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It is shown how the method of thermodynamic Green's functions can be used to approximate
the memory function associated with the equilibrium-fluctuation function ~,(r —r', pp', t —t')
= ((f(rpt) —(f(r pt)) ) (f(r' p' t') —(f(r' p' t')) )), where f(r pt) is the phase-space distribu-
tion operator. We obtain an approximation for the memory function for a gas, in the low-density
limit, that is valid for all distances and times, satisfied various relevant symmetry conditions
and sum rules, reduces for long times and distances to the Boltzmann collision operator, and

gives results completely consistent with the conservation laws governing the system. We also
indicate how these methods can be extended to treat other types of systems.

I. INTRODUCTION

The usefulness of time-dependent correlation
functions in describing deviations from equilibrium
in many-particle systems is well known. In partic-
ular, the equilibrium-fluctuation function for the
classical phase-space distribution operator

S,(r-r ', pp', t -t')

in developing methods for determining S,. In order
to avoid unphysical secular effects, these methods
are usually based on making approximations for the
inverse of S,. This inverse is related to the mem-
ory function y( r —r ', p p ', t —t ') by the generalized
Langevin equation derived formally by Mori ':

pt—+ " S, r, pp', t —I dt derd p
0

—= ([f(rpt) —( f(rpt))] [f(r 'p 't) —(f(r 'p '))]),

where

x y(P (s( r - r, p p, t - t ) S,( r, p, p, t ) = 0 . (],.3}

%'e will be particularly interested in the Fourier-
Laplace transform of this equation:

f( r p t}= ~()( r - r (t))()(p -p, (t)), (1.2)

describes all information obtained from light- and
neutron-scattering experiments, ' gives the linear
response of a system to a weak external probe, "
and its space-time Fourier transform contains all
information related to linearized hydrodynamics. ' '
For these reasons, there is considerable interest

xS,(k, pp', z) = —S,(k, pp'), (1.4)

where the complex fluctuation function is defined by

S,(k, pp', z)=i fd re '"'5 dte '"S,(r, pp', t),
0

(1.5}
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9)(k, pp', z) =f f d're ' ' f dte'' q(r, pp', t)

(1.6)

for Imz &0, where S, is the spatial Fourier trans-
form of the static correlation function S,(k, p p', t =0).
For short times (large z), y can be approximated
through the use of short-time sum rules and sym-
metry conditions. ' ' For long times and distur-
bances varying over "long" distances (z- 0, k- 0),
cp can be inferred by assuming the validity of lin-
earized hydrodynamics. ' To obtain information
about the memory function in the intermediate-time
region, the dynamics of the many-particle system
must be analyzed.

Recently there have been two independent efforts
to calculate y from a microscopic point of view.
Akcazu and Duderstadt' and Forster and Martin, ' ' 7

both working in the limit of a weakly coupled sys-
tem, have succeeded in deriving equivalent forms
for cp. Akcazu and Duderstadt worked with the Mori
projection operator technique, while Forster and
Martin utilized an analysis of the classical
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY)
hierarchy of equations. Forster and Martin, '
which we will refer to as FM, have pointed out that
the resulting equation for S, is valid for arbitrary
wave numbers and frequencies, is not Markovian,
satisfies the relevant short-time sum rules, is
completely reversible, and gives results consistent
with the thermodynamic properties of the system to
the appropriate order in the potential. Further-
more, their results are in complete agreement with
linearized hydrodynamics while providing micro-
scopic expressions for the associated transport
coefficients.

It is the purpose of this paper to extend this work
on the memory function to the case of a real gas by
including the effects due to hard cores. We propose
to do this by using the method of thermodynamic
Green's functions. This method, which has been
so successful in describing a wide range of quantum
phenomena, offers the possibility of a systematic
and self-consistent approach to calculating correla-
tion functions. Self-consistency is extremely im-
portant in dealing with transport phenomena in which
the thermodynamic derivatives (such as the speed
of sound) must be determined to the same accuracy
as the dynamical properties of the system. Other
advantages of this method are that through the use
of diagrammatic techniques we can make approxi-
mations from a physical point of view independent
of the time scale considered, and, as will be shown
in Sec. IV, there exist criteria whereby one can
generate these approximations so that they auto-
matically satisfy the conservation laws.

Our aim is not to generate formal relationships
that are valid for arbitrary W-particle systems, but
to suggest a practical method for performing micro-

scopic calculations. Consequently, the physics
relevant to a particular system will be introduced
early in the calculation, thereby eliminating irrele-
vant information. In keeping with this attitude, we
will be concerned mainly with a particular approxi-
mation: the first nontrivial term in the density ex-
pansion. However, these methods, or extensions
thereof, are applicable to many other types of sys-
tems including plasmas, multicomponent gases,
systems with internal degrees of freedom, and also
to higher -density systems.

II. CORRELATION FUNCTIONS

We summarize here some definitions and proper-
ties of the correlation functions relevant to our dis-
cussion.

The equilibrium one- and two-particle Green's
functions are defined by the grand-canonical-en-
semble averages

G(11')= —( T((j)(l)4'(I ')))

(2. 1)

.' 2

G ((2, ('2')=(— (T(()(1)x(2)4'(2')('(('))), (2. 2)

where T represents the Wick time-ordered product,
the field operators are in the Heisenberg represen-
tation, and 1 = (r„ t,). We are particularly inter-
ested in the connected part of the two-particle func-
tion, defined as

L(12, 1'2 ') = G2(12, 1 '2 ') —G(11')G(22 ')

d'pd'p' d'k
(2~)3 (2')3 expf [ p ' ( r1 r )/@

+p ' (rz —r2 )/h+k ~;(r, +r~. —r2 —rz, )]

&&L(k, pp; t, tz,
' t, .fz ) . (2. 3)

In (2. 1) and (2. 3) we have used the spatial transla-
tional invariance of the equilibrium system in de-
fining the transforms.

The properties of the single-particle Green's
function are well known. " We will concentrate on
the properties of L. For reasons pointed out in
Sec. IV, we shall be interested in L only for the
case in which we set t2. = t, +O'. Suppressing spatial
coordinates, we define L(t,tr; tz) =L(t~t2, f, tz).
This time-contracted quantity is composed of six
analytic pieces corresponding to the various time
orderings of t&, t, , and t~. The analytic properties
of L, which satisfy Kubo-Martin-Schwinger (KMS)
boundary conditions, ' are described in Appendix
A.

In order to relate L(t,f, , ; tz) to the quantity
S,(t, —tz) defined by (1.1), we make the additional
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2~)~ e g (r1 —
2 r, t2}

2vti)

x g(Fg+pr, tg) (2.4}

%e refer to the thermodynamic average of (2.4) as
the signer function f&. %e can th n write, using
(2 1)-(2 3),

L( r, —r„p,p„ t, t,'; t,) = ( i/tt—)'(2')'

x(T{[fpp(1) ( fpp(1))] [f (2) (f p(2))] j} (2 6}

This quantity is closely related to the quantum-
me chanical fluctuation function

S(1 1 )=(~z[[ f (1) (f (1))] [f p(1 ) (f p(1 ))]] )

hz&( f g t p )

J 2v (2v)''

xe' "' "'S(k, pp', (I)) (2. 6)

and dissipation function

X(l, 1') =((I/2h)[f, (1), f„(1')] )

d~ d'k -&~(t&-t&. }
2v (2v)3

xe i i X (k, pp I (d), (2. V)

where [, ], indicates the snticommutator-commuta-
tor. We can show, using (A14} to define the analytic
pieces of L(t,t, .; tz) and the KMS boundary conditions
(Al)- (A4) to relate the Fourier transforms of these
analytic pieces, that

S(k, pp', (d) = ( —i/I) (2vtf)

x«rgz(kp PP 'I (d)2(l+e ) I (2. 6)

X "(k, pp ', (d) = ( —t/h}'(2vtf) '

time contraction t&. = t, +0' and introduce the signer
operator

f.,(1)=- f„(r„p„t,) the complex fluctuation function
4 oO

S(z)=i d(t, —t, )e'""~ '~'S(t~-t~ )
0

I d(d S((d)

J 2)T (d —Z

and the generalized Kubo function

x(z) -x (z= 0)
t

d(d x "((u)
ig vi (d((d —z)

(2. 13)

where H~=H+H„, is the total Hamiltonian for the
system and H is the internal Hamiltonian

where the transform expressions are only valid for
Imz &0. In the classical limit the trace over energy
eigenstates in the thermodynamic average goes over
to an average over phase space and f„(1}is mapped
onto the phase-space distribution operator f(1). In
this limit S clearly reduces to S„and combining
(2. 14) with (2.11), we see that in the classical limit
Z reduces to —iBS,.

III. QUANTUM-MECHANICAL LANGEVIN EQUATION

%'e are interested in finding the quantum analog
of the classical Langevin equation (1.4). We do this
by investigating the equation of motion satisfied by
the spatial %igner function

(B,(R, t))=(gU(R+-,'r, t)(LJ(R —zr, t)) (3.1)

in the presence of the external interaction

H„,(t)= —Jd'Rd'rU „(R, t)B (R, t) .-(3.2}

We recognize from (2.4) that the Fourier transform
of 8 over r is the signer function. The equation
of motion for B is given by

sB(R t = —([H, B„(R, t)] ), (3.3)

where

xL, , , (k zPP', (d}( lf)(1-e ' ), (2.9} H(t~} = f d2r, )t)~(I) [( -I 3/2m) V„, ](t)~(I}

+-,' J d rd r' v((t)r t&)4(r

L, , ( pkp', ) f l, , (kpp', t ). (2)P)

Dividing (2. 8) by (2.9), we obtain the fluctuation-
dissipation theorem

S(k, pp', ~)=kcoth-, (6k~x "(k, pp', (d) . (2. 11)

In our further analysis we will also be interested
in the complex dissipation function (suppressing
moments, indices)

xI (r —r '))I)(((r ', t, )(I)L((r, t,) . (3.4)

If we evaluate the commutator involving the kinetic
part of H explicitly, and group the external and in-
ternal potentials into H~, we can write

—
t

——
V)2 Vp (B„(R, t)) = —(H~, B„(R, t)] )

(3.6)

Clearly, the commutator term depends on higher-
order correlations. To make progress, we need to
make two assumptions. First, we assume we are

2 (*)=2(f p(t, —t, )2'"" 't'2 (I, I, ). -.
0
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interested in processes that are linear in the ex-
ternal potential. We can then expand (B) and Q in
U and note that the functional derivative of (3.5),
evaluated for U=O, relates the linear coefficients
of U in the expansions of (B) and Q. The second
assumption we make concerns the resulting quantity
5Q/5U. If we assume that Q depends on U only
through its dependence on 8, we can use the chain
rule for functional differentiation and obtain the
kinetic equation

to Q, and note from Appendix D that the functional
derivative of B with respect to the time-independent
part of the adiabatic external potential U is just the
Fourier transform of the generalized Kubo function,
we find the Langevin equation

z — 2 k, pp', z — d3Ppz k, pp, z

xZ(k, pp', z)=iX(k, pp', z=0), (3.8)

where

m " " ~U„R', t' gp

5Q, (R, tl IIB-((( ()
}d rd Rdt

58tt(R t) 5U, ~ (R', t ')

(3.6)

+ OO

(t(o(k, pp', z) = d(t, —t,.) e'""~ '&'
p

x d rd r'e" ~

This equation has the form of a Langevin equation
for 5B/5U if we note that 5Q/5B must vanish for
t &t due to causality.

There is one difficulty with this program as we
have outlined it. Keldysh and Fujita have pointed
out that the assumption that the higher -order corre-
lation functions depend on U only through their de-
pendence on B is not necessarily correct for an
arbitrary initial state where independent knowledge
of all N reduced distribution functions is required.
Consequently, the dependence on U at t=0, of a
correlation function of order n, cannot be expressed
strictly in terms of B. On the other hand, for any
arbitrary initial state, after a time greater than the
average collision time in the system, the initial
correlations between clusters of particles due to the
external interaction disappear due to randomization
and the functional assumption becomes valid. If
we wish to avoid the imprecision of a "waiting
time, " we must give up the idea of treating an arbi-
trary initial state, and concentrate on a system in
which this randomization process has already taken
place in the distant past. More specifically, we
consider a system in absolute equilibrium at t- —~.
We then prescribe the manner in which the system
is removed from equilibrium by applying the adia-
batic nonlocal external per turbation

U„(R, t) = U„-(R)& x -0 I t )0 (3.7)

where &- O'. We can then specify the initial non-
equilibrium state at t =0 in terms of 0,„,. For
times greater than zero, the system relaxes back
to equilibrium.

If we reconsider (3.5) for this adiabatic external
interaction for times greater than zero, the term
explicitly proportional to U in Q vanishes. We then
Laplace-transform (3.5) over time as in (1.5). If
we then take the functional derivative of the resulting
equation with respect to the time-independent part
of U, use the chain rule on the term proportional

x 5Q, (R, t, ) (3 9)5(B„,(Tt', t,, ))
'

It is clear, in the classical limit, where Z- —iPS„
that (3.8) reduces to the Langevin equation (1.4).

We can understand from this discussion why S,(z)
satisfies a simple kinetic equation. If one writes a
Langevin equation for X,(z), one finds there is a
problem due to a small k divergence in the associ-
ated memory function. Such a divergence is un-
physical and tells us that X(z) does not satisfy a
simple Langevin equation. This problem is treated
in some detail in Ref. 17.

We should note that, although we have established
the form of the quantum-mechanical Langevin equa-
tion, it is difficult, for reasons we discuss in Sec.
VI, to make progress with the form for y given by
(3.9). In Sec. IV we describe a more convenient
technique for determining the memory function.

IV. GREEN'S-FUNCT1ON APPROACH TO TRANSPORT

We proceed to investigate a method for determin-
ing the Green's function L(12, 1 '2'). This method
will enable us to determine the memory function y&.

The basic equations of motion satisfied by L and
the associated higher-order Green's functions are
in the form of a system of coupled equations that
have to be made definite by imposing the proper
boundary conditions. Since we work in the equilib-
rium ensemble, it is the KMS boundary conditions
that make these equations of motion definite. Quan-
turn mechanically, these boundary conditions can
be built into our equations if we use imaginary-time
Green's functions.

In formulating a purely classical theory it is very
cumbersome to implement these KMS boundary con-
ditions. This, of course, follows from the fact
that the quantum-mechanical quantities are periodic
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e" = Tr[e o "")T(S}], (4. 1)

where H and N are the unperturbed Hamiltonian and
number operators and g equals + 1 for bosons and
—1 for fermions. 3, defined by

over an interval 0 & t & —iPh that vanishes in the
classical limit. The procedure in many classical
theories has been to assume that these initial con-
ditions become unimportant after a short time and
do not contribute to quantities measured in the so-
called kinetic stage. Such randomization assump-
tions are, of course, applicable only to nonequilib-
rium situations. Correlations in the equilibrium
ensemble can persist for long times since the sys-
tem is already very near its most random state.
Therefore, one is led to errors if these initial cor-
relations are ignored when calculating equilibrium-
averaged correlation functions.

If we use the imaginary-time Green's functions,
the primary problem is to effect a truncation of the
infinite set of coupled equations. To this end, it is
extremely useful to introduce a generating func-
tional. ' ' We do this by perturbing the system
through the introduction of an external potential that
acts in the imaginary time interval 0& t & 7 =-- i'.
Writing the operators in the interaction representa-
tion for the external disturbance, we define

where Go' is the free-particle inverse

G i(11')= i8 +—Vo 5(1 —1'),
&t

(4. 7)

+)l G(13), G(41') . (4. 9)
5z(s4)

U=O

Then, following arguments similar to those used in

Sec. III, we can assume that Z depends on U only
through its dependence on G(U), and we can compute
5Z/5U by the chain rule for differentiation

0 2 2 U*p J ~G 65 U=p 6U2'2 U=O

and Z is the mass operator associated with G(U).
There exist methods, either perturbative or by
use of equations of motion, ""for determining Z.

We now take the functional derivative of (4. 5) with

respect to U(2', 2) and multiply from the left by G '

to obtain

5G-' S4= -G()4)(I 4, 1
G(41') . (4. 8)

Computing the derivative of G ' from (4. 6) and set-
ting U=O, we have

L(12, 1 '2') =qG(12')G(21 '}

& =exp — dt~dt~ d r2d r2. $'2 U 22' g 2'
0

(4 2)

is the scattering matrix in the interaction represen-
tation. The entire dependence of W'' on U is dis-
played explicitly in S. We can then generate non-
equilibrium Green's functions by noting that

5V'
5U(1' 1)

= ( —I/6)T [e "" '"'T(&4(I)4'(I '))]/

Tr[e o " "" T [5] ]. (4, 3)

This clearly reduces to the equilibrium Green's
function when we set U= 0. If we take the functional
derivative of (4. 3) with respect to U and then set
U= 0, we find that G(U) serves as the generator for
the two-particle correlation function L, since

Therefore, we can rewrite (4. 9) in the form

L(12, 1 '2 ') =)IG(12')G(21 ')

(4. 10)

G(13 }G(41') —— L(62, 5 2') .5z(s 4}
U=0

(4. 11)

We can obtain one equation from (4. 11) by applying
the inverse operator G ' to the 1 variable, and a
second equation by applying G ' to the 1' variable.
On subtracting these equations and substituting for
G ' in terms of Go' and Z, we obtain a general kinet-
ic equation for L:

[G(~)(1 l)5(1 ' —1') —Go'(1'1 ')5(l 1)]L(12, i'2')

=))i [5(1 —2 ')G(21 ') —G(12 ') 5(2 —1 ')]

(
5G(ll '; U)(,') =qL(12, 1'2') .

U=O
(4. 4} + f W(1 1 ', 1 '1 )L ( 1 2, 1 ' 2 '), (4. 1 2)

In order to make use of (4. 4) we must make some
statements about G(U). We calculate G(U) through
an evaluation of its inverse

with

W(1211 2) — (, )

G i(11 )G(1 1') = 5(l 1 '} .
It is customary to write

G (11')= Go (11') —U(11 ') —Z(11'),

(4. 5)

(4. 6)

x [Z(1 1 )G( 1 1 ') —G(1 l)Z( 1 1 ')] . (4. 13)

The problem of finding a kinetic equation for
L(12, 1'2 ') has thus been reduced to finding an ap-
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proximation for the mass operator in terms of the
equilibrium propagators G.

Equation (4. 12) can be put in a form similar to
(3.8) at'ter a few simple steps. Using the explicit

form for the free-particle inverse and defining the
spatial Fourier transform of 8' in analogy with
(2. 3), we can take the Fourier transform of (4. 12)
over space to obtain

p kk
ih -- —+ L(k, pp '; fit~; ti. tq ) =q(2'') 5(p —p )

Bt, ~tq ~ m

X[G(p -~ 8'k, t2 —t(&) 3(t) —t2 ) —G(p +~ 8'k& t( —tq, )5(t2 —tg. )]

+)t W(k& pp; t, ts; t,, t )6L(k &pp'; tet~; t,t2. ) . (4. 14)

Next, we set ta. =t'z and t, .=t', , multiply by (-ih)x(2vh) e'"~"i '&', and integrate over t, from 0 to r to
obtain

~p- X k, pp, ~p = ~ p —p' e 2~k" fq p+p ek —fg p-g @k +D(k, pp'y 0 p y
(4. 15)

with

D(k, pp ', 0„)= —ih(2vk) f df, 8'"""' '2' f W(k, pp; t, ; t,t,) L(k& pp '; t,t„ t2) .

We have used (2. 1) and (2. 4) to evaluate G(p, t = 0 )
= —iqh f~(f&), where f~(p) is the Wigner function
evaluated in equilibrium, and we have noted, using
(2. 5}, (2. 9), and (A16), that

X(k, pp', 0„)= —N f dt, e""""~ '&'(2vh)

xL(k, pp'; t, t,'; t2} &
(4. 17)

with 0„=2wv/r (v=0, + I, +2, . . . ) .
Equation (4. 15} is in the form of a general kinetic

equation for X. Clearly, D is a generalized colli-
sion term. It is important to note that (4. 15) is not
in a closed form for g. Since the collision term
involves the quantities L(f8f, ; t2), the time integra-
tions over t, and ts will in general couple the various
time orderings of L(t8ts; f2). Therefore, we will
not assume that D is linear in X Instead, we must
interpret D as a sum of terms which are linear in
X and Z. We will investigate the structure of (4.16),
in detail, in Sec. VI.

In treating systems slightly removed from equilib-
rium we must include situations in which there are
spatial inhomogeneities in the density, energy, etc. ,
which are dispersed through space as the system
relaxes to equilibrium. The detailed manner in
which these quantities are dispersed is governed by
the conservation laws. Therefore, a fundamental
constraint on (4. 14} is that it be consistent with
these conservation laws. Baym and Kadanoff,
through a detailed analysis of the exact conservation
laws for particles, momentum, angular momentum,
and energy, have shown that these laws are main-
tained for any approximate Z that is derived from
a "closed" functional C:

(4. 18}

Through an analysis of the variational properties of
C and @" it can be shown that 4 and the partition
function (e" )v 0 are intimately connected. +'+
Abrikosov, Gor'kov, and Dzyaloshinskii have
pointed out that if we select from the set of dia-
grams in the perturbation-theory expansion for the
partition function all of the compact diagrams (dia-
grams with no self-energy corrections), replace
the free propagators by complete Green's functions,
and sum the diagrams with a coefficient 1/n for
each diagram of order n, we obtain 4. We are
therefore able to derive conserving kinetic equations
from an approximation to the partition function.

V. LOW-DENSITY SYSTEMS

We will investigate 4 derivable approximations
that are valid for a low-density gas. In particular,
we seek an expression for C that is valid to second
order in the density. This requires that we also
obtain the partition function correct to second order.

In the perturbation expansion of the partition func-
tion each diagram consists of a series of closed
loops, with each loop consisting of a hole-particle
pair contributing a factor proportional to one order
in the density. The procedure is to write down all
of the connected diagrams for the pa.rtition func-
tion ' and to discard all diagrams with either self-
energy insertions or with more than two closed
loops. We then replace the free propagators with
complete Green's functions and put a factor 1/I in
front of the set of diagrams of order m in the inter-
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11
c& -+—

2

I
(

2
I +—

3
~ ~ ~

V(1 —2) = V(r, -r,)5(t, t,)-. (5. 3b)

+ ~ + (EXCHANGE TERMS)
I

l

I

FIG. 1. Diagrammatic representation for the functional
@ in the low-density approximation, Here, and in Figs. 2

and 3, propagators are, represented by solid lines and the
potential by dashed lines.

action potential. We thus obtain the diagrammatic
expression for C given in Fig. 1. On taking the
functional derivative of 4 with respect to G, it is
easy to verify that we obtain 2m topologically equiv-
alent terms in the set of diagrams of order m,
whence we obtain the graphical expression for Z
given in Fig. 2. In this case there are no factors
of 1/m and we can sum the infinite set of ladder
diagrams by defining the many-particle T matrix
in Fig. 3. Combining the diagrams in Figs. 2 and

3, we arrive at our basic approximation for the
mass operator

Z(ll ') =i5)If f (13
I Tl 1' 4)G(43'),

where

(121 Tl 1'2'
& -(12I v. l

1 '2'
&

=I f(12I TII f &G(11')G(22')V(1' —2')

(5.1}

(5. 2a.)

=ikv(1 —2) / G(11)G(22)(12
I Tl 1'2') . (5. 2b)

We have used the symmetrized potential

(12
I V, I

1 '2 ') = V(1 —2) [&(1 —1 ') 5(2 —2 ')

+5)5(1 —2')5(2 —1')], (5.3a)

where

Since we have derived Z from a functiona1. 4, we

are assured that our approximations will be con-
serving; on the other hand, this approximation for
Z can be derived in other ways that give greater
insight into the physical interpretation of the ap-
proximation. Martin and Schwinger' have derived
(5. 1) through an analysis of the hierarchy of equa-
tions satisfied by the Green's functions; their basic
approximation is for the three-particle Green's
function, which they assume can be factored into a
product of G's and G,'s in the absence of three-body
collisions. Similarly, Kadanoff and Baym' point
out that in a system in which two particles propagate
independently or come together and collide only
once, the two-particle Green's function satisfies
the Bethe-Goldstone equation

Gz(12, 1 2') = G(11')G(22') +1iG(12')G(21'}

+ih f G,(12, 1 2)V(l —2)G(11 ')G(22') .
Kadanoff and Baym have shown that this approxima-
tion for G2 leads directly to the approximation for
the mass operator given by (5.1).

We now want to calculate the collision kernel
5' in the T approximation. This involves calculating
(4. 13) using the mass operator given by (5. 1).
In carrying out the functional derivatives we need
the result

4

,~4,4»4f~&4i&'--iK4 )G&45)(4'4~i Ti&'4&,

(5. 4)

which was obtained by Baym and Kadanoff. a' The
properties of the T matrix are discussed in Ap-
pendix B. After performing the various functional
derivatives indicated in (4. 13), integrating over
the time 5 functions in T given above Eq. (13.6)
in Kadanoff and Baym, ' using (87a) and (87b)
that relate T and the 0 matrices, and setting
t,.=t', , we obtain

W(12, 1,'2') = i)7)2 f G(rz —rz, tz —tz) [(r,rz I T(f, —iz. ) I
rz. r5&(rzrz I

0 (tz —t, ) I r, rz)

Note that this can also be written

(r1r3I fl'(f1 —i2')I rz'rz&(rzr51 T(fz il) I rl'r3&)

iv(12 1,'2') =iz)ff f G(r5 —r„tz.- tz)(r, rzl 0 (t, —fz. )l rz. r5& (rzrzl 0"(tz —t, ) I r1.rz& [V(r, —rz)- V(r1 ~ —rz)].
(5. 6)

From the definition of the Fourier transform of
8' over the variables r, and r, ., we see that setting
r& = r, . corresponds here to an integration over the
free-momentum index of 8' in the kinetic equation.
It immediately follows that

fd'p W(k, pp';&14. &z&2 ~ ) =0 .

It is this property that ensures conservation of
particle number in the system. We now transform
(5. 5) over the spatial variables to obtain
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where
1» I » 1» 1a, =u+-, p+ ~5k, e~=u —,p- ~hk, 2p

@4 =u+-, p, a, =p+p+-, Sk, as= 5+p, (5. 6)

Q& ——P+p+Sk, P=p+p, u =i2(p —p ).

VI. ANALYTIC CONTINUATION

In this section we will be interested in perform-
ing the time integrations in the collision term
given by (4. 16). We see, in contrast to the theory
developed in Sec. III, where we treated only
single-time quantities, we now must perform, in
a rough manner of speaking, a nontrivial integra-
tion in the collision term over the time variable
t2 —t~. . We can understand why this extra time
variable is involved by considering the work of
Kadanoff and Baym' on the nonequilibrium Green's
functions defined for real times. In dealing with
G(11; U) = G(ti —ti. ; —,(t, + t,.)), Kadanoff and Baym
found that the variable —,'(t, +t,.) is measured on a
macroscopic time scale and is the time that enters
into the BBGKY hierarchy of equations. The time
tj —t, . on the other hand, is a microscopic time
interval of order hP. On Fourier-transforming
G over t, —t,. and ,(t, +t, .), we —associate the fre-
quencies z/N and (d with t, —t, . and —,(ti+t, .), re-
spectively. It is not difficult to show, in that case,
that E is a measure of the energy of a single par-
ticle z =p /2m, while h&u is an energy characteris-
tic of an external probe in the system. Conse-
quently, in the two-time formalism, there is an
energy parameter available that allows us to con-
serve the total energy in a collision process
(12)- (1 2 ) by writing the 6-function condition
6(zi + ez —e,.—zz. ). In our diagrams, therefore,
we are able to treat collisions in a natural way by
conserving the momentum and the total energy as
&-function conditions. Thus, physically, the ex-
tra time integration in our expression for D cor-
responds, in energy space, to an integration over
the energy variable z in L,» (k, pp, z(d) that arises
from the "collision" in the collision term.

In the traditional one-time theories, tz and t&.
are set equal, thereby removing this energy vari-
able from the problem at the outset. But in such a
theory, as developed inSec. III, we have no con-
venient method for evaluating the functional deri-
vatives indicated in (3.9). Qn the other hand, when
we maintain the two times in the problem, we do
have a convenient way of evaluating the functional
derivative 6Z/6G. If we maintain the two-times,
we have a diagrammatic technique for evaluating

Z in terms of the complete propagators G and our
functional derivatives are with respect to these
complete propagators. The functional derivatives
can therefore be performed in an unambiguous
mariner. Thus, in the two-time theory, although
we do have an extra time integration to carry out
in evaluating D, we need this additional time vari-
able if we want to generate approximations for D
in an economical way.

In order to evaluate the time integrations in D,
we must investigate some general properties of

We note, in the most general case, that 8' is
of the form (suppressing momentum indices)

W(ti, ti tz) = 6(ti —tq)6(ti —t6)WO+ 6(ti —tg) Wi(te —tg)

+ 6(t, —t, )W,(t, t, )+ Y(t,—; t, t, ). (6. 1)

If we insert (6. 1) into (4. 14) after setting t,.= tz
and tg = tg we see first that the integrations over
the term corresponding to the two-time 5 functions
are trivial (it is this term that gives rise to the
linearized Vlasov or RPA approximation. ) Next,
if Eqs. (4. 14) and (6. 1) are to be consistent with

the KMS boundary conditions satisfied by L(t, ti. ; ti),
8'1 and 8' must obey the KMS boundary conditions
given by (A15), and Y(tztz. , t, ) must obey the same
KMS boundary conditions as L(ti ti. , ti). Then, in
principle, the program for performing the time
integrations and continuing from the discrete index
0„ to the complex variable z is straightforward.
Since all of the quantities in D obey KMS boundary
conditions, we can expand them in a periodic series
and perform the time integrations. This leaves us
with a set of sums to perform over a discrete Fou-
rier parameter. We can perform these sums by
inserting the spectral representations for the
various quantities. We can then continue D(Q„)
to the arbitrary complex variable z by simply set-
ting 0„-z. We outline the process here since in
practice this calculation is rather tedious. '

First we expand 8', , 8', , F, and J in periodic
series, insert these series into (4. 16), and carry
out the time integrations to obtain

D(Q„) = W, X(Q„)+(-in) r-'(2va)-'

XZ „-{[Wi(z„-+ Q„}+Wz(zp)j L(z „+Q„,zp)-
+ Y(z„-—Q „,z „)L(z„-,z-„- Q„)j. (6.-2)

If we now introduce the spectral representations
for Wi z(z }given by (A16) and for Y(z„zz) and

L(zi, zz) given by (A6), we find that D(Q „) consists
of fifteen sums; nine of the sums are of the form
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$(~(Q„, z (d, e(d ) = r Z „4((z„—Q„,zp, z (d ) L (12, 1 2 ) =))) G(12 )G(21 ) . (e. 6)

three of the form

& 4, (z-„, z„- —Qk k z(d ), (6. 3a)

$,' (Q„, (d ', Z(d ) = 7 ' Q p (Z -„+Q„—(d
'

)
'

and three of the form

x 4), (z„-+Qk kz„-, z(d), (6. 3b)

e "= (2') n (P/27(m) (e. 5)

Next we note, to lowest order in the density, that
L has its free-particle value

S( (Q„, (d, z(d) =T Z p(z-„—(d ) 4)((z-„+Qk kzp, e(d),

(6. 3c)
where i and j range over 1, 2, and 3. The 4's are
defined in Appendix A. While there is no essential
problem in evaluating all of these sums, the com-
plete results are rather cumbersome. We there-
fore choose to specialize the analysis to the low-
density case. Evidently the techniques we develop
are applicable to more general cases.

Since we are interested in calculating D to lowest
order in the density, we must investigate the den-
sity dependences of the quantities

6(g(Q„, e (d, z(d) = Yg(z (k) )L((z(d)$()(Q„, e (d, z(d),

(6. 4a)

6,'. (Q„, (d ', e(d ) = W(((d )L;(e(d )S; (Q„, (d, z(d ), (6. 4b)

6("(Q, , (d ', z(d) = W, ((d ')L;(z(d) S,"(Q„,(d', e(d) (6. 4c)

that appear as terms in D. As a preliminary we
must fix the relationship between the density and
the chemical potential. To lowest order in the
density n, we have the standard result

We obtain this result from (4. 9) if we set 5 =0 and

use the free-particle single-particle Green's func-
tions. We see directly that L&&.2

-- Lz.&2. Similarly,
in the T approximation, we see from inspection of
(5. 5) that Yzz. ,/Yz. a- e "-n. Therefore, we have
from Eqs. (A10)-(A12) that L( and Lz are of higher
order in the density than L, , and similarly Y, and

Y~ are of higher order in the density than Y3.
We can show, in an analysis similar to that in the

Appendix of Kadanoff and Baym, that all of the
sums are proportional to e~" and therefore of first
order in the density.

Combining our information about the L s, Y, 's,
and S,&'s, it is clear that the term 633 is of lower
order in the density than any of the other eight
combinations. Similarly, since the six sums S;
and S; are all of the same order in the density,
we see, for a dilute gas, that b, and ~, are neg-
ligible compared with b3, and that b,"and 4z'are
negligible compared with b3 . In evaluating D to
lowest order in the density, there is considerable
simplification since the number of terms reduces
from 16 to 4. It should be apparent that we can
perform essentially the same type of analysis in
treating any type of expansion in a small parameter
where the free-particle result is of zeroth order
in that parameter. We then evaluate Y to lowest
order in this expansion parameter rather than to
lowest order in the density.

In the low-density limit the number of sums to
be performed reduces from fifteen to three: S3,
S3", and S». We can evaluate these sums using
contour integration techniques and find, after some
rearrangement,

D(k, p p', )))fd' Wp(k pp)=(kk, p )pl„)+f ', ' '' d'k

Yp(k, pp, z (d )x E((d, .;(dz(d„Q„) Wp(k, pp, (d, .)2pe((dz. )+

Y3(k, pp, z (d ) Lp(k, pp, &(d)—k( .;, , —0, ) ()k,(k,Pp, .12 k(, ) —
)) ))0„+(d 0„—w

(e. v)

where Sw~ = e+ ~S(a), Sco &
——E' —zS~,1

f ( )
Z-8(ld Ik) (e. 9)

and we have introduced the variables

E((d('~(dz(d( Qk) = e
f(~( )-f((d()

2P Alp+ yp (d g

, (6. 8)
f ((d( ~ ) -f ((dz)

COyp —(d2

l 1 I
S(g),p = c + ~k(o, h(o~. = e —gkco

At this point we can analytically continue this ex-
pression from the discrete set of points 0„ to the
nonreal complex variable z, simply by replacing
Q„with z.

We now want to specialize our results further to
the case of the T-matrix approximation. From
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(5. 7) we can identify the quantities in (6. 1}as

Ws(k, pp') = —
( }, G'(a, , &o)

x[&azl II»(as ts tz)las&&asl T»(a~ tz ts) la4&

—&as I T»(as. ts —tz} I az&&as I
flz»(as, tz —ts }I az&],

x [.&az I as&&as I YI a, &.

&az I Yl as)&as I az) ] (6. 10}

3dp
W, (k, pp, t, —t;) =+is}

(2 g)s G(a, , ts. —ts)

x [.&azas&&asl T.(az, ts ts }—I az&

—.&azl Ylas&&aslf1»(a. t -ts }la.&] «. »)
3d p

Ws(k, pp, ts- t;) =+zz}
( ), G(a, , ts. —ts)

x [(a, I Q»(as, ts —ts. ) I as)(asl vl as&,
t

-&azl T»(as, tz-tz )las&&aslaz&. 1, (6 12)

w~) d pY(k, pp; t» tsts. ) =+zz}
( )s G(as, tst tz)

(6. 13)

where T&, 0„", and A&are defined by

T»($, tz —tzt) = T(P, tz —tsar) —V, 5(tz —tzt), (6. 14)

0»' (P, tz —tz~)=Q ' (0, tz-tz~)- 1,5(tz- tz~)

(6. 15)

and we have introduced the convention I p&,
= ip&+ni -p&.

In the low-density limit, we are interested in
8', and 8'~ for the cases t~&ta. and Y for the or-
dering t~. &t2&t, . After selecting these time or-
derings, performing the Fourier transformations
over time, using the identities (86), (B9a), and

(B9h) and the corresponding identities for the II's,
and using (6. 6) to evaluate I.s to lowest order in

the density, we can rewrite (6. 7) in the form

I

D(k. pp', z)=J -"' )""" " sG'(as, ~) '" ' f'""[.&a, lN(a. , ~.~ )las&&aslfl&(as, ~ ~s)laz&

&azlfis(as ~+Quiz )las&(aslN(a'/ to+(us )laz& ) (6, 16)

Equation (6. 16) gives us an explicit expression for
the low-density collision term. %e will discuss
how to determine the memory function p from
this D in Sec. VII.

VII. QUANTUM-MECHANICAL MEMORY FUNCTION

Having derived the kinetic equation (4. 15) and
evaluated its collisional part in Sec. VI for the
T approximation, we want to compare our results
with the quantum-mechanical Langevin equation.
To facilitate this comparison, we note, as we will

show below, that we can write D gs a linear com-
bination of the free-particle dissipation and Kubo
functions X (z) and 2 (z):

D(k, P P ', z ) = P o
' (k, P P ) X (k, P P ', z )

+iz yo'(k, pp, z)Z (k, pp', z), (7. 1)

where pz' and pz' are functions evaluated below
and integration over the barred index is implied.
Inserting (7. 1) into (4. 15) and using (2. 14) to ex-
press X(z) in terms of Z(z), we find

iz{-iX(k,pp', z = 0)+(z —k ~ p/m)Z(k, pp', z) —[yo'(k, pp)+go" (k, pp z)]Z(k, pp, z)]

= 5(p —p' ) (- p k p/m)F(k, p ) + (k p/m) X (R, p p, z = 0) + yq" (k, p p) X (k, p p', z = 0), (7. 2)

where

(- pk ~ p/m) F(k, p) =It '(2vtt) s[fpp+ stzk) —fv(p —stfk)]. (7. 3)

To compare this equation with the Langevin equation we must evaluate the collision term in the Langevin
equation to lowest order in the density. This requires replacing 2 with its free-particle value in the col-
lision term of the Langevin equation. We can then eliminate (z —k ~ p/m)t in (7.2} using (3.8):

iz [yo(k, pp, z)- iso'(k, pp)- yg'(k, pp, z)]Z $, pp, z)=5(p-p )(- pk p/m)F(f, p)

+(k p/m)X(k, pp', z =0)+poz '(k, pp}X(k, pp', z = 0). (7. 4)
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Assuming the p's are well behaved at z =0, we

can set z = 0 in (V. 4} to find

(k ~ p/m ) X(k, p p', z = 0) + y ~q" (k, p p) X (k, p p ', z = 0)

setting D = 0 in (4. 15), giving

k p 6(p —p')E'(p, k)
m z —R. p/m

and from (2. 14}we have

(V. V)

=(Pk P/~}6(p-p')F(k, g) (7. 5)

and, comparing (V. 5) and (7.4), we can identify

P q(kP, P ', z ) = P q '(k, P P
'

) +P q'(kP, P', z ). (V. 6)

Since we have assumed that p' and p+' are known,
(V. 5) is in the form of an integral equation deter-
mining the initial condition X(z = 0). We are there-
fore able to determine the intial conditions con-
sistent with the dynamics described by the memory
function p.

To identify the memory function to lowest order
in the density, therefore, we need only show that
the collision term (6. 16) can be written in the
form of (7. 1). Before we can express D in that
form, we must write down explicit expressions
for X (z) and 2 (z). This can be accomplished by

0.- --i, f p&(p, k)2 (k, pp, z)=
z —k ~ p/m

We see from (7. 7) and (7. 8) that the expression
for D must be written in a form such that it is
proportional to (k ~ p /m -z) ' and, from (7. 1), that
the coefficient of this factor, when z =0, must be
related to the (s) part of the memory function. If
we note the identity

1 —k ~ p /m
~ pz + ~, , —~,. (z —k. p /m)(~, .—~,, )

z (k p'/m+~, .—(u, , }
((o,.—(u, .)(z —k. p'/m)(z +(u, .—(u, .}

'

(7. 9)

we can then combine (6. 16) and (V. 9) to identify

(~)~~ p ~~qmp q
d(dyed(dzsd(d d P g f (dg ~ ) —f ((d2e) G(g h

—
)

x [.&~il &(~6, ~+ ~i}~2&&o3Ifl&(o v, ~+~2 }I ~4& - &~il fl&(o6, ~+~i ) I o2&&~sl &(o7, ~+ ~z }I ~4&.],
(7. 10)

3 W j
(.),k -- ~,-. k)

d~g d~z ~ d d p g f(~g } f(~z} G (o -h )k P /~+
Pq (k PP ) (P k) =

(8 p (8 h)o p
~

5

"[.& tl&(o6. ~+~i)l~z&&oslfl&(~v, ~+~a)lo~&-&oilfl)(o6, ~+~i)l~m&&oslW~v, ~ ~z}lo.&.] (7. »)

If we combine the I.angevin equation with (7. 5),
(V. 10), and (V. 11), we have a realistic set of equa-
tions to use in investigating low-density quantum
systems. For simplicity we will restrict the rest
of our analysis to the classical limit of this set
of equations.

VIII. CLASSICAL MEMORY FUNCTION

In the classical limit, F reduces to the Maxwellian

limF(R, p) =fo(p) = n(p/2vm) e ~ (8. 1)
h~o

and we can decouple the momentum and spatial
coordinates in the static correlation function

X,(k, pp', z = 0) = P S,([t, pp')

= Pf (P)6(p- p')+ Ph(k)f, (P)fo(P'),
(8. 2)

where
h(k) = c(k)/[I-nc(k)] = J d'r [g(r) -1]e' ' ',

(8. 8)
g(r) is the equilibrium pair-correlation function

N

A(l — 'l)= 8 &( — )5(r- i)), (8.4)

p"'(k, p) = —(k ~ p/m) c(k) fo(p) . (8. 5)

Comparing (8. 5) with Eq. (1.Sb) in FM, we see
that p'" corresponds to what they call the static
part of the memory function. We have foreseen
this in our choice of superscripts. Corresponding-
ly, we will call p'" the collisional part of the
memory function.

Note that the condition (8. 5) serves as a decisive
check on the classical limit of (V. 10).

As a first step in performing the classical limit
for the static term, we substitute for 0 and N in
(7. 10) the expressions given by (B5), (BSa), and
(B8b), and do the integrations over ~, ., ~z. , and

We obtain

and c(k) is the Fourier transform of the direct pair-
correlation function. We see that we can use (8. 1)-
(8. 8} in (7. 5) to solve for p" in terms of the direct
pair-correlation function. We find
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~(k, pp')fs(p')=lim n-8 '(2wh)' s 2 A(E& —Eg, as)
2wm (2wh}

2

x exp p + + Qg Eg Ey V p Eg E] +4 s
1

(8. 6)

where R(E,)(E, I B., I E, ) =(E,
I
R(H)B., I E, &, (8. 8)

A(E, a) = 2P ' sinh [s P(hk ~ a/2m+ E)]
hk ~ a/2m+ E

as= P+ p+ —,Sk .
We have also introduced the operator

p= (2wh)-'I as&(a,
i

(8. 7)

and used (6. 5) to eliminate the chemical potential
and Eq. (1.18) of Kadanoff and Baym's to evaluate
G . It is clear, in taking the classical limit, that
we must transfer our attention from operators
acting on the quantum-mechanicaj. Hilbert space
spanned by the complete set of energy eigenkets to
operators acting on the quantum-mechanical gen-
eralization of phase space. As an intermediate
step we must change from the energy representation
IE, & to the momentum representation Ip&. For
any function R(E) with a well-defined power-series
expansion in E, we can write the identities

hLo(A jB = —[H A] B, (8. 10)

Using these definitions, we can remove any refer-
ence to the particular eigenstates E; or E& in (8. 6)
except for the sums over complete sets of states.
We can replace these sums with complete sets of
momentum eigenkets. Equation (8.6) can then be
written

R(E, —E,)(E,
i
B., I E,.) =(E,

I
R(- hL, )B., i E,),

(8. 8)

where I E, ) is an eigenstate of the Hamiltonian H,
and L+ is the "super" operator defined by SL
= —[H, ], where we take the commutator of the
Hamiltonian and the operators standing at the right
of Lz in a matrix element. While it is possible to
introduce extended notation to treat such quantities,
it will be necessary here only to bracket the oper-
ators upon which L+ operates. We therefore define

y~"(k, pp')fs(p') =lim —ns dsp d p' s e si (2wh} (p'+ shk
I
e "

p e "
I p —sheik &

0 277m 2ws

~(2wh}s(p'- -'hk'IA(«o as)« '[V p] ) I
p'+ -'hk'& (8. 11}

where we have defined the operator

p'= (2wh)~I a, &„(a,I
. (8. 12}

We see from Appendix C that (8. 11) has the form
of a product of Wigner equivalents. In taking the
classical limit, therefore, we need only replace a
Wigner equivalent with its classical value. Wigner
has shown, for example, that if we expand in powers
of 5, we obtain

here. Using the rule (C2) for taking the Wigner
equivalent of a product of operators, we readily
find, after doing some trivial integrations,

y'"(k, pp')fs(p'}= —in (p/2wm) f d p d rV„V(r)

- SV(r) - B(P+8) /4~xe 8

(e "~ )w(r, p) =exp(- p[p /2m+ —,
' V(r)])[1+0(hs)]

Similarly, in this limit, we find

lim(L&)„(r, p) = i [H, ]ss=L(r,p)—
5~ 0

= —2ip ~ &„/m+ iV, V(r) ~ Vs, (8. 18)

Z(l I')=iw) I +

I

I I + ~ ~ ~

I

I

I + ~ ~ ~ + (EXCHANGE TERMS)

where L is the Liouville operator for the relative
motion of a two-particle system. In most cases the
replacement of a Wigner equivalent by its classical
limit is obvious and we will not dwell on this point

FIG. 2. Diagrammatic representation of the low-density
mass operator b '1' is to be interpreted as a space-time
& function &(1 —1')].
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&&
[ -ik r -B(u+p/2) /m qf gI~e

'
e ~ &pj

-88 /4m Vy 5( &)] (8 14)

where we sum over j. Since the second term is odd
under the interchange r- —r, it vanishes, and, if
we note in the low-density limit that g(r) = c(r}+1
= e '"', we find, after several integrations by
parts, that (8. 14) h" s the desired form given by
(8. 5).

We should mention that in evaluating the classical
limit of the Wigner equivalent of p, the exchange

terms (terms proportional to ri} vanish. These
terms have oscillatory factors that give zero con-
tribution in the classical limit. It is important to
note that if we had entirely ignored exchange ef-
fects, our analysis would have lost terms propor-
tional to factors like g( —n, I

—n4)ri. Since the two
p's cancel, such terms do not necessarily depend
on the statistics of the system. We find that these
terms are nonzero in the classical limit.

We can perform the limit as 6 goes to zero in the
collision term [(7.11)] in much the same manner
as in the static term. The equation for p'" analo-
gous to (8. 11) reads

y"'(k pp', z)fo(p )=lim -n 8 ' d pd p 3 e 's~ (p+-,'hk ~e
" [Vp]e "

~p --, hk'}
2vm (2v}'

&(p —~8k ~A (8Lq z, k &8/2m){[V, p] }~p + ~5k ) (8. 15)

where

2P ' sinh[ —,
'

P(by+ E)]
(by+ E)(kz —ky+ E)

and p and p are defined by (8. 7) and (8. 12). In deriving this equation we have made use of the identities
related to (B9a) and (B9b). Since this is again in the form of a product of Wigner equivalents we can pass
to the classical limit directly. We find, after some simple manipulations,

y'"(k, pp, z)fo(p')=n (p/nm) V~V~. J d a d r d'pe ~ e ~'

g(r)V', F(r)[e' " '"~(o —P + P) —e " ""~(o'—P —R]

&& [z —k ~ a/m+ L(r, p)] ' 'VV(r) e '"'~z 6(p —n —p), (8. 16}

where the sum over l and j is implied. Equation
(8. 16) is the primary result of this paper. We have
obtained an explicit microscopic form for the
classical memory function correct to lowest order
in the density. We discuss the properties of this
function in Sec. IX.

IX. PROPERTIES OF CLASSICAL MEMORY FUNCTION

First we note that our approximate memory func-
tion satisfies the symmetry conditions

y'"(k, pP', z) = —y'"(-k, pp', —z)

y'"(k, P P, z)fo(p') = y'"(k, P'P, z)fo(p) . (9. 2)

As Forster and Martin' ' have pointed out, these
symmetries guarantee, with the Langevin equation,
that S(k, pp', ~) is invariant under translations,
rotations, parity, and time reversal.

Next we investigate the validity of our approxi-
mation in the time intervals for which we have in-
formation. For short times (z-~), S(k, pp', z) can
be calculated from sum rules. '3 These sum rules
imply large z conditions on p, '~

limy(k, p p', z}= y"'(k, p),= [y'"(k, pp', z')],

Z~a

—P
' J d'rcos(k ~ r)[ g(r)V„'V'„V(r)+ P 'V„'V'„c(r)]V,'V~. [fo(P) fo(P')]

(9. 1) Z

I

limzy'"(k, pp, z)f„(p ) =np ' J d'r g(r)[V,'V', V(r)]V,'V~.[f (p)&(p —p')]

(9.8)

(9.4)

In the low-density limit where g(r} = c(r) + 1 = e z '"',
we see our memory function satisfies both sum
rules and gives the correct short-time behavior.

In the limit of long times and wavelengths we ex-
pect our results to be in agreement with the Boltz-
mann equation (although our analysis should elimi-
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FIG. 3. Diagrammatic definition of the many-body T
matrix.

We have succeeded in deriving an expression for
the memory function for a low-density system. We
have treated both the quantum-mechanical and clas-
sical cases and have taken the classical limit in a
natural and unambiguous manner. The validity of
our results in the classical limit are reinforced by
the analysis of the general properties of our clas-
sical memory function in Sec. IX. The correspond-
ing kinetic equation forms the basis for a self-con-
sistent treatment of transport in a low-density sys-
tem. We believe that the technique presented here

nate the defects in that equation). We find, in this
limit, as k-P, 2=+i&, and &-0', that p "-0,
and, after a calculation similar in spirit to the work
of Zwanzig, a that Io'"(k, pp, z) fo(p ) reduces to i
times the linearized Boltzrnann collision operator. 3'

If we set Iu(k, pp, z) = Io(O, pp, i0') in the Langevin
equation before solving the equation, our results
will be in complete agreement with the Boltzmann
equation. We know, however, that the Boltzmann
equation has the defect that the thermodynamic pa-
rameters (for example, the speed of sound) have
their free-particle values. If we first solve the
Langevin equation and then take the limits of small
k and z, me find that there are finite contributions
from y"' that have been lost in the Boltzmann-
equation analysis and which shift the thermodynamic
parameters from their free-particle values to their
correct low-density values.

The conservation laws must be satisfied in many-
particle systems for all times. We note that the
Langevin equation and the associated memory func-
tion we have derived are completely consistent with
the conservation laws governing particle number,
momentum, and energy. Unfortunately, a formula-
tion of the appropriate conservation equations re-
quires more development than we can give here.
We intend to give a full discussion of the connection
between our results and the conservation laws in
a future publication.

We also want to point out that if we expand our
approximate memory function to lowest order in the
potential and introduce the Fourier transform of the
potential, we obtain precisely the form for the
memory function obtained by Forster and Martin
[their Eq. (1.8c)].

X. DISCUSSION

I mould like to thank Professor K. U. Ingard for
his advice and encouragement and Professor P. C.
Martin for a number of enlightening discussions.
I would also like to thank Dr. C. Krischer and

G. Paul for reading the manuscript and making
many valuable suggestions concerning the form of
the paper.

APPENDIX A: ANALYTIC PROPERTIES OF CORRELATION
FUNCTIONS

We consider a three-time quantity

A(t, t, .; ta) = A(t t1 p a (t1+ t1ta) ta) (A 1)

obeying the KMS boundary conditions

A(tltl' I ta) I 1;o= &~-" A(t1t1'I ta) I 1,= i ~

A(t, t;; tail 1;= o
= "e "A(t,t;; tail 1;-„

A(t, t;; tail aa a=A(t,=t;; tail aa

(A8)

(A4)

where r —itIIt an= d 1I =+1 for bosons and —1 for
fermions. It is well established' ' ' that the most
convenient method of dealing with such quantities
is to expand them in Fourier series over the imag-
inary time interval O~t &7:

A(t, t,, t, )=r ' Z e '*"1'1e""a'1'
"&"a

xe""»-'~"aA(z„, z„), (A6)

where z„=zu/v. + I1/If. This sum is taken to run
over all even integers for Bose statistics and over
odd integers for Fermi statistics. This series can
then be inverted to give a dispersion relation for
the Fourier coefficients:

A(z„,, z„)= —Q A, (e, o1) C, (z„, z„, z(o),
dE cf

(A6)
where

4, (z„z„zo1)= (z, —&/Ia+-,'o1) ' (z, —z, —o1) ',
(AV)

for handling the kinetic equation (4. 12) can have

broad applications. Using the basic methods out-
lined in Secs. VI and VII, it appears that we ean
derive expressions for the memory function for any

system with an expansion parameter. These mern-

ory functions could then serve as models for sys-
tems lacking a small parameter.

We should point out that after the memory function
is obtained, the solution of the Langevin equation
still remains a formidable task. This is so because
of the coupling of the momentum variables in the
collision term. Accordingly, we will investigate
solutions of the Langevin equation associated with
the approximate memory function (8. 16) in a future
publication.

ACKNOWLEDGMENTS
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4z(zy, z2, 6(d) = (zg —z/h —z(d) (zg —zm
—(d)

(A6)

4,(z„zz, z~) = (zz —e/h+-,'~) ' (z, —z/h ——,'(g) ', (B2)

by (4. 1) differs in this respect from (13.23) of KB.
We can then formally invert (Bl) to find

T(P, z„) = V, + V, (hz„—P /4m —H) ' V,

and the A, 's are defined by

A, (z(o) =(e z""—I)A„,,(e, (g),

Az(e, (g) = (1 —e z"")A, ,z(z, ~),
A (z (g) =A„. (e ~)(l —r)e '"'"" ' "')

(A9)

(AIO}

(A11)

where H =K+ V is the relative two-particle Hamil-
tonian. If we insert a complete set of energy eigen-
states (on which H is diagonal), we can rewrite
(B2}as

T(P, z„)= V, + V,Z; IE, ) (E, I
V(hz„—P'/4m —E, )

' .
(a3)

+A,.„(e,(o) (1 —ge " "" ' "'), (A12}

where the A,»'s are the Fourier transforms

(t t . t )
~ ie(tg t))/hj» 1 1'y 2

x e '""i"i ' 'z'A, (e (g) (A13)

of the analytic pieces of A(t, t;; tz),

A(t, t,r, tz) = Z E;/~A(/~(t, t;; tm)
f~ j~A

x 8(t; —t/) 8(t( —t~) 8(t/ —tq), (A14)

and where i, j, and 0 run over 1, 1', and 2, &,» = 1

if i~j 4 k and zero otherwise, and 8 is the unit-step
function. The dispersion relation (A6) can be con-
tinued to arbitrary z, and z~ using a procedure
developed by Baym and Mermin. "

For reference we note that two-time quantities,
like G(11'), obey the KMS boundary conditions

B(4 —ti } I ~,- o
= «'" B(ti —tr ) I ~,=. (A16}

and have the corresponding spectral representation
pT

B(z ) ~-1 dt e+ it„(tg- t~, &B(t t )
2F zp Qp4p

(A16)

where
B(~)= B'(~) —B'((o)

and the B' (&o) are the Fourier transforms of the
analytic pieces of B(t).

(Alv)

APPENDIX B: PROPERTIES OF T MATRIX

Many important properties of the T matrix are
discussed by Kadanoff and Baym'z (referred to here
as KB); we will only discuss a few simple proper-
ties valid for low-density systems. We start with

Eq. (13.17) in Ka written in a matrix notation in
the radial indices:

T(p, z„)= V, + T(P, z„)(hz„—P /4m —K) ' V, (Bl)

where K is the relative kinetic-energy operator
(Kip) =pz/mlp)). Note that in our definition of T
we have maintained the exchange effects in the in-
homogeneous term V, . Our expression for Z given

It then follows, from (13.9) of KB, that the spectral
function associated with T has the form, in the low-

density limit,

T (P, cu }= V+(P, m ) V = VN(P, d )V, , (B4)
where

N(P, ~) = ~; I E;) & Ei I (2v) ~(&(o —P'/4m —«) . (B6)

Note the sum rule on ¹

(B6)

=(r,rzI& (t, —t,, )Ir,.r2, ) V(r,. —r2 ) . (B7b)

The analytic properties of the 0's follow directly
from the properties of T. We can show that in the
low-density limit, in analogy with (B4),

fl,'(P, ~) =V, N(P, ~), (aga

II) (P, (gr) =N(P) (g)V, . (Bgb)

Finally, we can prove a useful identity from (B4) if

we note that the potential operator can be written
V= H —K. We have

T (P, (o ) = (H —K) N(P, (o )V,

= (h(o —P /4m —K) A)(p, (g),

T' (P, (u ) = fl )(P, (u ) (%u —P'/4m —K),

(B9a)

(B9b)

and we can write similar identities for 0~ and 0
in terms of N.

APPENDIX C: WIGNER EQUIVALENTS

In our short discussion of Wigner equivalents we
follow Imre et al. , where many more details are
given.

Corresponding to a quantum operator A(R, P),
we define a function A~(r, p) by

A (r, p)=h'f d'ke '"' ~(p ——,'hkIAIp+2hk}. (Cl)

We will find it convenient to introduce the auxil-
iary quantities 0 '" defined by

(r,rzI T(t, —tt. )Iri'ra')
= v(r, —r~) (r, r2In (t, —t;)Ir,.r~), (ava)

(rir2 I
T(t, —t;) Ir,.rr )
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(AB)~(r, p)=A~(r, p)e ~2'B~(r, p), (C2a)

A~ is called the Wigner equivalent of A. The Wigner
equivalent of a product of operator AB is given by

Kadanoff and Martin and Martin have treated such

a system. Using their results, we find that the
linear change in the spatial Wigner function (3. l)
is given by

(AB)~(r, p)=B~(r, p)e" ~z'A~(r, p),

where A is the Poisson bracket operator

~ —Vp V„—V„~ Vp .

(C2b) B, (R, z) = J dte'"'[B, (R, t) —B„(R,t) ~~ 0]

= J d'r'd'R'd'pd'p'e'" "e''"'" "

As a simple example, consider the classical
limit of the Wigner equivalent of the commutator
of two operators. If the operators A and B are
such that their Wigner equivalents have well-defined
classical limits, A~-A, and B~-B„ then

xg(R R', p, p', z)U. (R'), (Dl)

where Z is the generalized Kubo function defined

by (2. 14). We also find that the linear change in
the spatial Wigner function at t =0 is given by

limig '([A, B] ) (r, p)
h Q

=limih 'A~(r p) (e" @ —e " ')B (r p)
h Q

=A, (r, p) AB, (r, p}= [A„B,]ps(r, p) . (C3)

APPENDIX D: RESPONSE TO ADIABATIC EXTERNAL
POTENTIAL

We are interested in the linear response of a sys-
tem taken out of equilibrium at t- -~ by the adi-
abatic external potential given by (3. 2) and (3.7).

SB, (R, t=0)= JdB'dr'dPdP'e"' "e '~'

x X(R —R', p, p', z=0)U~(R') .

U(p, R)=(dr'e'@'' "U„.(R). (D3}

(D2}

To compute the change in the Wigner function,
which has a well-defined classical limit, we need
only Fourier-transform (Dl) and (D2) over r and

observe that the effective coupling is over the mo-
mentum-dependent external potential
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We continue the considerations of the first paper in this series by studying the time depen-
denceof the spin-correlation functions in response to a step-function change in the external
magnetic field. We find that these correlation functions exhibit nonergodic behavior.

I. INTRODUCTION

In a previous paper' we studied~ time-dependent
properties of the z-direction magnetization of the
one-dimensional XY model. In particular, we
considered an XY model in thermal equilibrium
at temperature T in the presence of an external
magnetic field H, . At time t =0 the field is
changed to some other value Hz, and M, (f ) was
computed. The most interesting aspect of M, (f)
is that if H2 = 0, then

limM, (t)a0 as f-~ .
However, for all values of T, M, is zero when the
model is in thermal equilibrium. Therefore we
concluded that (at least when Hz =0) the magnetiza-
tion of this model does not exhibit ergodic behavior.
This property was first discovered by Mazur using
results obtained by Niemeijer, and further elabo-
rated by Katsura, Horiguchi, and Suzuki. '

In this paper we continue the exploration of the

nonergodic features of this system by examining
the spin-correlation functions. After formulating
the problem in Sec. II, we study, in Sec. III, the
long-time behavior of p„(R, f, T). We find that for
any value of Hz,

limp„(R, t, T, ) & p„(R, 0, Tz) as t —~

for any T~. In other words the t-~ limit of p„ is
not a correlation function of the XY model in ther-
mal equilibrium. Furthermore, in Sec. IV, we
study the limit

and find that the long-range order exhibited by
p„„at t = 0 totally disappears.

II ~ FORMULATION

Let c;, c~ be the Fermi operators defined by
(2. 3) of I. Define the operators

f~f ct+cj


