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We continue the considerations of the first paper in this series by studying the time depen-
denceof the spin-correlation functions in response to a step-function change in the external
magnetic field. We find that these correlation functions exhibit nonergodic behavior.

I. INTRODUCTION

In a previous paper' we studied~ time-dependent
properties of the z-direction magnetization of the
one-dimensional XY model. In particular, we
considered an XY model in thermal equilibrium
at temperature T in the presence of an external
magnetic field H, . At time t =0 the field is
changed to some other value Hz, and M, (f ) was
computed. The most interesting aspect of M, (f)
is that if H2 = 0, then

limM, (t)a0 as f-~ .
However, for all values of T, M, is zero when the
model is in thermal equilibrium. Therefore we
concluded that (at least when Hz =0) the magnetiza-
tion of this model does not exhibit ergodic behavior.
This property was first discovered by Mazur using
results obtained by Niemeijer, and further elabo-
rated by Katsura, Horiguchi, and Suzuki. '

In this paper we continue the exploration of the

nonergodic features of this system by examining
the spin-correlation functions. After formulating
the problem in Sec. II, we study, in Sec. III, the
long-time behavior of p„(R, f, T). We find that for
any value of Hz,

limp„(R, t, T, ) & p„(R, 0, Tz) as t —~

for any T~. In other words the t-~ limit of p„ is
not a correlation function of the XY model in ther-
mal equilibrium. Furthermore, in Sec. IV, we
study the limit

and find that the long-range order exhibited by
p„„at t = 0 totally disappears.

II ~ FORMULATION

Let c;, c~ be the Fermi operators defined by
(2. 3) of I. Define the operators

f~f ct+cj
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tB,=e, -g
The expectation value

(2. 2) (2. 3)

is defined by (2.4) of II, and we find (2.15) of 11 to be

G = —— d@ cos
1"' tanh[-. PA(a)) 2

R A(a) A'(b) ([y sin p+ (cosp —a) (cosP —b)] (cosP —b)

—(a- b)y sin 4/ cos[2A(b)t] j+—
~ dp sinpR sin/

A Azb
2 2

f' tanh [-,
'
tiA(a)]

7r AaA b
0

{[y sin Q+ (cosP —a)(cosQ —b)]+ (a —b)(cosP —b) cos[2A(b)t ]), (2. 4)

with

A(a) = [y sin p+ (a —cosp) ]" (2. 5)

In an analogous way we define

(A; A;, „)= ( B;B;, }2=Ss,
and by the method of II we find

(2. 5)

its infinite-time limit it is necessary to study the
behavior of S„and G„ for large t.

The limit p„(~, R, T) can be obtained by the use
of the Riemann-Lebesgue formula. , and we find

S„=yp —2 sin] ~ R (//2a2)
. (2'

N '
I, N

lim p„(t, R, T) =m2(~) —Gs(~)G R (~) as t-~,
(3. I)

+2 sin ~ R Re 2ppj t ~ 2. 7

where GR (~) is given by
t.r

G. (-)=-—1
2m

,„tanh[-,'PA(a) ]
A(a)

Using p2, (t) given by (5. 5) of I and passing to the
thermodynamic limit, we obtain

y (a —b) . . sin[2 tA(b) ]d@ sing sinPR
( ) ( )

~ (2. 8}

In the equilibrium case S~ vanishes identically,
and the Pfaffians p„„, p» become Toeplitz de-
terminants. However, this is not the case for
finite t. For instance, by Wick's theorem we
can express p„(R, t, T) as

p,2(R, T, t) = (A/B/ A, ,„B/,s)

= ( ~/B/} (A /, 2 /. 2 }—Gs G-/2

—SRS-R ~ (2 ~ 9}

But because (A, B/) is the z-direction magnetiza-
tion m, (t}, studied in I, we obtain

Pg, (Ri T~ t) = m, (0 —Gs (t)G R(t) —Ss(t)S „(t) .

(3. 2)
[ y sin P + (cosP —a)(cosP —b)]

[b —cos@ —t y sing)

2.nd m, (~) by (5. 11) of I as

1
t

tanh[2pA(a}] (b —cosy)
22, ~ A(a) A'(b)

x[y sin &p + (cosQ —b)) . (3. 3)
By inspection it can be shown that p„does not

approach its equilibrium limit (II, Sec. 3) even if
one defines new "equilibrium temperature" T,( )a
by the requirement that m, (~) be the equilibrium
magnetization for this temperature.

The approach of the ground-state correlation
p„(t, R, 0) can be studied by setting J3 =~ in (2. 10).
As was the case for the asymptotic behavior of
m, (t), we obtain a division into regions, dependent
on whether 1-y —b is greater, smaller, or equal
to zero. Explicitly, by a similar method to I,
Appendix B, we obtain

(2. 10}
G/2 = G2 ( ) +A2+ BR as t- (3.4)

III. ASYMPTOTIC STUDY OF pz z

In order to study the approach of p„(t, R, T) to
where A~ and B~ are given below for large t and
fixed R. We also find

1 b2 1/2
'

b2 1/2 2-
/is= —(a —b)y'(to. )

"' cos 2ty 1 —
2 +— I(-,) 1 — 22 y' 1—

'll 1 —y 4- 1 y L 1 y

+b2 1- 2 y2 1- 2
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2 -1 2 2 1/2

2 cos R arctan
&

—11-y b

As-(I/v)(g —b) y ~Z'( —,)(mt) E4(0) cos[2t l
b —ll+-,'w] coswR

for b &1-y,

for b=1-y2,

(3.5a)

(3.5b)

Az- —(a —b) y (2t) '
l z I'(—,') E,(lb —ll) cos(2tlb —1

l
—4v)

1
r I, I b —(I -y')I

1/2
+(- I)" z I"(-,) E,(lb+ ll) cos (2t lb+ 1l+-v) for b& 1-y

b+ 1-y (3.5c}

Note that A„has very similar asymptotic behavior to m, (t) given by (5. 13)—(5. 15) of I. The constants a,
m, F., are defined in I, Appendix B. The results of BR are given as

"
(2t) "' I'(l) —

I
I - b

I Ei(l b - I
I }I

- (- »' lb+Ill 2 I Ei(lb+ 11 }cos(2tlb+ Il+-'v)I b+ I I

&I b+1 —y I)
for b& 1 —y, (3.6a)

B = [y'( - b)Rlv]-'I'(!) (mt) "'E,(0).os( R) cos(2tl b ll + —'v-} for b= 1 —ya, (3.6b}

-ua3 2 2 1/2 1/2

Bs = z (tn} I (-,')cos (R —1)arctan 1-y —1 1—
v(I -y' b 1—

( bx (1-y
2 t'-1 ( b2 1/2

2 cos 2ytl 1 —
2

+-'
1 —y 1-y for b& 1 —y . (3.6c)

We see that B„has similar properties to AR for t large. By the same method, we find S„tohave the same
behavior for large t. To show that similarity we give S„for b & 1 —y a,s

Ry(a- b} 2 2 -1/2 - ( b2 1/2

Sz = cos (R —1)arctan 2
—1 cos —+ 2ytl 1 — z

1T b 4 k 1

2 2 -1/2 2- 1 ~ 2 -1/2

y 1 —
2 +b 1—1-y' 1 —y 1-y (3.7)

Furthermore, for b= 1 —y, we find Sz =O(t ),
and for b& 1 —y, we find Sz O(t ). Hence——, it
is clear the term SRS „does not contribute to the
leading term of the asymptotic expansion of p„,
which is given as (leading term)

P..=P-( }+G- ( )(AR BR+) GB+( )(A-R+Bs)-
as t-, (3.6)

where Az, Bz are given by (3. 5) and (3.6) and

G, ( ) by (3.2).
We conclude this section with the remark that

the zz correlation function approaches its non-
ergodic limit in the same fashion as m, (t) ap-
proaches its limit.

IV. TRANSVERSE CORRELATIONS

In this section we deal with p„„for the ground
state. A long-range order was found in II, and
the nonergodicity of p„„expresses itself in destruc-
tion of this long-range order.

We take the infinite-time limit, in which S„
vanishes and Gz(t) becomes Gz(~). At the ground
state we have

G, ( )=-—it dye '"
27t' J

[ y sin P+(cosP —a) (cosP —b)]
[y' sin'y + (cosy —~)'] '"(b —cosy —ty sing) '

(4. 1)
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In order to evaluate p„„we substitute Ga (~) in

(2. 8a) of II and use Siego's theorem. It takes some
algebra to show that koan 0, where ko is explicitly
given as

k() =—l dQ
f'

2vrJ

y
' sin'P + (cosf n) (co-s(t) —b)

(2's' '2 ~ (cobb — )'] "'(2 —cost —ib s' 2))
'

(4. 2}
This means that p„„decays exponentially rapidly to
zero and the nonergodic nature of o„„manifests it-

self in a qualitative manner.
We wish to study the approach to p„„ to its limit.

Unfortunately, we are unable to do this in a rigor-
ous manner, since we cannot analyze the resulting
block Toeplitz determinant, whose generating
matrix is given by

(4. 2)

where v» g„are given by

o„=i(n —b)y sin(t sin[2tA(a)]/A(a)A(b), (4. 4)

g'„= —[A(n)A (b)] (( [ y sin'@ + (cosp —n)(cos(t) —b)] (cos@ —b}—(n —b) y
' si 'nt(c)os[2A(b)i] }

—iy sin(t)([y sin 4]+(cosp —n)(cosQ —b)]+(n —b}( cops— b) cos[2 A( b) t]) } . (4. 5)

The expression for g„can be somewhat simplified as

y sining+(cos@ —n) (cos(t) —b) (n —b)cos [2A(b)i]iy sing
[y sin 4) + (cos(t) —n) ]

' (b —cosP —iy sin(b) A(n) (b —cosP —iy sin(t))

Because of the relation between cyclic and Toeplitz matrices we believe that the generalization of
Szego's theorem yields

(4. 6)

Rtts 2 — sb t If', (0) 2( b)s, (2) ]I) 2 tR-,
7T

(4. 7)

where U is a positive constant we are unable to compute. Expression (4. 7) can be written explicitly as

R b(b) 2( t —b)( —b) ( —b) y s' bc sot)(b)t
}A(n) A(n} A'(n} A'(b) (4. a}

We make the specialization that ~ —b is very small, and expand the log function in powers of c —b:

R
'

A (b) 2!n —b) (cosP —b) (n —b) y sin Q cos4A(b)t
P

2& A'(n) A(n) A'(b)

We observe that the time-dependent part of the
exponential is very similar to m, (t). In particular,
the approach of p„„ to its t-~ limit will be some
oscillatory factor times t ~' if b& 1-y, t ' if
b=l-y and t ' if b&1 —y
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