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ly, we obtain tabulated results for g' ' '(r) and

g""(r). Based on these results and Eq. (7), Eq.
(6) (with the KSA incorporated) can now be solved
for a new u' ' '(r), which is then compared with the
u' ' '(r) of Eq. (8). Table I lists the two sets of

values for (dldr)[u' ' '(r)] F. igure 1 is a plot of the
same. It is clear that in the important region, 2. 8
&r & 4. 5 A, the difference does not exceed a few
percent.

By the "important region" we mean where the
contribution to the binding energy or the chemical
potential e, of the He atom is dominant. Equation
(27) of Ref. 2 lists three sources of contribution.
u' ' '(r} enters through two of them, one of which is
six times larger than the other and is the only one
suitable for making direct comparison. It appears
as

Eg on account of the large cancellation between e,"'
and e& '. We note that in earlier work on pure He,
the uncertainty in the energy due to the KSA is also
of the order of 1 'K. This is discouraging but not
unexpected. However, we must emphasize that
other quantities calculated by our theory, such as
structure functions and the effective mass, do not
result from such strong cancellations. They are
reliable.

It is well known that the KSA violates the sequen-
tial relations connecting three- particle distribution
functions to two-particle distribution functions. We
have a means here of measuring the degree of this
violation. Integrating Eqs. (5) and (6) over the co-
ordinates of particles 1 and N, we find that the se-
quential relations if obeyed give rise to an equality

A simple numerical integration yields 34. 8 K for
Eq. (8) and 35. 6 'K for Eq. (6). While a difference
of 0. 8 K is merely 2% of e&", it is almost 3(Pp of

x u' —"(r) 'r dr . (10)

Using u' ' ' (r) of Eq. (6) on the right-hand side, we

find the equality satisfied to within 10%.
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Bender's theoryof frequency shifts in spin exchange is applied to two illustrations of coherence
transfer. The effects of coherence transfer include changes in the shift-to-broadening ratioand
a frequency shift which does not reverse with polarization.

The theory of frequency shifts by spin-exchange
collisions' has been significant for understanding
precise experiments in hydrogen masers' and
optical pumping, 4 as well as for measurement of
spin-exchange cross sections. This theory is
commonly applied as if the survival of coherence
from one collision to the next (sometimes called
"coherence transfer") could be ignored. However
multiple collisions are not unlikely when single
collisions are significant (the Poisson distribution
is not sharply peaked). Unexplained shifts in our

own measurements on pressure shifts of the hydro-
gen hyperfine splitting have forced us to look into
some coherence transfer effects and we feel they
deserve wider attention. ' In this paper we will
consider some effects of a second collision within
the relevant phase relaxation time T2 (e.g. , col-
lision rates 1/T, & I/2Tz). We shall refer to the
density matrix elements calculated by Bender. '

First consider two hydrogen atoms in the presence
of the rf field resonant at the (E = 1, mr = 0) —(F =- 0,
mF = 0) ground-state hyperfine transition frequency
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ofo. After the first collision the density matrix
has changed as shown in Bender's Table III, where
all initial off-diagonal elements are set equal to
zero except the one connecting the two m =0 sub-
levels (and its conjugate element). This particular
transition is a simple case because no new off-
diagonal elements are created in the collision.
Section 3 of Bender's paper shows that (in the low-
density limit) the real part of the fractional change
in this element is proportional to the linewidth of
the transition caused by spin exchange. The imag-
inary part gives the observed shift in the resonance
frequency and their ratio is simply related to the

atomic wave functions.
Extending this calculation beyond such an "in-

stantaneous" collision at time t' we allow the new

off-diagonal element to advance in phase by &oo(t
—t') until at t = i" another atom (No. 3) collides
with atom No. 1 which we have been following.
Taking atom No. 3 as having the density matrix of

the ensemble from which the first atoms were
picked, we apply Bender's unitary transformation
to the direct product matrix and then trace over
coordinates of one atom at a time to get the results
of the second collision:

(pf~„s)42 = p482{1- f (1 —cosh) —+~(1 —coen) —+~(sin n )(pss —p44)

—i[-,'(sin&) —33(sinn )(1 —cos&)](pss —p44)J,

(p ~f, 1)42--psfs(1 —8(l —coen)+ 33(1 —cosh, )'- i[-8'(sin&)-+(sin&)(1 —cos&)](pss —p44)) .

The total effect of the second collision is just the average of these:

(p„)42= psfs(1 ——', (1 —cosh)++(1 —cosh)2 —+(sin &)(pss —p44) —i[8'(sinn) ——8'(sink)(1 —cosh)](pss —pt4)) .
(3)

After the second collision, the imaginary part
of the fractional change is proportional to the pop-
ulation difference (pss- p,', ) as before, but two new

features appear: First, the ratio of the imaginary
to real parts is no longer the same as in the single-
collision model, so that interpreting the observed
ratio in terms of atomic structure becomes com-
plicated if spin-exchange processes dominate.
Second, the presence of the positive term in the
real part suggests that line narrowing could occur
through spin-exchange under certain circumstances
(such narrowing would be analogous to the optical
narrowing by the process of "coherent diffusion" ).
These results are implicitly contained in Bender's
Eq. (&5).

Finally, consider a Zeeman transition in hydro-
gen atoms in a weak magnetic field (e. g. , - 0. 5 G)
under the influence of spin-exchange collision with
atomic tritium. Because of the larger nuclear
moment in tritium, the four Zeeman transitions in
the two isotopes are all resolved. Then the initial
hydrogen matrix has nonzero off-diagonal elements
with frequency (do connecting, for example, the
states (F = 1, fff T = + 1) and (F = 1, fff T = 0). Let the
tritium be completely unpolarized. Again using
Bender's transformation matrices, the tritium
matrix at the end of the first collision is (ignoring
terms which do not survive later time averages)

(PT)33 8 + 8(1 cos )(P33 P11)

(P'T)44= 8,
( PT)sf = 8 (1 —cos&)( psf)

(PT)32= 8(1 —cos&)(psf) .

(4c)

(4d)

(4e)

(4f)

x[1 —i(ofs foo)T.]/-[1+ (ofs —~o)'T,'],
g T= 8 (1 —COSA)(psf)

&&[1 —i(~s -~o)&. ]/[1+ (~3 -~o)sr,s] . (6b)

Again, the tritium atom advances in phase be-
tween collisions, until at time t", the last two
elements have become

[P'T(t" )]sf 8 (1 —cos&)( Ps, ) e " 2 "o'"
(Sa.)

[PT(i' )132 8(1-cos~)(pss)e ZT t

(5b)
where &3 and &, are the frequencies associated with

( i/T)sf and (pT)ssp respectively.
Since the collisions are uncorrelated in time, we

may weight these elements by the probability of a
collision (1/T, )e 8~ 8 di and average over the time
between collisions:

e, = —,'(1 —cos~)( p,',)

(PT),1= 8
——,'(1 —cosh)(Pss —Pff) ~

(PT)11 4 t

(4a)

(4b)

The second collision for this tritium atom in-
volves a second hydrogen atom with the same den-
sity matrix as the first. Using Bender's unitary
transformation a second time, we find the final
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( p„)2, = pz& ——,
' (1 —cos&) [-,' pz, —2' Ref er}——,

' Re(gr}j

+ —,
' i(1 —cos&)[ '

Im—(er}+-,' Im(gr}] . (7)

The imaginary terms in Eq. (7) represent a
frequency shift which does not reverse with polar-
ization. They are proportional to (1 —cosh) and
represent spin coordinates which effectively left
the first hydrogen atom to ride with the tritium
atom until second collision, after which they con-
tribute to the hydrogen resonance. These terms
depend on the frequency difference between the

off-diagonal element for the second hydrogen atom,
in the limit of small hydrogen polarization (diag-
onal elements approximately equal):

isotopes and amount to averaging the frequencies
of several transitions in the sample. '"' ' '

Much more complicated situations can arise,
especially when lines in neighboring atoms are not
completely resolved. In such a case, accidental
coincidences between multiple quantum transitions
can also contribute to the spin-exchange shifts.
The case of Rb and H isotopes provide a variety of
such coincidences. Additional shifts also occur in
the case of double resonance.

In conclusion, the predictions of a single-col-
lision model do not include many experimentally
realized conditions. One must expect to find fre-
quency shifts which do not reverse with polarization
and shift-to-broadening ratios which are not con-
stant.
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We reanalyze in greater generality the recently predicted phenomena associated with the
liquid-solid phase transition.

Recently, ' the density response of a fluid has
been investigated with particular emphasis on those
fluctuations which may be considered as precursors
to freezing. Neglecting the instabilities against
nucleation and growth of small crystallites, a
definite stability limit has been found at which the
supercooled liquid as a whole becomes intrinsically
unstable with respect to a density fluctuation of
wave number Qp Qp is the position of the first
maximum in the structure factor S(Q) and corre-
sponds to the lattice vector of the solid into which
the liquid freezes.

It is the purpose of this note to show that the

stability limit of the liquid and the associated phe-
nomena may be derived in greater generality, and
therefore, that the predictions of Ref. 1 are more
general than the approximations suggest.

In doing so we write the free energy I of the
fluid in a static applied potential V„(r) in the form

F[n] = fV„(r)n(r)d r+F, [n]

+-,'f fV(~r-r'~) (nr)n(r') d rd r'+F, [n].
(1)

F, [n] is the free energy of noninteracting particles
with density n(r) at pressure p and temperature


