
21.693(13)
22. 694(13)
24. 270(15)
42. 113{15)

43. 505(8)
45. 536(7)

105.930(12)
iog. ss3(12)
114.782 (15)
213.928 (13)
221.810(15)
232. 907 (15)
248. 134(15)
266. 220(15)
sis. 63v(is)

—10
—8

—14
—20
—13
—2
—2

1
—13
—5

7
—39

5
—18
—6
38

—10
—7

—15
—20
—12
—2
—2

3
—13
—5
12

—37
5

—20
—9
36
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Configuration
and state

Transition
(F,I—F', M')

TABLE II (eontinue4 ~

Observed res-
H onance fre-

quency
(t=) ( MHz)

~obs ~calc
Uncorr- Corrected

ected
(m ) {kHz)

5d 6s F5'

4
4
4,
4,
5,
6,
7,
8,
4

4,
4,

6,
6,

6,
4,
6,
4,
6,
4,
6,
4,
6,
5,
4,
6,

4,

5 $

5

6,

4~3
3
1~3
2~3,
0~4

—2 6
—3~ 7

1~3
1 3,
1~3

3

3
2

1
3
0

—1
—2
—3

2
2
2

—1 5, —1
—1 5 —1

—3 6,

—3 6
—1 4
3~6
1~4

—3~6
—3~ 6
2~ 5-1~4

—3 6
3

—4
—2

—2
—4
—2
—4
—2

—3
—2
—4

0
3~ 3~ 2

4 3, 3
—1 4, —2
—2~4
—3 5, —3
3~ 5
0~3

0.897
0.897
0. 950
1
1
1
0, 938
0.896

385. 0~

389.0*
393.0*
233. 5
237. 5*
241.5*
188.5*
547, 5*

10
10
20
20
40
40

100
100
200
200
200
400

2

2

2

1
1
1

783. 0*
268. 0*

1952.485(18)
1952.729 (13)
1951.745 (20)
1949.847(14)
2442. 857(22)
2935.749(10)
3430. 847 (13)
3928. 625(27)
1472. 397(20)
1472. 304(15)
1472.392 (20)
1686.289(16)
1686.203 (20)
1686.262 (15)
2942, 710(30)
2933. 983 (23)

S.257(12)
4.111(10)

10.530(12)
8. 280(15)

21. 160(10)
i6. 80S(6)
53. 668(10)
43. 711(10)

110.025(13)
104. 603 (13)
92. 9VV(13)

230. 942 (17)
1210.262(iS)
1212.443 (20)
1212.765(15)
1523.201(15)
1522. 720(22)
1840. 520(15)
1775.221(9)
1161.215(17)

17
11
4

28
—22

2
—3

2
—13
—39
—44
—8

—17
—30

16
6

8
—1

6

5
3

—18
—6

—18
3

—8
25
10

—30
—4
—5
—5

—20
11
10

8
2

—5
19

—27
1

—2
0

11
—14
—18

14
7

8
—1

6
—3

6
2

—17
—7

—18
3

—11
29

8
—33
—7
—4
—3

—18
9

19

5d 6s F7~2 6,
6,
6,
7
6,
5,
7
6,
5,
6,
4,
5,
6,
4,
4,
7
6,
5,
3
3.
3
4,
4,

3~ 6
3 6,
3 6,
4~7

2~5
4 7,
3~6
2

3 6,

3 6,
] ~4
1~4

3 6,
5

2~ 4
—1~4
—2~4

i~ 5

2
2
2

3
2
1
3
2
1
2

0
1
2

0
0
3
2
1

—2
—2
—1

1
1

10
15
20
30
30
30
35
35
35
50
50
50

100
100
200
200
200
200

1
1
1
1
2

v. 9v3(ip)
11.969(16)
16.015(22)
24. 040(20)
24. 131(15)
24, 212 (18)
28. 103(14)
28. 214(13)
28. 316(14)
40. 572 (16)
40. SV2(16)
40. 804(13)
82. 865(25)
83. 1V2(13)

178.997(20)
168.814(20)
172.987 (20)
177.946{17)
796. 567(12)
797.362 (14)
795. 769(20)
989.488(25)
989.475(20)

1
—16

1
2

6
3

15
7

—6
16

—14
11

1
—6

—13
—6
12

—1

—6
7

—4

0
—16

1
2
5
2

14
7

—6
15

—13
11

0
—4
—4

—16

13
0
4

—6
6

—5
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TABLE II (continued).

Observed res-
onance fre-

quency
{MH )

vow vcl, &c

Uncor-
rected
(kHz)

Cor rected

5d 6s Pi/2

4
4
4

4,
4,
4,
4,
4,

3~
3~
3
3~

—2~

3~

4,
4
4
4
4,
3
3
3
3
3

-4
—4
—4
—4
-4
—4
—2
—3
—3

—3

15
20
50

100
200
400

1702.0
1697.0
1702. 0
1707, 0
1987.0

6. 992 (11)
9.334(10)

23. sva(12)
47. 919(10)
99, 170(10)

212. 917(22)
7616.940(15)
7614.254(15)
7614.238(15)
V6i4. 281(iS)
6508. 968(15)

6
4

13
1

—4
2

430
—214
—212
—196

104

7

14
3

—2
—5
—6
—3
—5

7
10

5d 6s P3/2

5d 6s Ps/2

5d 6s D3/&

5,

5,
4,
5,
4,
5,
4,
4
4,

4,

5,
5,
6,
6,
5,
6,
5,

6,
5,

6,
5

4,

5,
5,
4
5,
4,

5,
5,
4,

3~ 5
—2~4
—3~5,
—2~4.
—3~5
—2~4
—3 5

2~4
1 3,
3~ 3

—] ~3
0 3,

—2 5,
-2~5
—3 6,
—3 6

5
—3 6
—2~5

1~4
—3~6,
—] ~4

3~6

0 3,
P~3
4~5
4~5
3~ 4
4~ 5
3~4
3~4
4~ 5
4~ 5
3~4

—3
—4
—3

—3
-4
—3

1
3
]
0

—3
—3
—4
—4
—3

—3
—2
—4
—3
—2
—4
—3

0
0

3
3
2

3
2
2

3
3
2

30
60

100
100
200
200
400
400

0.925
0. 925
0.925
1.500

10
20
20
40
40

100
100
100
200
200
200
400
400

10
30
30
50
50

100
100
200
200

21, 632(10)
29. 743 (8)
v3. siv(is)
50. 858(13)

151.110(13)
108.226 (10)
318.970(25)
243. 315(17)

3708. 29Q(20)
3709. 167(20)
3vov. 3vo(as)
3vov. 834(aa)

8. 101(12)
16.248(20)
17.618(8)
35.348{13)
32. 6SV(8)
89.212(20)
82. 945(25)
71.546(12)

181.264(20)
170.257(18)
149.010(17)
374. 130(25)
358.263 (25)

3216.52Q(20)
3216.512 (25)

3.938(13)
11.898{12)
8. o34(s)

19.963 (12)
13.602 (5)
28. 2sv(s}
40. 584(14)
83. 892(6)
6o. 83v(s}

—3
4

7
—14

6
14

—4
12

6
-25

4
9
4
6

—2
—4

7
—31
—24

1
11
17

2
3

—1
1
1
3
3

—2
—5

0
0

—1
1

—1
4

—7
2

6
—1
12

6

4
9
7

10
4
7

—4
2

—21
—22
—2

4
16

2
—3

—1
1
1
3
3

—2
—5

0
0

sd 6s 'D&/& 6,
5,
6,
6,
6,
5 f

6,
5,
4

3~
3
3~
3~
3~

—2~

6,
5
6,
6,
6,
5,
6,
5
4,

—4
—3
—4

—3
—4
—3
—2

20
20
40
60

100
100
200
200
200

14.663 (12)
13.510(13)
29.394(V)
44. 203(10)
74. 014(15)
68. 674 {15)

149.859(15)
i4o. ios(iv)
121.802 (18)

2
0

—1
3

—14
11

0
4

—4

2
0

—1
3

—14
11

0
4

—4
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TABLE III. Uncorrected and corrected values of the hfs interaction constant A, B, and C, electron g factor gz, and

X for the levels examined in La'3 . A complete report on the hfs of the M6s D term is given by Ting (Ref. 3) and his
results were not reexamined. Calculations of the effects of hfs interactions between the D3/2 and D&/~ levels indicate
that they should be very small. For the Sd 6s configuration, the loss of precision in going from the uncorrected values
to the corrected ones, which is particularly apparent for the B values, is due to uncertainties in making the corrections
for hfs and Zeeman interactions between states.

Configuration State Quantity Uncorrected value
and experimental

uncertainty

Corrected value
and estimated

total uncertainty

5d6s2

5d 6s

2
D3/2

2
&S/2

F3/2

4Fs/

'F9/2

2
Fs/2

2

Pg/2

4
P3/2

A
B
C

X

A
B
C

gz
X

A
B
C

X

A
B
C

X

A
B
C

X

A
B
C

gs
X

A
B
C

gz
X

A
B
C

X

X

A
B
C

X

0.797 55(3)
2. 2

1.19907(4)
0.9

—480.312(2)
15 082(17)

0.404 05(3)
3 969

300.563(1)
10.873 (25)

—0.008 (3)
1.O29 5O(5)

39

462. 868 (1)
17.925{24)

—0.005(2)
1.237 46(4)

13

489.534(1)
32.180(34)
0.001(4)

1.3328O(3)
32

304.372(2)
28.091(30)

—0.002(3)
0.898 32(5)

14

—197.066(6)
40. 677 (123)

1.134 67 (6)
6.1

2 460. 119(3)
2.651 75(18)

1338

930.0 +0.2
42. 1+2.3

1.704 27 (7)
3.8

0.797 55 (3)
2. 2

1.19907(4)
0.9

—480. 224(8)
14.2+0. 2

0.404 46 (4)
11.4

300.631(8)
14.0 +0.3

0.002{3)
1.029 40(5)

5.9

462. 889(7)
19.3+0.2

—0.002(2)
1.237 42(4)

4.8

489.533(2)
31.9 +0.2

0.003(4)
1.33278(3)

22

304.381(4)
27. 8+0.1

—0.002(3)
O. 898 30(5)

15

—197.068 (7)
41.4+0. 2

1.134 69(6)
6.0

2 46O. 173(7O)
2.652 52(20)

2.7

929.6+0.2
37.2+ 2. 5

1.704 27(7)
1.9
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TABLE III (continued) .
Configuration State

4
+5/2

2D, /,

2
D5/2

Quantity

A
B
C

Eg
X

A
B
C

X

A
B
C

X

Uncorrected value
and experiznental

uncertainty

802. 8 + 0.5
—23.9+8.0

1.505 79(8)
5.2

—424. 7+1.4
—11,3 +3, 6

0.935 97(24)
0.7

881.0 + 5.8
22 +36

1.254 49(24)
1.5

Corrected value
and estimated

total uncertainty

801.9+0.5
—40+8

1.505 58(8)
4.3

—424. 9+2.0
-13+4

0.936 03(30)
0.7

881+6
22+36
~ ~ ~

1.254 49(25)
1.5

(J+ 1)g z —(J —1)gz, = eJ +f, (2)

where e and f are constants to be determined. One
therefore needs the gI values of three members of
a term in order to calculate the two constants e and

f required for prediction of the g's of other mem-
bers.

In lanthanum, the only suitable term is 5d 6s 'F
for which the g~ values are accurately known for
all four J's. If the g~ values of the 'F'7/p 5/p 3/3
states are used to determine e and f, one then pre-
dicts gz ( F~/2)= 1.33166(19), which may be com-
pared with the measured value 1.332 V8(3). The
difference, g~~ gf

' =0.0-0112(19), is, surpris-
ingly, well outside experimental error. Wilson's
eigenvectors show that although the Sd 6s F9/g 7/2
states contain only about 0.01% of states in 5d6s
and 5d', the 'F5/p 3/p states contain about 1k of
5d6s D5/p 3/2 The failure of Eq. (2), which ig-
nores configuration-interaction effects, is thus due
to the fact that the g~ values of D~ and F~ are very
different, and a I/g admixture of 2D into 'F produces
a change in gJ much larger than the experimental
error.

C. Effective Operators for the Hyperfine Interaction

Sandars and Beck' have shown that the hyperfine
interaction of order R' due to an unclosed electron
shell l"may be described by suitable linear com-
binations of tensor operators of the form

T(K), U(O, E) K ~rP(K) . U(1, K-1)K
n n

the electrons. The first quantity in the parentheses
in the exponent of U is the rank of the operator in

spin space, the second the rank in orbital space,
and K' is the total rank. For the magnetic-dipole
hyperfine interaction, for which K=1, the Hamil-
tonian will therefore contain operators proportional
to f K, I f, andT g, [s xQ"']I" for each unclosed
shell. In the lanthanum system (Sd+6s)' each of
these terms will be required for the d electrons,
but only the second wi11 be needed for an unpaired
s electron. Thus the dipole Hamiltonian when eval-
uated within 5d6s or 5d contains three terms, all
associated with the d electrons. When evaluated
in the 5d 6s configuration, however, an additional
contact term of the form I ' s is required for the
6s electron. Although the two contact terms are
equivalent in the LS limit, they are not equivalent
in intermediate coupling because they connect LS
basis states differently.

Dipole hyperfine interactions between the 5d 6s
and 5d6s or 5d configurations can arise only from
the term fg, [sx C' '] 'p, and the strength de-
pends on (5dlr '16s) . Evaluation of this integral
by the use of the radial wave functions derived by
Herman and Skillman" yields almost exactly zero,
so such cross-configuration hfs interactions are
ignored in what follows.

We may therefore write the Hamiltonian for the
magnetic-dipole hyperfine interaction in the form

~(~I)= g [ "I /10 "[ xQ"&]"& " ). I

and 10 ~
++s s N+1'I (3)

T(K), U(1, E+ 1)K
n

where the operator T„' is associated with the nu-
cleus, and the operator U' ~' ~' is associated with

where the last term is used for the 5d 6s config-
uration but not for 5d6s or 5d . For the present
it is not necessary to assume relationships between
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where

l~ b13 U(13)2 g$ b11 ~U(11)2
10 i + 1 i

r2 (0 (2 ) $ (2 )
n n n

(4)

(5)

(III T„' 'ill) =— 2eq . (6)

In these expressions r„ is the nuclear charge radius
and / is 2 for the d electrons here considered.
The quantities b, b', and b" may be regarded as
independent parameters, or they may be related
to the nonrelativistic parameter b„, = e'Q(r -')„, if-
relativistic radial wave functions are known. Even
without the relativistic wave functions, the relation
between these quantities may be approximated by
the use of Casimir factors' according to the ex-
pressions given by Childs and Goodman. ' Taking
the effective charge for the d electrons of lanthanum
as Z,« = Z —12 = 45, it is found in this way that

b =1.060bs~y b' =0. 235bsu y

b" = - 0.040b„.
If these relations are put into Eq. (4), it is reduced
to a one-parameter expression. It is interesting
to note that the relativistic parameter b' is not
small, but is predicted to be about 23%%uf) as large
as the nonrelativistic bs„.

There is no need at this point to assume that
values of the three parameters of Eq. (4) will be
the same in each of the three configurations spanned
by our eigenvectors. Matrix elements of the quad-
rupole Hamiltonian betu~een the configurations con-
sidered may arise only from the U' ' term but,
as in the dipole case, such terms will not be con-
sidered because of the extremely small size of the
radial integral(5dl r )6s).

D. Theoretical Expressions for Hyperfine-In teraction
Constants A and B

The magnetic-dipole hyperfine-interaction con-

the c's in different configurations. Thus, we do
not assume relations of the type a ' (5d6s')
= a0'(5d262), for example, though later it will be de-
sirable to reduce the number of parameters by im-
posing some constraints of this type.

It follows from the considerations above that the
effective operator for the electric-quadru, cole hy-
perfine interaction will contain tensor opersLtors
of the three types:

iS(2) . (02&2 +(2) ~ (11&2 i]i(2& .~U(13&2
ff

'U
y in 'U

y n

for the unfilled d' shell; the 6s electron maki:s no
contribution. The effective Hamiltonian ma:II' then
be written'

2l(l + 1)(2l + 1) '
--&02&2

(21 —1)(2l + 3)

stant A of a state for which the intermediate coup-
ling composition is known may be expressed in
terms of the &)'s of Eq. (3) by using the procedure
given by Chan, Childs, and Goodman. Basically,
one evaluates the matrix elements of the Hamil-
tonian of Eq. (3) between all LS basis states that
occur in the eigenvector, separates out the F-de-
pendent part, and by use of the eigenvector arrives
at the parametrized expression for A. Computer
programs have been written to (i) calculate all the
required matrix elements in the LS scheme and
(ii) to combine them for the given eigenvectors to
form the parametrized expressions for the A' s
of all the states of interest. For example, the A
value of the 5d 6s'Ps&, state may be expressed as

A(5d 62 P3&2)

= 0. 4598a '(5d 6s) +0. 0810a' (5d 6s)

+0. 3276()2(0(5d26s)+0. 1886(), (5d 6s)

+ 0. 0156a (5d6s ) —0. 0022&) (5d 6s )

+0. 0039a0 (5d6s )+0.0042a '(5d )

—0. 0007a (5d ) + 0. 0003(72 (5d ), (8)

= —0. 3420b (5d 6s) + 0. 0983b "(5d 6s)

—0. 0220b' (5d 6s)+ 0. 0111b (5d62 )

+ 0. 0026b "(5d6s ) —0. 0007b "(5d6s )

+ 0. 0020b (5d ) + 0. 0000b "(5d )

+0. 0002b' (5d } . (9)

An expression for the required matrix elements of
Eq. (4) has been published. '2

E. Off-Diagonal Corrections to Calculated Transition
Frequencies

As pointed out in Sec. IV, the Hamiltonian of
Eq. (I) is not completely consistent with all of the
observed resonance frequencies, and in some cases,
particularly at large 0, the discrepancies amount
to many times the probable error and lead to large
values of X . Eigenvalues calculated from Eq. (I)
must be corrected for hyperfine and Zeeman in-
teractions with nearby atomic states. Even at zero
field where the Zeeman interaction plays no role,
it is well known that hfs interactions with other
states can distort the ~I' = + 1 intervals and yield
incorrect values for the hfs constants A, 8, and

where the prime is used to distinguish the real state
of the atom from an LS basis state.

The procedure for the electric-quadrupole hyper-
fine-interaction constants 8 is entirely analogous,
and one finds in the same way for the same state

8(5d 6s P3i2)
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C even though the fit to the data is good and X

small.
Several procedures have been used '~ for making

such corrections within an LS multiplet. In the
present case, however, there are two complica-
tions: (a) There are a number of nearby states
of different terms and the perturbing states cannot
be assumed to be of the same o.LS as the state being
perturbed; (b) the departure of some of the states
from the LS limit is so severe that it seemed nec-
essary to take account of the individual eigenvec-
tors and to make the corrections in intermediate
coupling. By generalizing Eq. (17) of Ref. 21 it
can be shown that the amount 6E by which the en-
ergy of the magnetic substate FM of the state 4'

is shifted by nearby states 4'' is given very closely
by

5E(4, I 6:M )

I ()I(, I5M I X,„„+3C, I )I(, IF M ) I

F E(4') —E(4' )

where the $ indicates the particular mixture of
F's required to represent the level at the field H
and X „„and R, , are the hyperf inc and the Zeeman
Hamiltonians, respectively. The intermediate-
coupling eigenvectors of the states 4 and 4 may
both be represented as linear combinations of the
LS basis states. Equation (10) treats the switching
on of hyperfine and Zeeman interactions between
the state 4 and other states 4 as a perturbation;
it does not treat the magnetic field or the departure
from the LS limit as perturbations, however, and
these can therefore be large. In addition to the ex-
plicit summations over perturbing states 4' and
possible values of F in such states, three co-
herent sums are required to take account of the
intermediate-coupling eigenvector compositions of
4' and 4, and of the proper mixture of F's intro-
duced into 4 by the field H. It is important to note
that the hfs and Zeeman interactions enter coher-
ently since they may connect the same states, and
in fact the energy shifts in b,F = 0 transitions at
large H are frequently nearly linear in H due to the
hfs- Zeeman interference term.

A computer program has been written to evaluate
the shifts of Eq. (10). Calculation of the perturba-
tion of one resonance frequency at one value of H
requires about 1 min of IBM-360-75 computing
time if there are about ten perturbing states 4'

and if each state has about three components in its
eigenvector.

The expressions for the matrix elements of the

magnetic-dipole hyperfine Hamiltonian (3) are given
in Eq. (3) of Ref. 20. Since the last two terms in

the electric-quadrupole hyperfine Hamiltonian (4)
are relativistic in origin and normally much small-
er than the first term, they are neglected in the
computer program. The expression for the matrix
elements of K(E2) (in which 5 ~ = b„, in the nonrel-
ativistic limit) is given by Eq. (A15} of Ref. 21.
Matrix elements of the Zeeman interaction can be
obtained from Eq. (A16} of Ref. 21.

In order to carry out the computer evaluation of
shifts of Eq. (10), numerical values must be given
for the a's and for 5 of Eqs. (3) and (4}. The
procedure for obtaining the appropriate values are
discussed in Secs. VH and VL. The final values
will be summarized in Table VIII.

Table IV illustrates the results of a typical cal-
culation of this type. The perturbation of the
(3, 1 —4, 2) transition frequency in the 5d'6s'F, q2

state is calculated both at H = 0 and at H = 1934 G,
where (sv/sff) =0. Perturbations due to states of
5d6s or 5d' are neglected because of the extremely
small size of (5dl r-'l 6s) . All states of Sd26s

were considered explicitly in the computer calcula-
tion except S «2 for which the calculated excita-
tion energy is more than 18000 cm-' (and which
has never been observed}. It is seen that four
states perturb the transition frequency by at least
1 kHz, but that only the ~F~&z perturbation is highly
field dependent. For some transitions, it was
found that as many as six different states produced
perturbations of 1 kHz or more.

For the residuals given in the last column of
Table II all the calculated resonance frequencies
were corrected for perturbations in this way. It
is important to notice not only that the residuals
and y' values drop to reasonable values after cor-
rection, but also that the best-fit values of the hfs
constants A, 8, C, and g~ change. The last col-
umn of Table III gives the corrected values of A,
B, C, and g~ which result from the least-squares
fits when the calculated frequencies are corrected
for the shifts by use of Eq. (10). In some cases the
changes are seen to be substantial.

In evaluating frequency shifts by Eq. (10) it was
immediately evident that because a,' is much larger
for the 5d 6s configuration in La than are any of
the other a's or 5's, all shifts are dominated by
the contact part of the dipole interaction, and that
quadrupole and orbital dipole contributions, while
not negligible, are not important for a qualitative
picture. The dipole matrix element for M =+ 1
between quartet states 'L of d,' may be written

(5d ( f.},6s; L -v FM ~R„„(M1)
~

5d'('t. ), 6s; 'L„,-r FM &
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where

10 01 12 20
30 (u+ I)(Z+ I}(W+3)

7 tr. ~ z ')(I ~ z- l'1(! ~ J- c}(-', + I—z)).

~
'

L I 2: (d2 3f iiy(12) ig2 3f )
J J+1 1

(12)

where the fact that I =~ has been used for La'".
The last term of Eq. (12) is very small compared
to the first three, and the dipole matrix element
within either I' or P terms is very nearly pro-
portional to 0, where

O' —= Q' +2n —30 '-e .

Shifts from the ~I' =0 transition frequencies pre-
dicted for F or P states from Eq. (1) are due

mainly to other members of the same quartet and

at fields up to about 1000 G are nearly proportional
to both H and e (i. e. , they arise mostly from the
hfs-Zeeman interference term}. Thus, an in-

crease in a,' will result in only a very small change
in the calculated frequency shift if a,' is reduced
so as to keep 8 unchanged. (The change would be

zero if the eigenvector contained no doublet corn-
ponent. )

Transition frequencies in quartet states may also
be perturbed by doublet states by amounts that
depend on the interaction I.—1., which is propor-
tional not to 6 but to 4, where

10 10
as —« ~ (14)

F. Alternative Classification of Properties of States

The last column of Table III summarizes the
corrected values of the hyperfine-interaction con-
stants, gJ values, and y values achieved in the
fit to the observed resonance frequencies. The
uncertainties given for these corrected values are
in some cases, particularly for the 8 values, much
larger than the uncertainty derived from frequency
measurements (which is given in the column of un-
corrected values}. The increased uncertainty re-
flects the uncertainties in the a's and b's used in
calculating the frequency corrections of Eq. (10).
While it is convenient (and conventional) to reduce

Thus at low field for &I = + 1 intervals in 'F or 'P
states, the shifts due to quartet-quartet interac-
tions are proportional to e' and those due to quar-
tet-doublet interactions are proportional to C

' .
Although qualitative considerations of this type were
extremely valuable in interpreting the data, they
were not a part of the quantitative analysis. For
the latter, the computer calculated the shifts di-
rectly from Eq. (10), using the proper form of the
matrix elements.

TABLE IV. Example of the calculated perturbation of
a resonance frequency by hfs and Zeeman interactions
with nearby levels. The case considered is the transi-
tion (3, 1 4, 2) in the 5d 6s +&i2 state. The calculation
was carried out by computer in intermediate coupling
(by use of the Wilson eigenvectors) and took account of
all neighboring levels. Only those shown caused per-
turbations of 1 kHz or more. All calculated resonance
frequencies were corrected for such shifts before the
residuals listed in the last column of Table II were ob-
tained by comparison with the observed frequencies.

Perturbing state
(5d'6s)

Calculated frequency shift
At H=O G At H =1934G

(MHz) (MHz)

'+5&2
2
+512

2
D5&2

4
P5/2

Total shift

+0.492
+ 0.071
+0.001
+0.003

+0.567

+1.128
+0.067
+0.001
+0.003

+1.199

an ensemble of precisely measured resonance fre-
quencies to a much smaller number of hfs constants
and a g~ value in this way, it is disappointing to
lose so much precision in the process.

It is possible to give an alternative reduction of
the data which does not lead to such a loss of pre-
cision; one gives the zero-field hyperfine intervals
and the gJ value instead of the hfs constants and the
g., value. Table V lists these results. For all but
two of the intervals Av listed, the observation was
made at 0 ~ 4 G and then corrected back to zero
field for the table. This field correction is not
subject to any of the off-diagonal corrections of
Eq. (10), and can be done without loss of precision
by the computer program. The results therefore
do not depend on uncertainties in the values of A,
B,C; the a' s, b's, or gf; nor on the size of )('.

Two of the AF = + 1 intervals listed were measured
at strong field, but the interval can still be cor-
rected to zero field with little loss of precision.
The F = 4—5 interval in 5d 6s F, i~ was observed
with the (4, 3—5, 3) transition at 2873 G. If the
corrections of Eq. (10) are applied to all the cal-
culated frequencies of the state with each of sev-
eral sets of values of the a's and b's, and a least-
squares fit to the data is made for each set, dif-
ferent values of A, B, y (and gz) are obtained for
each set. If one uses these numbers, together
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TABLE V. List of zero-field hyperfine intervals bv.
Except for the two intervals denoted by asterisks, all
the intervals shown were measured at H ~ 4 G and then
corrected to zero field straightforwardly. Although the
other two measurements were made at high field, the
deduction of the quoted zero-field interval is thought to
be free from error caused by perturbation by other
states.

State
of 5d26s

4
F3/2

4
F3/2
Fs/2

4
F5/2

4
&s/2

4
FY/2

4F /
4
F9/2

4
F9/2
Fs/2

4
Fs/2

4
/2

2
F~/2

2
F5/2

2
Fs/2

2

2Fy/2
4

&3/2
4
+s/2

5~4+
4~ 3

5~4
4~ 3
7~6
6~5
5~4
4~ 3
8~7
7~6
6~5
5~4
4~3
6~5
5~4
4~3
5~4
4~3
4~ 3+
4~ 3
4~ 3

4v
(MHz)

2390.631(11)
1925.510(11)
1808.938(12)
1503.210(18)
1199.787 (15)
3247. 744(6)
2779.047(7)
2312.531(20)
1847.837(12)
3928.536 (27)
3430.754(13)
2935.669(10)
2442. 885 (22)
1952.018(20)
1840.665(15)
1522.871(15)
1211.072(15)
989.482 (20)
796.567(12)

9840. 632(15)
3707.836(22)
3216.524(20)

with the corresponding values of the a's and 5's,
to predict the zero-field interval in question, he
finds that the corrected value predicted for the
F = 4—5 zero-field interval is the same to within
1 kHz regardless of the a's and b's used. The
situation is similar for the 5d 6s P, /, state, for
which the F = 4—3 interval was measured at 1702
and 1987 6 by using several different transitions.
The predicted value of the zero-field F =4—3 in-
terval again turns out to be nearly independent of
the values of the a's and b's used.

Only hfs intervals actually measured can be given
to high precision in this way. Prediction of others
depends ultimately on the values of the a's and b's
used in the prediction. Table V lists the zero-
field intervals in the 5d36s configuration for which
accurate values can be given. The intervals mea-
sured in the 5d6s configuration are given by Ting.

G. Signs of A Values

Before describing the fit of the theoretical ex-
pressions for the A or B values to the observed
values, several comments concerning the signs of
the measured quantities should be made. The
Hamiltonian of Eq. (1) has the property that it is
insensitive to the absolute sign of A except for data

taken at large enough H (H ~ 1000 G) that the term
in g, p. ~H becomes large compared with experi-
mental uncertainty. Thus, with the exception of
the 'F, /»/, and 'P&/& states for which very high-
field observations were made, the data reported
are not capable of determining the signs of the A

values. [Even for these states. the calculated fre-
quencies at large 0 depend —through the corrections
of Eq. (10) —on the values of the a's and 5's used.
Thus, although it would appear that the sign of A was
actually measured for each of these states, the
possibility that a new set of a's and b's could be
found which could account for the observed reso-
nance frequencies for the other sign of A has not
been systematically examined. ] It is therefore not
claimed that the signs of the A values have been
measured. The sign of 8jA was measured for
each state, however, and the sign of B therefore
follows from any assumed sign of A.

The procedure used to assign signs to the mea-
suredA values is as follows. For states of 5d 6s,
one takes the LS-limit expressions for the A val-
ues in terms of the three parameters a =a, a~,01 12 10

and a,', and selects "reasonable" values for these
parameters. (Values for a ' and a, may be de-
duced from the spin-orbit parameter &I, g&, and
certain term-value differences in 5d ns )If the.

A values are then calculated from these LS-limit
expressions (using the parameter values from the
upper right section of Table VII, for example), it
is found that none of the predicted values lie near
zero, and that the magnitudes are all within 130
MHz of the observed ones except for D3/&. For
this state, the magnitude of the large negative
calculated value is even larger than that observed.
Because of the close agreement between the mag-
nitudes of the calculated and observed A values,
the calculated algebraic signs are adopted for the
5d 6s states.

For the 5d6s D, /»/2 states, the procedure
just outlined fails because of the importance of
s-electron admixture (in this case, there are con-
tributions both from core polarization and from
configuration interaction with 5d 6s). It can be
shown, however, that contributions of this sort
are about equal and opposite for the two states,
and that the sum of the two values of A should be
very close to the LS-limit prediction based on the
parameter values of Table VII again. On this
basis, one can unambiguously assign positive
signs to the A values of these two states.

H. Least-Squares Fits to Corrected Values of
A and B

It has been shown (Sec. V D) how parametrized
theoretical expressions are developed for the A
and B values for each of the observed states, and
(in Sec. V E) how the experimental A and B values
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are corrected by Eq. (10) for hyperfine and Zee-
man interactions with neighboring levels. The
procedure followed is iterative and proceeds as
follows. The observed A and B values are fitted
with the expressions of the form of Eqs. (8) and

(9), and rough values of the a's and b's are thereby
obtained. These are then used in Eq. (10) to cal-
culate the corrections to the calculated resonance
frequencies, from which corrected values of A and
B are determined. The latter are then refitted to
obtain better values for the a's and b's, and so
forth. The procedure is very tedious, so it is for-
tunate that two such iterations were sufficient.

Let us consider the fits of the expressions for
the A and B values to the observed values. %e
assume that all corrections for the effects of Eq.
(10) have been made and that the values of A and

B being fitted are the corrected values. For the
quadrupole interaction, accurate values have been
determined not only for the two B's of the 5d6s

D3/ 2 5 / 2 states but also for the six 8 's of the
4
F9/2 7/2 5/2 3/2 and F7/2 5/2 states of 5d 6s. Two2 2

types of fits are possible: One may let the param-
eters b, b", and b" vary independently, or one
may assume the interrelationships between them
given by Eq. ('I). Consider the first type of fit
first. Since no 8's were measured in the 5d con-
figuration, it was felt that all parameters relating
to it must be held fixed. Because the amount of
5d present in the measured B's is very small, the
parameter values assumed for 5d' are not critical.
It was assumed for this purpose that b (Sd') = 100
MHz (i.e. , about the same as for 5d~6s and Sd6s ),
and that b"(5d') = —4 MHz and b "(5d') =25 MHz as
predicted by Eq. (7). Since only two B's were
known for 5d6s (only the D, &z ~~& states exist),

7

only two free parameters could reasonably be re-
tained for this configuration, and the smallest
coefficient b" (5d6s') was held to be -4 MHz as
for 5d . Variation of the five remaining b's (b

b, b' for 5d 6s and b, b' for Sd6s ) could not
fit the eight accurately known 8's to better than
124 in the worst case. This failure will be dis-
cussed in Sec. VK.

However, variation of the five parameters to fit
the six I3's of 5d 6s 'F and 5d6s 'D produced an
excellent fit (to within 1.I/o, which is about the un-
certainty of the corrected B's). It is interesting to
note that for this fit the best-fit values found for
the b's of 5d 6s agree remarkably well with the ra-
tios of Eq. (7), which were calculated from the
relativistic theory' and the Casimir factors. . Thus
it was found that

b (5d 6s) = 108 MHz, b (5d 6s) = 22 MHz,

b' (5d 6s) = —3 MHz

and that

TABLE VI. Comparison of the observed 8 values
{corrected for perturbations as discussed in the text)
with the two-parameter relativistic theoretical expres-
sions calculated from the Wilson eigenvectors. The
parameters were adjusted to fit the B's of the first six
states, and the remainder then calculated from them.
The values predicted for the 5d 6s E7/2 &/2 states are
not, consistent with the observed values. The problem
is discussed in the text.

Vlectron
con figu ra tion

')dGs
Jd(i s
5d Gs

Gd Gs
~d2Gs

Gd Gs

a5d Gs

Gd Gs

Gd Gs
i)d Gs

Sd Gs
~d'Gs
3d Gs

State

2 D;/2
2D, /,
1

F3/2
IFI /P
1F;,/2
1F3/g
2
F)/2

2

P-)/2

P3/2
tPi /2
D;/,

2"D3/2

Observed 8
(Xl l l z)

54. 2 (Hef. 3)
44. 8 (lief. 3)

31.9+0.2

19.3 +0. 2

14.0 +0.3
14.2 +0. 2

41.4 +0.2

27. 8 +0. 1
—40+ 8
37.2+ 2. 5

0
22+ 30

—13+4

Calculated 8
(ii Hz)

Ji) ~ 0
44. 1

31.8
19.4
13.8
14.3
34. 1

22. 6
—37

35
0

—1G
—19

Dobs 13calc

('/l)

—1,5
1, 3
0.3

—0.7
1.3

—0.9
18
19
8~20
0+7

b (5d6s )=124 MHz, b (5d6s )=40 MHz . (15)

The large size of b (5d6s ) is not considered
meaningful since (i) the value used for b (5d6s )
may not be the best value and (ii) two states are
not really enough for the determination. If the ra-
tios of Eq. (7) are forced and if b (5d') is held at
100 MHz, one may make a two-parameter relativ-
istic fit (which takes account of all three types of
tensor operators for each of the three configura-
tions). The six B's of 5d 6s 'F and 5d6s' D may
be fitted to 1.57' in this way. The values found for
the parameters are b (5d 6s) = 109 MHz and b

(M6s~) = 126 MHz. As before, it is not possible
to fit the 'F and F B values together. Table VI
gives the values calculated with these parameter
values and compares them with experiment. It is
seen that they are all within the experimental un-
certainty except for the F states. Discussion of
this discrepancy is deferred to Sec. VK.

For the magnetic -dipole hyperfine-interaction
constants A, one may follow the same fitting pro-
cedure as for the quadrupole case. For the fit to
the six A values of 5d6s D and 5d 6s 'F, the num-
ber of free parameters must again be limited.
Since no A's are to be fitted in 5d' (none have been
measured), we cannot allow the 5d parameters to
vary. From the known values of KM (5d ) and gz,
we hold

a (5d ) =a' (5d') = 140 MHz .
The results are not sensitive to the core-polariza-
tion parameter a "(5d') and we set it equal to zero.
Since only two states exist for Sd6s, we can use
only two free parameters for this configuration;
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TABLE VII. Comparison of the observed A values
(corrected for perturbations as discussed in the text) with

the five-parameter theoretical expressions calculated
from the Wilson eigenvectors. Two fits are given; only
the first 6 states were considered in the first fit, while
all 13 were included in the second. The largest discrepan-
cy, that for F7/2, is discussed in the text.

Electron State Observed A
config-
uration

W' -~~~ (%)
-par am- 5-param-
ter fit to eter fit to
first 6 all 13
states states(MHz)

5d6s2
5d6s
5d26s
5d 6s
5d26s
5d26s
Gd26s

Gd26s

5d 6s
5d26s

Gd 6s
5d 6s
Gd 6s

2D
2
Ds/2

4Fg/2
4F
4F
4
F3/2

2F
2Fg/2
4
P5/2

4
P3/2

4
Pi/2
D

2D

182(Ref. 3)
141(Ref. 3)
490
463
301

(-)480
(-)197

304
802
930

2460
881

(-)425

0
0
0

—1
0
0

—16
—4

4

5
8
7

8

10

we choose a '(5d6s') =a's(5d6s') and a"(5d6s ).
For 5d~6s, we again require ao (5d 6s) = a (5d 6s).
We are then left with five parameters (a"=a' and
a' for 5d6s; a =a', a~, and a,' for 5d 6s; and
no free parameters for 5d') to fit the six measured
A's of 5d6s D and 5d 6s F. The six A's are fitted
to within 0. 6% in the worst case; the results are
shown in the next to the last column of Table VII.
The parameter values obtained are given in the
middle column at the top of Table VIII. These val-
ues were then used to predict the A values of the
remaining states of interest in Sd 6s, and the dif-
ferences of these predictions from the experimental
results are also given in percent in Table VII.

Unlike the quadrupole case, A values have been
accurately measured for 13 states, and one may
attempt to fit all of them by varying the five param-
eters. The results of this fit are given in the right-
hand columns of Tables VII and VIII (upper half).

for some of the parameters discussed.
It is clear that the gz p, s H term of Eq. (1) be-

comes arbitrarily large as H increases, and the
magnetic-dipole moment of the nucleus may be
measured from this effect. If the value of g~ is
unknown, it may in principle be deduced by careful
comparison between high-field observations and

the transition frequencies predicted by Eq. (1).
It must be noted, however, that at large field the
hyperfine and Zeeman interactions with other
atomic states may shift the transition frequency
by amounts comparable to g, p, s H. In other words,
the contribution of Eq. (10) to the transition fre-
quency may be comparable in magnitude to the

gz ps H term of Eq. (1). Thus, if the dipole mo-
ment is to be measured by high-field observations,
one must have either an isolated atomic state or a
very good knowledge of the a's and 5's of Eqs. (3)

Parameter values (MHz)
Fit to 5d 6s F Fit to all

and 5d6s D only states

Wilson

LS Limit

a0'(Gd26s)

a ~2 (5d26s)

a,"(Gd'6s)
a,"(Gd'6s)
b M (5d26s)

e'

a (5d6s )0~ 2

a"(Gd6s')

a (5d6s )

bs&(5d6s )

a0i (5d26s

132

—381
4378

103

3220

4759

128

—174
118

130

137+30

—297+ 150
4356 +200

99+11

3351—100
4653 +300

128+ 12

—170 + 140
125 ~8

135

TABLE VIII. Parameter values found from several
fits of theoretical expressions to the data. Values in the
top half of the table are for the Wilson eigenvectors; those
in the bottom half result from similar fits in the LS limit.
The first column of parameter values is for the case in
which no terms of Gd 6s other than F are considered,
and the last is for equal weighting of all states for which
experimental uncertainty is not too large. The values
are discussed in the text.

Eigenvectors Parameter
used

j. Determination of Parameter Values by High-Field
Observations Within a Single State

The mechanics of making least-squares fits of
the parametrized theoretical expressions for the
hfs constants A and I3 to the measured values have
been described in Sec. VH. The quality and in-
terpretation of the fits and the parameter values
obtained will be discussed in Secs. V K and V L,
respectively. It is desirable, however, to con-
sider first the extent to which the high-field ob-
servations of Table II can yield independent values

aq (5d'6s)
a,"(Gd'6s)
b5 g(5d 6s)

e'
yl

) a"(5dss') 1

) a'2(5dss2}
)

a "(Gd6s')
b M (Gd6s 2)

105+4
3111

141

426
96 +4

—181
3883

3116
4064

141

426
96
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and (4) and of the eigenvectors and relative exci-
tation energies of the nearby states. The present
case of La' is of interest in this situation because
the value of p, , is precisely known from NMR studies
and thus the procedures can be checked. Knowledge
of p., makes it possible to reduce the uncertainties
on the values of the a' s, particularly of the linear
combination O'. If p. & were not known, its value
could be deduced from the present experiment,
but uncertainties in the a's and b's would have to
be represented in the uncertainty quoted for p,
Figure 5 shows the hyperfine diagram (to scale}
for the 5d 6s Pp/g state at 7231 cm ' as a function
of H. In the approximation that the state is com-
pletely isolated from neighbors [i.e. , that cor-
rections of the type treated by Eq. (10) vanish],
it can be shown from Eq. (1) that

~b ~a vrI B (16)

at all H. A convenient field for measuring v, —v,
is 1?02 G, for which it can be shown that

~a
eH eII

It is known' that p., =+ 2. 778(I) p„, I =~, and hence
at 1702 G, the difference v, —v, should be 2. 058(1)
MHz. The observed separation of the two frequen-
cies is, from Table II, 2. 702(20) MHz, about 31/g

more than the value calculated for an isolated J
=

& state. The difference arises from perturba-
tions of the type treated by Eq. (10). Calculations
show that the per'turbations produce a contribution

to v, —v, which, since it is due primarily to the

Pf / p P3 / p inter action, depends on B', and is
nearly proportional to B' even at 1700 G. When
detailed calculations of the shifts caused by all
states of 5d 6s are applied to the frequencies cal-
culated from Eq. (1), they lead to the residuals
given in the last column of Table II, and to the val-
ues of A, g~, and y given in the "corrected" col-
umn of Table III. The value determined for B' in
this way is

8'( Pg g z) = 3250 + 100 MHz, (17)

which may be compared with the value 3351',00

MHz given in Table VIII as determined from a fit
to the A's of all the states observed. The differ-
ence between these numbers is just on the edge of
being significant as indicated by the quoted uncer-
tainties. Another way of seeing this is to note that
if the parameter values of Table VIII are used for
the corrections and p, , is treated as a free param-
eter, one finds that p., = 2. 75 a 0.02 p, „, which is
just on the edge of being consistent with the NMR
result given above.

The situation is not so simple to analyze analyt-
ically for the F, /~ state at 2668 cm ', but it pre-
sents no problem for the computer programs. If
the parameter values of Table VIII are used for the
corrections and if p. ~ is again treated as a free
parameter, it is found that p, ,=+2.69+0.02 p.„,
a value not consistent with the NMR value. Con-
versely, if the NMR value is forced, it enables us
to determine e' more accurately and one obtains

e'('F„,}= 3130+175 MHz, (IS)

20 ~ i s

5 10z
LLI

1;Fe4

0
dv &9841 MHz

-IO

-20 I I I I I I I

0 I 2 3 4 5 6 7
H (kG)

M =-—I
2

which is about 710 smaller than the "average" val-
ue given at the upper right in Table VIII. It is dif-
ficult to determine a, (5d 6s) and a~ (5d 6s) sep-
arately (or, equivalently, to determine the values
of both 6' and C

' in either the 'P«~ or F, /~ states
because the two parameters have different effects
only to the extent that the states depart from the
I S limit as discussed above). According to the
Wilson eigenvectors, the 'Pj/2 state is 98.910 pure,
and the 'F, /~ state is 98. 5/o pure.

The only other state for which sufficient high-
field data could be obtained was the F,/& state at
3010 cm '. When the parameter values of Table
VIII were used to make the required frequency cor-
rections, the result obtained was p.&=+2.88+0. 17
p, „. Since this is consistent with the NMR result,
it is concluded that ('eF,

&
}=23350 MHz. No at-

tempt was made to assign an uncertainty.

K. Comparison of Observed and Calculated Values of
hfs Constants A and 8

FIG. 5. Scale-drawing of the Zeeman effect of the hfs
of the 5d 6s P&/2 level of La' at 7231 cm '. The
transitions a, b, and c were observed at the field values
indicated.

The eigenvector of any atomic state should be
consistent with all the observed properties of the
state. The consistency of the Wilson eigenvectors
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with the optically measured term energies and the

present g~ values is generally good, and is dis-
cussed by Wilson.

Our procedure for obtaining theoretical values
of the hyperfine-interaction constants A and 8 for
comparison with the observed values has been dis-
cussed in Sec. VD. Briefly, for each observed
quantity (either A or B), the expectation value of
the appropriate operator is calculated for the
eigenvector of each state in terms of the relevant
radial integrals. These radial quantities are then

treated as adjustable parameters in making least-
squares fits to the observed quantities. Tables
VI and VII contain the results of such fits for the
quadrupole and dipole hfs constants, respectively.

For the 5d6s D ground term only two param-
eters directly relating to Sd6s are allowed to vary
to fit the two A values, and the good fit of Table
VII is therefore expected. Because the large ad-
mixture of 5d 6s found in these states by Wilson
was explicitly taken into account, the values found

for the parameters should be phyyically meaning-
ful. For the fit to the 8 values, a good fit is ob-
tained even though only one parameter directly
relating to Sd6s is allowed to vary.

For the F term of 5d 6s, good fits to both the
A and 8 values are obtained for all four states.
The fourth column of Tab]e VI lists the calculated
8 values for all 13 states, even though only the
first six were used for the fit. The experimental
uncertainties on the 8's for the p and D terms
(of 5d 6s) are too large to allow a meaningful com-
parison with the calculated values. For the F
term, however, the calculated 8 values are about
20/0 smaller than the observed. Although some of
the discrepancy might be due to error in the eigen-
vectors, the difference is the same for both states
and, in addition, appears rather large to be due
entirely to this cause. Wilson and Fred have
recently shown both empirically and by Hartree-
Fock calculations that for some atoms, certain
radial integrals (such as f,„, or (r~)„,) appear to
vary with excitation energy. The measured 8 val-
ues of the 'F term might be understood if (r~),~

were larger for F than for F.
The fourth column of Table VII gives the results

of fitting the A values of the first six states and
then calculating the remainder with the parameter
values held fixed. The only state for which the
calculated value differs markedly from the ob-
served is F7&&. The reason for the discrepancy
is not clear. In contrast to the quadrupole case,
any possible variation of (r- )M with excitation en-
ergy is of only minor importance in understanding
the dipole effects because of the overriding impor-
tance of the contact hfs due to the 6s electron in
5d 6s. The result that the difference A' ' -A'
is much smaller for F5&2 than for F»z may pos-

slbly be associated with the fact that while the con-
tribution to A due to the 6s electron is 120% of the
total for F~~z, it is only 34/p for F&~~. The final
column of Table VII gives the results of fitting the
A values of all 13 states simultaneously, again
with five parameters. The parameter values ob-
tained in the two fits are slightly different, and are
given in the upper section of Table VIII.

L. Discussion of the Parameter Values Found

Table VIII summarizes the values found for the
different parameters from least-squares fits to
the hyperfine observations. In the upper half of
the table, the theoretical expressions which were
fitted to the data were for the Wilson eigenvectors
which span the three configurations (5d+6s) in
intermediate coupling. Separate fits (both dipole
and quadrupole) are given for (i) the six states
5d6s D and 5d 6s 'F and (ii) all states for which
A and 8 values are known. The details of the fits
have been given in Sec. VH. Comparison of the
table with Eq. (18) shows that the value of 8' found

for the 'F»~ state alone is in better agreement
with the 9' found by fitting the A's of the F states
than with that found by fitting all the A' s. The
amount of core polarization (most of a~ is prob-
ably due to polarization of the core by the 5d elec-
trons) appears larger for 'F than for the average
of all the states. Eight values of the difference
tA'b' -A'"'I are less than -', $, and are rounded
off to 0/0 in Table VII. Perfect fits are unlikely
since, in each case, the number of adjustable
parameters is less than the number of A values
being fitted.

It is interesting to compare the parameter val-
ues obtained from fitting procedures using the
Wilson eigenvectors with those that are found if
LS-limit eigenvectors are used instead for all
states. The parameter values obtained by fitting
LS-limit expressions to the data are summarized
in the bottom section of the table. The single-
configuration LS limit is an extremely poor rep-
resentation of the states; for example, if b

(5d 6s) is evaluated from LS-limit expressions
for the B values, the predicted value of B('P»z)
is large and positive, while the observed value is
large and negative. Note that in the LS-limit fit
to the A's of 5d 6s F, it is impossible to distinguish
between the two contact terms characterized by
a,' and a~; only the value of 6' can be given.
[This can be seen from Eq. (12) by noting that the
coefficients of a,' and a~ are independent of J.
This is no longer true if, as occurs in the real
eigenvectors, doublet states are mixed in differ-
ently for different 4's. ] Perhaps the most inter-
esting difference between the top and bottom parts
of Table VIII is the value found for a'o (5d6s2); in
the LS limit it is +426 MHz, while for Wilson's
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M. Electric-Quadrupole Moment of the La" Nuclear
Ground State

The value of the nonrelativistic parameter b„, for
any electron configuration is directly proportional
to the electric-quadrupole moment Q of the nuclear
ground state. The relationship is just

&.i = e'O'Cr ').~,
where Q' is the electric-quadrupole moment un-
corrected for Sternheimer shielding. It is pro-
portional to Q. Two methods are commonly used
for evaluating the quantity (r )„,. The first meth-
od is to note that nonrelativistically at least, the
dipole and quadrupole hyperfine interactions both
involve (r ')„„and thus one may use the dipole
interaction, together with the NMR value for p, l,
to measure the value of (r ')„, needed to obtain
Q'. Thus,

s
&

= 2(kr/I) p. e p„(r ) &
~ (20)

In analogy to Eq. (7), it can be shown by the analy-
sis of Sandars and Beck'6 (with the use of the ap-
propriate Casimir factors) that for the 5d electrons
of La

a = 1.031aM . (21)

Thus, we have

eigenvectors it becomes —1VO MHz. The change
is due to his taking explicit account of the strong
configuration interaction with 5cP6s and 5d'. The
—1VO MHz not due to configuration interaction with-
in (5d+6s) is probably due to core polarization.

A relativistic fit to the B factors of 5d6s in the
LS limit predicts B's which differ from experiment
by more than 4$ for both states; this figure is re-
duced to 1.510 by Wilson's eigenvectors. The one-
parameter relativistic fit to the four B's of 5d Gs
'F is improved even more (to within experimental
error) in going from the LS limit to the Wilson
eigenvectors.

The value 4 356 s 200 MHz found for a,o (5d~6s j
is in good agreement with the value 4544 MHz
calculated from the energies of the states 5d ns

F3/~ for n = 6, V. The values found for a ' may
be compared with those calculated by the expres-
sion of Trees ' from the values of (M found by
Wilson. ' For the configurations 5d6s' and 5d 6s,
one thus finds

ao~(5d6s ) = 133 MHz and a (5d 6s) = 115 MHz .
The first value is in good agreement with Table
VIII, while the second is 13% low. This differ-
ence might be caused by forcing a ' to be the same
as a for 5d26s. The ratio bM(5d6s )/bM(5d 6s) is
expected to be 1.16 from the ratio of the &'s, and
is in fact 1.15.

qz OB'I N ~ ~ ~0 322 Sd b (22)e I a M &s~

Before this expression is applied to the values of
bM and aM listed in Table VIII, it would perhaps
be wise to take note of its limitations and weak-
nesses. First of all, it assumes that the dipole
and quadrupole hyperfine interactions have pre-
cisely the same radial dependence —i.e. , both
vary as r '. Although this is exactly true in the
nonrelativistic limit, it is well known that the rel-
ativistic radial integrals for the two interactions
in the 5d6s D states are not exactly the same.
For the 5d Gs configuration, three different radial
integrals are required to describe the quadrupole
hfs interaction in the Sandars-Beck scheme, and
Eq. (7) shows that one of the two introduced by
relativity is 20/p as large as the nonrelativistic
one. Although attempts have been made to take
account of these effects by using Casimir factors
to estimate the relativistic integrals, such factors
are known to be imprecise.

Another problem in deducing (r ')„, from the
magnetic-dipole hfs constant A is that all sources
of the hfs contributing to A must be understood, and
in particular, the contact part must be properly
excluded. Consider the term 5d6s D, for exam-
ple. If all of the dipole hfs were due to the 5d
electron, we should have, relativistically, A(~D, &,)/
&('D, &2) = 2. 39; the experimental value is 0.77.
It has been assumed in the past that this discrep-
ancy is all due to contact interaction of the I S
type (core polarization). This assumption leads
of necessity to the use of iwo parameters (aM and
one additional parameter for core polarization) to
fit the two measured values of A. Although a per-
fect fit results, it does not follow that the value of
a~ (and hence (r )M) obtained is realistic. It has
been pointed out in Sec. V L that Wilson's eigen-
vectors, which should be much more realistic, re-
sult in a value for the core-polarization constant
which is not even of the same sign as the large val-
ue deduced without taking explicit account of con-
figuration interaction within (5d+6s) . The use of
Wilson's eigenvectors also result in a 9'4 decrease
in the value found for a" (5d6s') and consequently
of (r-')M.

From this discussion it should be clear that at-
tempts to evaluate (r 3)M from the magnetic-dipole
hyperfine interaction are subject to considerably
more uncertainty than is at first apparent, and val-
ues of Q which depend on this process are there-
fore subject to this uncertainty. With the limita-
tions of Eq. (21) in mind, however, let us apply
it to the values of bM and aM of Table VIII. For
the situation in which one fits the hfs constants of
5d 6z F and 5d6s D si, multaneously with the Wilson
eigenvectors, one obtains
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Q'(Sd 6s F)= 0. 26 b,
9 '(546s D) = 0. 30 b .

(23)

Q'(Sd 6s ~F) = 0. 28 b,

Q '(Sd6s D) = 0.28 b
(24)

for the Wilson eigenvectors. This result is rnid-

way between those obtained in Eq. (23), where
(r )Sf is obtained from the dipole hfs interaction.
The applicability of this procedure for evaluating
(r ')I depends on the degree to which the wave
function is hydrogenic, but it is, at least, an in-
dependent method.

On the basis of these two experimental methods
of estimating (r ')I then, one obtains for Q' the
result

Q '(La'"}= 0. 28 ~ 0. 03 b. (25)

This result may be compared with the values de-
duced from theoretical calculations of (r-') M.
Recent Hartree-Fock calculations give (r /ao )M
= 2. 32 a.u. for 5d6s D, and 1.94 a.u. ' for
5d 6s 4F; and from these one obtains

Q'(La'")=0. 21 b, (26)

which is about 25% smaller than the estimates (25}
in which (r-~)~ was estimated from the magnetic-
dipole hfs and from the spin-orbit constant fM.

If ones uses the fit to all states instead, one obtains

Q '(5d 6s) = 0.23 b and Q'(Sd6s"D) = 0. 31 b. Ting, '
working in the single-configuration LS limit but

allowing for core polarization, obtains

Q'(Sd6s D) = 0. 230 a 0.010 b,
which is somewhat smaller than the value above.
Less precise measurements of quadrupole hfs
were made by Luhrs' and by Murakawa by detailed
analysis of the hfs of optical transitions.

The value of Q' may also be obtained from other
determinations of (r s}M such as, for example, ex-
traction from the measured value of the spin-orbit
parameter 4M or from Hartree-Fock calculations.
If one uses Tree's expression ' relating g~ to
(r 3)M, one obtains from Wilson's values of t'M

the result

(r '/a '0} M1. 80 a.u.

for 5d6s and 1.56 a.u. for 5d 6s. For the fit to
the B values of 5d6s ~D and 5d 6s 4F, these num-

bers both lead to the same result, namely,

The sources of error in the "experimental" value

of (r }Iused in (25) have been discussed; uncer-
tainties in the Hartree-Fock results and thus in

Eq. (26) may be comparable. Although the source
of the difference is not really understood, Hartree-
Fock estimates of (r ')„, are usually somewhat
larger than estimates based on parameter fitting
of energy levels.

Sternheimer has recently shown that the radial
shielding correction is opposite to and larger than
the previously calculated angular correction. The
best value ' is R = —0. 3, so that the (antishielding)
correction factor is 1/(1-R) =0. 769, i.e. ,

Q = 0.769'' .
From Eq. (25), then, we have

q(La"9) = 0.22+0. 03 b .

(27}

(28)

This result is in good agreement with Ref. 2.
Ting has shown that for La, which lacks one

proton of having a complete 5g&&3 shell, the as-
sumption that (r„) is half-way between that for a
surface charge and a uniform charge distribution
leads to the prediction Q= 0.27 b. This is in rea-
sonable agreement with the experimental result.

VI. CONCLUSIONS

The excitation energies, electron g factors, and

particularly the hyperf inc-inter action constants
A and 8 of the atomic levels below 9000 cm ' in
La' have been considered together and compared
with predictions of a set of eigenvectors which spans
the three principal competing configurations. As

might be expected, it is not yet possible to fit all
observables to within experimental error, but the
self-consistency found is encouraging. The effec-
tive-operator interpretation of the hyperfine-inter-
action effects leads to evaluation of a number of
characteristic parameters, and an improved value
for the electric-quadrupole moment Q of the La'
nuclear ground state is found.
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Hartree-Fock calculations have been made for the configurations 3d 4s of Sc I and 5d 6s,
5d6s, and 5d of LaI. Attention is drawn to the variation of atomic quantities which influence
hyperfine structures owing to the LS-term dependence of the radial wave functions. Theoretical
calculations of the level structure of (5d+6s) of La I are also presented.

I. INTRODUCTION

The traditional Hamiltonian for the magnetic-di-
pole hyperfine interaction in a configuration of the

type l"s is of the form'

H«, = a, Z (l, —~10 (sC' '),"')+a,s

where

2)"B) sl I (+ )lII

a, = 16wp, sp„pz
~

Q(0)~ /SI,

p, & is the Bohr magneton, LLI.„the nuclear magneton,
and pr the nuclear magnetic-dipole moment in nu-
clear magnetons.

Matrix elements of this Hamiltonian are usually
expressed in terms of products of reduced matrix
elements and certain angular coefficients. The re-
duced matrix elements depend on the radial parts of

the wave function and are often treated as adjustable
parameters to be determined by fitting experimental
hyperfine structure (hfs) data to the theoretical ex-
pressions. It is to be noted that a, and a, here are
usually supposed constants for all the states of a given
electron configuration. This implies that the multi-
plet structure be ignored completely insofar as the
radial functions are considered as being defined in
terms of the occupation numbers of the various or-
bitals together with a single energy criterion.

Contributions to the hfs from the nuclear electric-
quadrupole interaction serve to complicate further
the interpretation of hfs splittings. Parametric
treatments of this follow lines similar to those used
for magnetic-dipole interaction in the use of a sin-
gle parameter 5, = e'Q ( r '), in the traditional ap-
proach. Again, it is to be noted that b, is usually
supposed a constant for all states of a given electron
configuration.

In recent years a variation of this approach has
been used with some success in attempts to accom-


