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The imaginary terms in Eq. (7) represent a
frequency shift which does not reverse with polar-
ization. They are proportional to (1 —cosh) and
represent spin coordinates which effectively left
the first hydrogen atom to ride with the tritium
atom until second collision, after which they con-
tribute to the hydrogen resonance. These terms
depend on the frequency difference between the

off-diagonal element for the second hydrogen atom,
in the limit of small hydrogen polarization (diag-
onal elements approximately equal):

isotopes and amount to averaging the frequencies
of several transitions in the sample. '"' ' '

Much more complicated situations can arise,
especially when lines in neighboring atoms are not
completely resolved. In such a case, accidental
coincidences between multiple quantum transitions
can also contribute to the spin-exchange shifts.
The case of Rb and H isotopes provide a variety of
such coincidences. Additional shifts also occur in
the case of double resonance.

In conclusion, the predictions of a single-col-
lision model do not include many experimentally
realized conditions. One must expect to find fre-
quency shifts which do not reverse with polarization
and shift-to-broadening ratios which are not con-
stant.
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We reanalyze in greater generality the recently predicted phenomena associated with the
liquid-solid phase transition.

Recently, ' the density response of a fluid has
been investigated with particular emphasis on those
fluctuations which may be considered as precursors
to freezing. Neglecting the instabilities against
nucleation and growth of small crystallites, a
definite stability limit has been found at which the
supercooled liquid as a whole becomes intrinsically
unstable with respect to a density fluctuation of
wave number Qp Qp is the position of the first
maximum in the structure factor S(Q) and corre-
sponds to the lattice vector of the solid into which
the liquid freezes.

It is the purpose of this note to show that the

stability limit of the liquid and the associated phe-
nomena may be derived in greater generality, and
therefore, that the predictions of Ref. 1 are more
general than the approximations suggest.

In doing so we write the free energy I of the
fluid in a static applied potential V„(r) in the form

F[n] = fV„(r)n(r)d r+F, [n]

+-,'f fV(~r-r'~) (nr)n(r') d rd r'+F, [n].
(1)

F, [n] is the free energy of noninteracting particles
with density n(r) at pressure p and temperature
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+ nJF,' '(~r ——r ~, [n]) an(r) sn(r )d rdar
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Using Eqs. (1)-(S}, F[n] maV be rewritten in the
form

F[n]=F[n]+ Z —([V„(Q)n*(Q) +c.c. ] n '
0&o 2

+[F,' '(Q, [n])+ (1/n ) V(Q)

Recalling th at3

+ F', '(Q, [n]) ]n(Q)n*(Q) j. (6)

NF, (n) = —V[nkeTln(l/n)+nf(T)],

we find

F&3&(q [ ]}
1 d'NF, (n,' keT

g2 (8)

Now we use the fact that F[n] assumes its minimum
for the correct density. Hence, we have

aF[n] aF[n]
an*(Q) a (Q)

»F[n]
an*(Q) an(Q)

(io)

Performing these differentiations in Eq. (6) and
substituting Eq. (8) we obtain

n(Q) /n = g (Q, [n] )V„(Q),
wher e

—g(q, [n]) = I/[k, T+ V„,(q, [n]}],
V,«(q, [n]) -=V(q)+n'F,"'(q, [n]),

(i2)

(»)
(14)—I/x(Q, [n]) &o.

T. By definition F, [n] is the correlation contribu-
tion to the free energy, and the third term repre-
sents the Hartree interaction. It has been shown
that F[n] assumes its minimum value for the cor-
rect density n(r) ~ In order to apply this minimum

principle, we write the applied potential in the form

V.,(r) = Z-[V., (Q} e"'+c.c. ]. (2)
ItP

The density of the system will then contain a linear
response and may be written as

n(r) =n+an(r) =n+ —g [n(Q) e' '"+c.c.]; (3)
2 Qgp

n is the mean density and n(Q) denotes the density
fluctuations. Furthermore, we expand F,[n] and

F,[n] in a functional Taylor series:

F, [n] =F, [n]

y(q) =y(q, &u = 0) is the static density response func-
tion. The cond tion (14) ensures that the free en-

ergy is minimal, or in other words, that the sys-
tem is in an quilibrium state either absolutely
stable or me tastable. Obviously, unstable states
of the system are those for which

- I/y(q, [n]) & 0. (is}
Therefore,

—I/x(q, [ ]}=o
determines the stability limit of the fluid

(Qz, Pc, Tc)
In the special case of Q~ = 0, the stability condi-

tion goes over into the familiar result

(16)

1 1 8P
g(0, [ ]), an

Here ~ ~ is the isothermal compressibility, and P
the pressure. In deriving Eq. (17}we used the
compressibility sum rule. It is now evident that
the end point of an isotherm (point b in Fig. 1) in

the p-n diagram is determined by the stability lim-
it [Eq. (16}],with either Q, =0 or Q, co.

Our next concern is to relate the density response
function and the stability limit to specific properties
of the system. To this end we recall the following
form of the fluctuation-dissipation theorem for
classical systems4:

—y(q, [n]) =(1/k T}S(q).

The structure factor S(q) is the Fourier transform
of the static pair correlation function g(r},

S(Q) —i=n Jd re'u'[g(r) —1] . (IO)

Combining Eqs. (12), (16}, and (18), the stability
condition now becomes

—I/y(Q, [n]) =keT/S(q) =keT+ V,«(Q, [n]) =0.
(2o)

The same result has been derived in Ref. 1,
using a generalized random-phase approximation.
The weak point of this approach is the neglect of
damping mechanisms other than Landau damping.
The present derivation is based on a generalized
minimum principle for the free energy. Two-body
forces are assumed, and higher than bilinear terms
in the functional Taylor expansion are neglected.
This neglect is equivalent to the assumption that
the response is linear. Hence, we come to the
conclusion that the stability condition holds more
generally than the original approximations of Ref.
1 suggest.

The stability condition, which determines the
stability limit (n~, QL, T~, Q„P~ }, implies that the
mean density fluctuation S(q) with the particular
wave number Q & increases as this limit is approached.
The experimental structure factor data, taken in
the stable region of the liquid phase, show that
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solid into which the liquid freezes. In fact, as one
expects, the Q value at which the instability occurs
influences the nature of the state on the other side
of the stability limit, or in other words, corre-
sponds to the wave vector of the permanent density
fluctuations in the solid.

Near the stability limit only the region Q= Q~
is important. Thus, using Eq. (20} and setting

(1/ksT) V~,(Q) = —1+A(T —Tt, ) + B(Q —Qn),
(21)

we may write for n = const

FIG. 1. Schematic graph of an isotherm of the liquid-
solid phases. a, c are the coexistence points determined
by p$$q„$g p$fQ ~ b denotes the endpoint of the liquid-
phase isotherm determined by the stability condition
(Eq. (&6)1. Along (a, b} the liquid is metastable.

S(Q) is dominated by a large peak at a value Qs. "
Furthermore, it is known that S(Q()) increases
under applied pressure and decreasing tempera-
ture. These facts permit two important conclu-
sions. First, the large mean density fluctuations
associated with the stability lirr. it of the liquid phase
are already present in the stable region. Second,
the instability occurs at a value QL = Qo, which
corresponds to the reciprocal lattice vector of the

1 1/$
A(T- T ) 1/( +(Q —Q )'

where
g' = B/A(T T, ).- (23)

We observe that S(Q) increases at Q values Q = Qt
and that the width of the peak becomes smaller as
we approach the stability limit. A precursor of
this critical behavior has been observed in liquid
lead. ' Clearly, this effect would be more dramatic
in an experiment performed on the metastable
(supercooled) liquid.

Finally, we consider the dynamic aspects asso-
ciated with the stability limit. Following Kadanoff
and Martin we recall that the dynamic form factor
S(Q, to) can always be written in the form

S(Q, o)) = Q A(Q, (o
kBT

1

mS Q) 7T QP — (24)

where

k T 1/A(Q, O)

vm r'(Q)+(o' ' (26)

),r ) v.„((),[ ]))
'

(q8)
mA(Q, O) k,T

Using Eqs. (21) and (26) for conditions close to the
stability limit we obtain

r'(ql=( ('
o)

[w(r —&, )+a(q —0,)'))
(27}

A(Q, (o) is an unknown function, which may be in-
terpreted as having frequency-dependent and wave-
number-dependent transport coefficients. This
suggests that the details of the dynamics are hidden
in the unknown function A(Q, (o). However, one ex-
pects that A(Q, (o) is a smooth function of Q and ru. '

Our thermodynamic approach revealed that the
dynamic instability occurs at (o = 0. En the small-
&y region we may rewrite S(Q, (o) [Eq. (24)] in the
form

From experiments' taken in the stable region it is
known that A(Q~s, 0) is a smooth function of temper-
ature. Hence, in agreement with Refs. j. and 8 we
come to the conclusion that the quasielastic peak
becomes narrow as the stability limit is approached.
However, the present derivation arrives at this
conclusion from appreciably more general assump-
tions. We only assume that A(Q„O} is a smooth
function of temperature, in agreement with ex-
periment. '

The phenomenon of linewidth narrowing of the
quasielastic peak at Q, is known as the deGennes
narrowing, and has been observed by neutron
scattering. ' Equations (26) and (27) imply that
the deGennes narrowing at Qo and its pressure and
temperature ' dependence are caused by critical
fluctuations associated with the stability limit of
the liquid phase. Obviously, as mentioned in the
context of the static critical fluctuations [Eq. (23)],
the narrowing would be far more drastic in an ex-
periment performed on the metastable (supercooled)
liquid.

Finally, we remark that a quantum-mechanical
version of the method outlined in this note should
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shed additional light onto the phenomena associated
with the 'He and the 4He liquid-solid transition.
We hope to revert to this problem in subsequent
work.

We are indebted to Dr. E. O. Schulz-DuBois for
a critical reading of the manuscript and acknowl-
edge fruitful discussions with Professor C. P. Enz,
Professor H. Thomas, and Dr. E. Stoll.
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Far-infrared radiation generated from the difference frequency between two temperature-
tuned ruby lasers operated on the R& and R2 transitions has been observed. This radiation is
continuously tunable over the frequency range 20—38 cm . Lithium niobate was used as a
mixing crystal. The expected frequencies of the far-infrared radiation were measured using
a Fabry-Perot interferometer. The phase-matching conditions were also verified.

In a previous paper, we described the generation
of tunable far-infrared radiation over the frequency
range 1.5—8. 1 cm ' by beating two temperature-
tuned ruby laser beams in a nonlinear crystal. '
By operating one laser on the R, transition and the
other on the R~ transition, we have now obtained
tunable radiation in the range 20-38 cm '. In or-
der to produce laser action on the Ra transition,
we used essentially a Lyot-Ohman" filter in the
laser cavity to discriminate against the R, transi-
tion. ' The power output of the R~ laser was about
& MW, compared with the 1-MW output of the R,
laser. Lithium niobate was used for the nonlinear
crystal. The additional experimental apparatus
and the measurement technique were essentially
the same as described earlier.

If both lasers are operated at room temperature,
the difference-frequency radiation generated should
be at 29 cm '. In order to phase-match this dif-
ference-frequency generation process, a 1.5-mm
slice of LiNbO, was cut with the c axis tilted ap-
proximately 18 away from the normal to the sur-
face. The frequency of the far-infrared output
was measured using a Fabry-Perot interferometer
with electroformed metal mesh mirrors. The

measured transmission curve" of the Fabry-Perot
interferometer is compared in Fig. 1(a) with a
theoretical curve calculated for a frequency of
28. 8 cm '. Since the interferometer has a finesse
of about 4, the spectral purity of the far-infrared
radiation could not be measured. In Fig. 1(b) the
Fabry-Perot transmission is shown for radiation
generated with the R, laser at room temperature
and the R, laser at —23 C. The calculated trans-
mission for 35. 8 cm ', the frequency expected
from the known temperature dependence of the R2
transition, is also shown. The same LiNb03 crys-
tal was used, but it was oriented for phase matching
at 35. 8 cm '.

The phase-matching curve for production of the
difference frequency at 29 cm ' is shown in Fig. 2.
The absorption coefficient for LiNbO~ at 29 cm ' is
18 cm '. ' Normalized theoretical curves obtained
by solving Maxwell's equations in the plane-wave
approximation, with and without absorption, '"
are shown for comparison. The effect of absorp-
tion changes the width at half-maximum very little,
but shows a definite difference at the wings of the
curves. The shapes of the curves would not be
changed appreciably by including diffraction and


