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A theory is presented of the damping and frequency shift of phonons and of the ground-state
energy corrections due to interactions between phonons in quantum crystals with singular

forces.

The technique begins with the adoption of a trial ground-state wave function of the

Jastrow form, together with trial excited-state wave functions constructed to represent one-,

two-, and three-phonon excitations.

The Hamiltonian matrix in this restricted basis is di-

agonalized, and the basis is optimized by minimizing the lowest eigenvalue with respect to

variational phonon parameters.

Using a lowest-order cluster expansion, the unambiguous

prescription is obtained that a specific effective potential, softened by the Jastrow correlation
function, replaces everywhere the true potential in the existing self-consistent theory of

phonon damping applicable to nonsingular forces.

Close analogies are drawn with the corre-

lated basis function treatment,of superfluid liquid helium.

I. INTRODUCTION

One of the leading unresolved questions in the
area of the lattice dynamics of quantum crystals
which is presently receiving considerable research
attention'~* is that of the role played by short-range
correlations in the interactions between phonons.
In a crystal where the forces between atoms are
weak and completely regular everywhere, the de-
scription of the scattering of phonons from each
other due to the residual anharmonicity, and of the
resulting decay rates and frequency shifts of the
vibrational modes, has already been well estab-
lished. >-'® A variety of alternative mathemathical
techniques has been developed for arriving at this
description. In a quantum crystal such as helium,
however, not only are the forces very strongly re-
pulsive at small interatomic separations, but more
importantly, separations of such small size would
be physically realized with substantial probability
if the forces were not strong, because of the ex-
ceptionally large vibrational zero-point motion.
Thus, it is vital in treating a material such as solid
helium to take explicit account of the short-range
correlations by which dynamical configurations of
high potential energy are avoided, configurations
which would otherwise be favored from zero-point
kinetic energy considerations alone.

The effect of correlations due to short-range re-
pulsion on the frequencies of phonons, considered
approximately as free noninteracting modes, has
already been the subject of considerable investiga-
J
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tion. ¥ While this question is by no means com-
pletely settled, it is probably fair to say that con-
sistent results are being converged upon from dif-
fering viewpoints which are qualitatively reasonable
and semiquantitatively satisfactory. However, it
is generally conceded that corrections to these de-
scriptions arising from interactions between pho-
nons could well be sizable, and that estimates of
these corrections based on simple physical reason-
ing and educated intuition are not entirely reliable.
It has thus become of critical importance to develop
a careful and systematic treatment of phonon inter-
actions including the effects of short-range correla-
tions, so that present theoretical approximations
starting from noninteracting phonons can achieve

an additional measure of credibility and so that
comparison with experimental data'®'!” can be used
as a fully meaningful test of computations.

In surveying the techniques which have been used
previously to treat the lowest-order noninteracting
phonon approximation, we find that the scheme of
Koehler'®'® is the one which is most readily extendi-
ble to include phonon interactions. The Koehler
scheme to lowest order can be viewed strictly as
a variational one in which a trial ground-state wave
function for the crystal is exhibited explicitly, and
the expectation value of the Hamiltonian in the trial
state is minimized with respect to a set of varia-
tional parameters. The trial wave function is
chosen to be in the form of a product of pair func-
tions:
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~ - - 1. - - /2
[f d¥y| W(T,, ..., Ty)|? exp(— 2 S Uye Ty u,,)] s

i<y 2

¥F, ..., = I 7y(Fy), (1.2)
i<j
where the T;; are coordinate differences,
T,=T-T;, (1.3)
U, =T, =Ry, (1.4

are displacement differences from mean lattice
sites ﬁ, which form a regular crystalline array.
The Gaussian factor in ¥, is just the ground-state
wave function which would obtain for some quasi-
harmonic crystal whose force constants (or oscil-
lator frequencies) are dependent on the particular
choice of coefficients T;. The factor ¥ is of the
so-called Jastrow type, containing pair functions
f(T) chosen'® to take account of the strong short-
range repulsion between atoms. These Jastrow
functions are required to tend rapidly to 0 for small
interparticle separations and to uaity for large
separations:

fi; =0, T-0
~1, F=co.

(1.5)

It is then possible to evaluate the trial ground-state
energy,

Ey=(¥q, ¥y , (1.6)
for a Hamiltonian
1 -
K= ‘E o, "3 Ej vy, (Fyy) 1.7

of particles interacting by pair potentials V; ,(Fi,).
The coefficients T; are to be determined by re-
quiring that E, be stationary with respect to varia-
tions of the T;.

Since the Gaussian function

1. —_— .
exp(—- E 5u,~,-1",,-u,,>
i<j

is the exact ground-state wave function for some
quasiharmonic crystal, the phonon frequencies and
polarization vectors of that crystal can be expressed
in terms of the matrices T;;. In the absence of
strong short-range repulsion, with v everywhere
weak and f- 1, these frequencies are also given by
the inverse eigenvalues of the displacement correla-
tion function,

(1.8)

However, when short-range correlations are pres-
ent the equivalence of these two definitions of the

phonon frequencies no longer holds; it is preferable
to continue the interpretation of the phonon frequen-

D;;= (¥, 0,4, &) .
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T

cies as taken from the displacement correlation.
Again in the absence of short-range correlations,
the phonon frequencies and polarization vectors de-
termined in this way are identical to those of the
first-order self-consistent phonon approximation®
derived by a variety of other mathematical tech-
niques.

Although the variational approach is the neatest
and most compact way to obtain the self-consistent
phonon results summarized above, the development
originally proposed'® by Koehler is the more useful
when investigating generalizations. Koehler sug-
gested the display of not just a ground-state wave
function, but in addition a set of low-lying excited
states as well. These excited states are interpreted
as differing from the ground state by the excitation
of one or more phonons. Since it is argued that the
lowest-lying excitations should not interfere with
the short-range repulsive correlations, which in-
volve dynamics of much higher excitation energy,
the excited states are exhibited in the form of low-
order polynomials in the displacement variables
multiplied into the ground-state wave function.
Jastrow product is thus assumed to remain un-
changed from ground state to low excited states.
The coefficients in the polynomials are chosen to
make the states orthonormal. Matrix elements of
the Hamiltonian in the phonon basis states can
readily be evaluated and a full Hamiltonian matrix
exhibited rather than just the ground-state expecta-
tion value. The remarkable feature of this matrix,
pointed out by Koehler, is that the stationary varia-
tion condition on E is identical to the condition of
the vanishing of those matrix elements of 3¢ between
the ground state and all two-phonon excited states.
A further result is that when this condition is sat-
isfied the excitation frequency of the one-phonon
state is precisely the same as the inverse eigen-
frequency of the displacement correlation function.
This important equivalence gives added support to
the interpretation of the constructed basis set as
representing phonon excitations and also of the
ground-state displacement correlation as the proper
source for phonon eigenfrequencies.

The original Koehler viewpoint, that of the evalua-
tion of a Hamiltonian matrix with respect to an ex-
plicitly constructed basis set representing ground-
state and low -lying excitations, is one which lends
itself naturally to a sequence of generalizations.

If the lowest-order self-consistent phonon approxi-
mation is equivalent to the diagonalization of 3 in
the zero- and one-phonon subset, with subsidiary
condition of vanishing matrix elements between
zero- and two-phonon states, then in the next order

The
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of approximation 1€ can be diagonalized in the larger
subset of zero-, one-, and two-phonon states.
Successively higher approximations can be generated
by enlarging the subspace in which ¥¢ is diagonalized
to include states with successively larger numbers
of phonons. It is just this generalized approach
which we propose to develop in more detail in the
present paper and which we will show leads to sys-
tematic, unambiguous, and easily computable for-
mulas for phonon spectral functions as corrected

by phonon-phonon interactions.

What seems not to have been widely appreciated
in the past about this methodology of phonon basis
states is its remarkable similarity to the approach
originated® by Feynman and Cohen and carried
further? by Feenberg and co-workers in their study
of the excitation spectrum of the superfluid phase
of liquid He!. Even though the mathemetical tech-
niques were developed independently and to some
extent concurrently, the recent literature does not
indicate the close connections between the two pro-
grams. We will find here, by being able to pursue
two distinct physical problems with what is essen-
tially a single formalism, that we can enlarge our
understanding of the formalism beyond that achieved
so far within each problem separately.

II. HAMILTONIAN MATRIX
A. Basis States and Matrix Elements

The trial ground-state wave function, as a prod-
J

N
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uct of Jastrow and Gaussian factors, has already
been exhibited in Eqs. (1.1) and (1.2). In order to
display the excited states, we first introduce a
diagonal representation for the displacement corre-
lation function,

Dy, = T DalM, M)V 2E ¥, (2.1)

where the eigenvectors €} are labeled by an index
A=1,..., 3N and obey the orthonormality and com-
pleteness relations

Dy =00, 2a€hTX=10,, (2.2)
Because ‘I-).” is a symmetric matrix from its defini-
tion Eq. (1. 8) there is a degeneracy in the phonon
representation: If €/} is an eigenvector, then the
vector labeled by A* such that € !x=Z!* is also an
eigenvector with identical eigenvalue, Dyx=D,.

We then define displacement coefficients for in-
dividual phonon modes,

uy= 2, MY 2EX. G, . (2.3)
The excited states are expressed as polynomials
in the u,’s acting on the ground state, where the
coefficients are chosen to make the states mutally
orthonormal. In terms of the nonorthonormal set

| M)=ual0), A1, ADd=up us[0), ete., (2.4)

the orthonormal set | A,,.
by the linear combinations

.., A,;) can be expressed

G ADIAL, L AL (2.5)

Matrix elements of the Hamiltonian in this basis set can be evaluated with the aid of the identity

(0] P3¢ Py| 0)=(0| P, Py [V = 23, (h*/8M ) V7§ In| ¥,| *]| 0)

-(0| 22, (W*/8M,) [P, V4P, + P, ViP,=2(V,P,)* (v,P,)]|0),

(2.6)

where P,=P,({u,}) is an nth-degree polynomial in the mode coordinates u,. Inserting the expression (1.1)

for ¥, gives

(0| P3¢ P,| 0)= (0| P, P,, U*|0) + ?2, (7*/4M,,)) T,:1 (0| P, P,| 0)
<Jj

-(0|2 (#%/8M,) [P, V2 P+ P, ViP, =2(V,P,)" (V;P,)]|0),
i

where

V*¥= Z: UTJ(;H)
<4

= a [vy(F,y) = (B2/4M,,) V3, Inf 2, (F,,)]

(2.8)
and where

My,= 37+ M) (2.9)

2.7

is an average mass for the pair of particles. By
utilizing the expression (2.7), one can write down
various matrix elements; those of most immediate
interest are

Eo={0| v*|0)+ T (B¥/aM,)T,,: T, (2.10)

i<4

(0[3¢| Ay= D520 uyv*|0)=0, (2.11)
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(0|3 | Ay, Ap) = AEA' a(Ay, Ay A, A')

X (0| [upw pr = %, 40 DyJU* |0)

- o,%, 00 (2.12)

(A|3C| A’) = (Dy Dp)™ 20| wfups 0*[ 0) + 5 72 6y, 5]

+ E (P/aM ) Tyy:T 65,00 (2.13)

B. Optimization of Basis States

The coefficients ‘f”, s in the ground -state wave
functions remain at our disposal. These may be
chosen either variationally, to minimize the ground-
state energy expectation value, or through the re-
quirement that matrix elements between ground
state and all two-phonon states vanish. As pointed

out by Koehler, these conditions are in fact identical.

Varying E, with respect to I';;, or more convenient-
ly, with respect to the linear combinations

Gy= 2 (64,00 =04,50) (81,50 = 84,3 ) T
i

(2.14)
leads to
0=0E,/5G,,
= - (0| @3, - (0| ¥,4,| 0)) V*|0)
+(m¥/amy) 6, , T . (2.15)

Comparing Eq. (2.15) with Eq. (2.12) via the trans-

J
1 - - - - -
<W)Gsfd3N'r exp(-—z-z; ;e Gy u]> W(Ty,..., Ty
i,J

Equation (2. 18) implies that if we diagonalize the
“effective dynamical matrix” &, so that

By = (MMM Y, Q28N 2. 21)
i

with eigenvectors Eﬂ which satisfy orthonormality
and completeness conditio&s of the same form as
(2.2) for the €}, then the G;, are also diagonalized,

Gy =2a [n/204,M)"2 Q]88 (2. 22)

The eigenvectors and eigenvalues of 3;,, , however,
are not the same as those of D;;. An evaluation of
Eq. (1.8) similar to that of Appendix A yields

D,,=G;}+“Z;l Giter (V49,0 | ] 20 (|8 2)0) Gl
(2.23)

Thus the self-consistently determined frequency
2, does not equal the phonon excitation frequency
wy, even though they would be identical in the ab-
sence of short-range correlations.

While the formulas obtained thus far are algebra-
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formation (2. 3) shows that an entirely equivalent
condition is

©lse|a A )=0 (2.16)

for all A, A’. When Eq. (2.16) is satisfied, the one-
phonon matrix elements reduce simply to

(A|GC=Eg)| A") =6y, r(H?/2Dy)= Sp, a0 Bwy
(2.17)

where the second line provides a definition of the
excitation frequency w,. The important implication
is that the proper choice of I';; not only removes
all elements (0|3¢| A, A’) from the Hamiltonian ma-
trix, but also diagonalizes the submatrix (A|3d A")
and leads to one-phonon energies which are just
given by the inverse eigenvalues of the displace-
ment correlation.

Equation (2.15) can be rearranged into a more
useful form by explicitly recognizing the product
character of the ground-state wave function Eq.
(1.1). Integrating the U;li, factors by parts against
the Gaussian factor (see Appendix A for details)
gives

#¥/aM )8, T =2 Gl e Gy, (2.18)
",,'
where we define
E;UE<VIVJ [[%]2(v* - O]v*[ON])e/(| ¥]%)s  (2.19)

and use the notation that for any function
W= W(f,_, “ ey -EN))

)/[d’”r exp(—% ;- G, a,). (2. 20)
i,
[

ically rigorous, the presence of the factors |¥!?
dependent on all 3N coordinates, is a fatal compli-
cation. Approximations must be introduced to re-
duce the formulas to a manageable level. The ap-
proximation generally used is the first-order van
Kampen-Nosanow®® cluster expansion on the
ground-state energy E,. For present purposes,
however, we choose to describe it equivalently as
an approximation on the two-body distribution func-
tion, which we define as

&,(T)= (0| 6% T-T;y)|0).

In terms of g,(T), E, is rewritten as

(2. 24)

Eq= 123! (07%/aM )Ty, T+ [ d% g,y (F)v}y().
<

(2. 25)
The simplest physically reasonable approximation

that can be made for g4;(T), based on the Jastrow
product form for ¥, Eq. (1.2), is
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gu(?); exp(- %ﬁ‘:;u' ﬁ)ffl(?)/ =§> (}i/ZQA)(,E (6"‘ B bl'i)M;”z E}\)
- - -> *
fd 3,', exp(- %u' 7‘!‘ u)’ (2~ 26) )((Zt: (51" - 6,")M;1/2 EIA ) . (2. 28)
where

With approximation (2. 26) for g;,(T), the condition
72 ()=12,() Jd% exp(-18.7;,+ §)f%,(F) tpat E, be stationary remains Eq. (2.18), but defini-
i i Ta% exp(- 13- 7, 0) tion (2.19) reduces to

3;”; Z} é(ﬁ"‘:—5",')(55'11-6/,1')<VV5(‘1'>7 ,(2°29)
‘l"'

=f 5B/ )y (2.27)
- where 7 is an effective potential,
and where v, is defined (see Appendix B) by its . 22 e . R e x
three-dimensional tensor inverse: 0,(P)=F4(P) [y(F) - [ d% g,(Fy(F)). (2.30)
7’}, =2 (850,4— 840 4)(8y0 ¢ - 5,,'1)'5;}1, S}milarly, Eq. (2.23) for the displacement correla-
iy tion reduces to

D,zGl+ L Gk IZE 3600, = 840,1)(650,1 = 850,0) (VIF ), Gty (2.31)
i, !

C. Corrections to Phonon Excitation Energies

Although states with zero, one, and two phonons excited have been constructed [Eqs. (2.4) and (2. 5)] not
all matrix elements of 3C using these states have been exhibited yet. If we view these states as forming a
subspace out of a complete Hilbert space of states, then the matrix of 3¢ in the subspace must also include
the elements (Al3€| A;, A;) and (A, A,I3CIA{, A;). The first of these is fairly simple to evaluate using
identity (2. 7) and the techniques of Appendix A:

B \i,4

(Al3c| Ay, A)=D;M2 AZ‘;\ ald,, AZ;A’,A")<[H(E Myl Gl v,>][|\i|z (-m_(olv*|o>)]>c/(|\i:,z>c,

(2.32)

where the product runs over the three values u=A* A’, and A’’. The remaining matrix elements, between
pairs of two-phonon states, become quite lengthy when written out in generality. They simplify enormously
if short-range correlations are entirely absent, in which case

Ay, Ag|GC= EQ)| Ay, A2) e s (64 1,4404 5, 2%+ Oa (400 5, a¢

l)h’(u.),,lﬂn.),, )

2

+ E<§I“I [?(W’f%)”z(m -8, )& v]} v,,(?,,)> . (2.33)

where here u takes on the four values i=Af, A, A¥, and A;. When short-range correlations are present,
the formulas become complicated both because of the distinction between 'C-}.]} and E, and because of the ap-
pearance of third and fourth derivatives of |¥ |2 Since we are ultimately interested in quantities which do
not depend sensitively on two-phonon matrix elements, and since such elements are not numerically sensi-
tive to these complications, we adopt the following approximation in the presence of short-range correla-
tions:

(Ay, Azl (3c - Eo)' Ay, Ap)= (GAI,A'laAz,A'z"' GAI,A'25A‘2,A'1)ﬁ(wA1 +0~‘Az)

+ 2 {H[‘E(wh;m)m (65,4= 6, )€+ V]}w'/,,(FU»,. (2.34)

i<y vl

This also incorportates the approximation (2. 26) for the two-body distribution function. Similar approxima-
tions for the matrix elements of Eq. (2. 30) reduce them to

/2
(A'JCIA’, AII)ngilz E {H[E(Wh;sz—j (51.1‘51,;)2",*- V:I}\‘;u(f"”)>7. (2. 35)

<4 vl ?
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The approximation (2. 26) on the two-body distribu-
tion function leading to Eqs. (2. 34) and (2. 35) is
equivalent to a lowest-order van Kampen—Nosanow
cluster expansion on excited-state as well as
ground-state matrix elements.

The derivations of the one- and two-phonon ma-
trix elements just presented have also implicitly
used the Ej-minimization criterion (2.18). With
this condition satisfied, so that (0|3l A, A’ )=0, the
full matrix of 3C in the zero-, one-, and two-phonon
subspace is easily diagonalized. In particular, the

det

AgSAg ASAY

(Bwp =N)Bp e = 20 20 (AIRIAy, Ag) (Ay, Ag|BC— Eq= )| AY,
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lowest eigenvalue of this submatrix is just E; itself.
Thus the condition (2.18) can also be viewed as a
minimization of the lowest-energy eigenvalue in the
zero-, one-, and two-phonon subspace, and not just
in the zero-phonon subspace alone as implied by
Eq. (2.15). Furthermore, the eigenvalues corre-
sponding to one-phonon states have excitation ener-
gies corrected from the values 7Zw, by the inclusion
of the off-diagonal elements (A|3C|A’, A’ ). These
improved phonon excitation energies are given by
the roots of the secular equation

5y (AL, Aplse| A Y| =0,  (2.36)

where the inverse is taken in the 3N(3N +1)/2-dimensional product space indexed by the pair Ay, A,.
In further evaluating this expression, attention must be given to the second line of Eq. (2.34), involving
four derivatives of ¥. If this term were absent, Eq. (2. 36) would simplify considerably to

det

A1gAg

This is just the sort of second-order perturbation
theory correction which intuition would anticipate.

If atomic vibrational amplitudes were small so that
all quantum crystal effects of both short-range and
long-range character could be neglected, exactly
the traditional cubic anharmonic second-order cor-
rection is recovered. The presence of the four-
derivatives term in Eq. (2. 34) is not unexpected,
however, and can be understood on the basis of the
self-consistent phonon theory where short-range
correlations are neglected. It was first shown® by
Gotze and Michel that if elastic constants of a crys-
tal are calculated in two ways, first, by twice differ-
entiating the free energy with respect to strains and
second, by taking the long-wavelength limit of the
dynamical matrix, and if the energy is represented
by the first-order self-consistent phonon approxi-
mation which is equivalent to Eq. (2.10), then the
two calculations of the elastic constants agree pro-
vided the dynamical matrix includes the four-deriva-
tives term. In the self-consistent phonon formal-
ism, this term is due.t_g the necessity of reminimiz-
ing E, with respect to G;; for each differing set of
strains, so that strain derivatives of E, implicitly
involve strain derivatives of the two-particle dis-
tribution function. Although the derivation of Gotze
and Michel was only concerned with macroscopic
elastic constants, it was assumed by Goldman

et al. that inclusion of the four-derivatives term
gives the proper phonon frequencies at all wave-
lengths. This hypothesis was confirmed® by
Werthamer, who showed that the phonon frequencies
observed in neutron scattering at low momentum
transfers, when computed as the response of the

(Fwx =N)6a,a0= 20 (A[3| Ay, Ag) (Bwp +Biwp, =)™ Ay, Aglse| A7) | =0.

(2.37)

first-order self-consistent phonon approximation at
equilibrium to an externally applied disturbance,
were given by the eigenvalues of Eq. (2. 36) includ-
ing the four-derivatives term.

III. COMPARISON WITH CORRELATED BASIS FUNCTION
TREATMENT OF SUPERFLUID HELIUM

The theoretical approach to superfluid helium
which was initiated originally?! by Feynman and
Cohen has subsequently been developed extensively??
by Feenberg and co-workers and has been termed
the “method of optimum correlated basis functions.”
It begins by making an explicit ansatz for the ground
state of He 11 as a product wave function of the
Jastrow form, with the pair function not further
specified. It is then recognized that the low-lying
excited states are related to density fluctuations
with dispersion curve of the phonon-roton form,
so that excited-state wave functions are constructed
by multiplying low-order polynomials in the den-
sity operator into the ground state. Coefficients
in the polynomials are determined so as to produce
an orthonormal set of states, and matrix elements
of the Hamiltonian are evaluated.

An optimization of the phonon basis set is next
achieved by requiring the ground-state energy ex-
pectation to be a minimum, or equivalently by re-
quiring the vanishing of all Hamiltonian matrix
elements between states with » and » +2 quanta of
a particular phonon mode. The excitation spectrum
is identified with the difference in energy expecta-
tions between the single phonon-roton state and
the ground state. Further improvements on this
description of the ground-state and phonon-roton
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excitation energies are achieved by taking account
of additional off-diagonal matrix elements, although
in the Feenberg scheme these are treated by per-
turbation theory and not by rediagonalization of
sequentially enlarged finite submatrices.

The unperturbed phonon excitation spectrum in
the Feenberg scheme is just the one originally ob-
tained by Feynman,

Fiw, = B2R%/2MS(R), (3.1)

where S(k), the so-called liquid structure factor,
is the Fourier transform of the two-body distribu-
tion function or equivalently of the density correla-
tion function. Since the elementary excitations in
the superfluid are density fluctuations, S(k) can
also be regarded as the phonon propagator and in
that sense is the analog for the liquid of the dis-
placement correlationDin the solid. The Feynman
formula, Eq. (3.1), is thus the formal analog of
Eq. (2.17),

Fwy =H2/2D, . (3.2)
Carrying the analogy further, Feenberg and co-
workers have shown in detail that the first pertur-
bation correction to the one-phonon excitations,
involving the admixture with two-phonon states,
produces a corrected excitation spectrum which
agrees with that first proposed by Feynman and
Cohen from consideration of the backflow of liquid
around a moving localized disturbance. From this
viewpoint, the classic three-phonon anharmonic
process in a crystal is the formal analog of the
Feynman-Cohen backflow effect in the superfluid
liquid, %

When sketched in this way, the method of cor-
related basis functions is evidently identical in
philosophy and procedure to that of Koehler. Some
differences appear, however, upon closer inspec-
tion. In the first place, Feenberg is able to evalu-
ate in a simple way matrix elements between states
with rather large numbers of phonons because he
restricts himself to long wavelengths, where in-
terference terms analogous, for example, to the
second term of Eq. (2.23) are negligible. In this

il
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way he is able to demonstrate that when E; is a
minimum an entire infinite subset of off-diagonal
matrix elements simultaneously vanishes. But
such a result is really only valid for the acoustic-
phonon part of the excitation spectrum, and exten-
sions to the shorter-wavelength roton portion
should be regarded as only of qualitative signifi-
cance. As Koehler has demonstrated, the second
term of Eq. (2.23), or more specifically of Eq.
(2. 31), is a correction substantially greater than
20% in solid helium near the Brillouin-zone bound-
ary.

One aspect of the phonon-roton spectrum where
this distinction could be critical is for the roton-
roton resonance conjectured by Ruvalds and Zawa-
dowski® and by Iwamoto and co-workers. 2" They
were able to explain and predict a number of prop-
erties observed in neutron®® and laser Raman-scat-
tering?® experiments on the basis of a strong inter-
action between two rotons, leading to a bound, or
more likely a resonant, two-roton state. The theo-
retical analysis which Ruvalds and Zawadowski
developed for this proposed effect follows the lines
of earlier treatments® of possible two-phonon reso-
nances observed® in SiO, and AIPO,. In application
to the latter crystalline cases, it is argued that
such resonances reflect themselves in the near-
vanishing of the two-phonon scattering probability,
or in other words, in the existence of a nearly
zero eigenvalue for the matrix (A;, A,l(3¢— Eg—2)

X | Af, A;) which appears in Eq. (2.36). In this
event, the phonon interaction represented by the
off-diagonal second line of Eq. (2. 34) is not at all
negligible in comparison with the noninteracting
phonon propagation represented by the first line.

It is natural to extend this analytical approach to
the superfluid liquid by employing the method of
correlated basis functions, but with the crucial
generalization of allowing for excitation interaction
at short wavelengths in the evaluation of two-ex-
citation matrix elements. Such a development
would permit a quantitative first-principles inves-
tigation of whether two-roton resonances do indeed
exist, given the actual microscopic parameters of
liquid helium.,

APPENDIX A

In this appendix we detail the transformation on the matrix element

K= (0] (38, - (0] &, &, 0)0* | 03=((F, &, - 0] T, &, 03) | #]20*) o 4| ¥| 24 (A1)

leading to Eq. (2.18). Recollecting definition (2, 20), for any function W= W(F,, ..

(W = fdwrexp (- ; z3, .‘6,,-6,) WE,, .

',rN),

.. ,FN)/fds”rexp(— % ‘Z ﬁrEr@) . (42)
¥
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But by Taylor’s theorem, ponent; then we have
W(F,, ..., ty) =exp(Z 1, V,)WR,,...,Ry), — 52 15 =, ‘- 2 *]/
(A3) K“—W [exp(i gJG”' V,Vj> ¥
so that

¥

zv*]/ [exp( ‘Z v,v,)l H} (A5)

where G;} is an inverse in the 3N-dimensional space

@Iz]} . (Ag) such that
Ztail ‘6;} =6,',.1. . (A8)

R seree (o (55-%)),
(e (%)),

The Gaussian integrations are easily done by com-
pleting the square on the quadratic form in the ex- Carrying out the differentiations gives

v/

1 — ~|2 — 1 -~ ~12
[exp <§ ;2:; G{j:v, V,-) v J} .G,,‘,/ [exp(-z— tZ; Gil:v, V,-> I\Ill J . (A7)

Reversing the steps which lead from Eq. (Al) to Eq. (A5) allows Eq. (A7) to be reexpressed as

— — 1 -
K= 2 G“l.oexp(§ 2Gliv, v,)v,,v,. | ’ { [exp(z 2Gliv, v ) l\lf
1,4 i, i,

Ky = ([ #1200 Z Gib (909, (|92 (0" ~(0[0*|0)])6 -G, (A8)

which is the same as Eqs. (2.18) and (2. 19).

APPENDIX B

In this appendix we develop an expression for, and an approximation to, the two-body distribution function
defined as in Eq. (2. 24),

gu(i:)5<53(;“Fu)|‘i’|z>c/<“i”2>c- (B1)
Using the integral representation

6%r - 1y,) = (2m) 2 [dPk T Ty (B2)

for the ¢ function, and using Eq. (1.2) together with Taylor’s theorem on |§|?,

I‘i’(ﬁ, .- -,F~)|2= [exp<Z ﬁu-VU>]H f%j(ﬁll) ) (B3)
<Ky i<y

leads to

(o (R e B, o

The techniques of Appendix A enable the Gaussian averages to be evaluated,

&iy(F)=(2n)° / d°k exp[- ik- (F - R,)] [exp(— 3k ‘EJ.U'K\‘ ik 2 e Vw)
<

xexp( 2 27, dyose, ppet v,.,.v,,.><n f,.,,(R,.,.)>]/[exp<2 4Z 24 diejo,1pet V‘.,.V,,l)(nf,.,,(R,.,.)H ’

2 i<4 K1’ <k

(B5)
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where
dygy40g =TTy = ,Z;.(él.f =81, 0= 84, )Gl (B86)

The k integral can be carried out by completing the square of the quadratic form in the exponent:

gu(F)=<exp(—% Yise uyfd’uexp( 30y

o)l

ggn E:’.(‘i'jl”'-di'l |j'7” du'”) Vi'j'v”)

xexp(ﬁ- DIRIIRY: V,,.)( I ff.,,(ﬁi.j,))]/
<’ i<y’

o

where ¥y, is the three-dimensional inverse of d;, ,,,

- -
Vis* dig,5=

2z Z)'d',,,.,,,,:v,.,,v,,)({I(Ij'ff.,.(ﬁ,.,.))] , (BT)

<4 e

1. (B8)

The factor occupying the first line of expression (B7) is simple enough to be retained in any approximation

to g,(F).

with i%’#1l’. Then

£iy(F)= [exp(- 307, 1)

1 > c-—

= [exp(= 307, W) f4(F)]/[ [d* exp(- 3 8-

The remaining factors we approximate to lowest order by neglecting all terms containing 3,.,,,,,.

/ [ d*uexp(- 387, ©)] f3,(F) / [exp(3d,,,.,: vy Viy) £ 3, (Ry))

W) f5(F)]. (B9)
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Reduced pressure, volume, and temperature variables P * =¢’ 3p/e’, V*¥=V/No'%, and T*
=kT/€', in which ¢’ is the atomic radius and € is the heat of sublimation per atom at 0°K,
are introduced as the basis for a new law of corresponding states. This law of corresponding
states is applied to all experimental P(T) vapor and sublimation pressure data for the group-
I and -II elements. The PXT *) data for these elements fall on a common curve of the form
InP* =a* — b*/T*, with an average deviation of about 40%, over ten decades in P* from 10-1%
to 1075, For group-IIb elements alone the corresponding curve shows an average deviation
of only 9.3% over almost seven decades in P*. Expected extensions and limitations of this
law of corresponding states are investigated. It is shown that the correspondence may extend
to vapor- and sublimation-pressure curves of many substances over wide P and T ranges,
but probably does not extend generally to other properties. This law of corresponding states
is shown to have a theoretical basis in thermodynamics and the Clapeyron equation. Theoret-
ical expressions for dP*/dT * and, approximately, for P* (T *) are derived which show
correspondence and agree with experiment. For the case of heavier rare gases, the present
law of corresponding states is approximately identical to the usual law of corresponding states

for van der Waals substances based on potential parameters.

ing states are compared.

I. INTRODUCTION

The law of corresponding states is an old law,
originally formulated by van der Waals about 100
years ago.! A statement of the law of corresponding
states which will be particularly useful to us is
this: The equations of state of some substances
may be written as a single universal equation of
state in terms of suitable reduced variables. Thus,
if the individual equations of state are f;(P, V, T)=0,
then the universal equation of state is F(P*, V*,

T* A*=0. Inthese expressions P, V, and T are
pressure, volume, and temperature; P* V* and
T* are the respective reduced variables, and A*
is a reduced quantum-mechanical parameter.

A characteristic part of the idea is the way in
which properties are reduced, i.e., nondimension-
alized. In this paper we shall be interested in a
new way of reducing physical properties. In the
earliest formulation of the law of corresponding
states (LOCS), the quantities P, V, and T for a sub-
stance were reduced by dividing by the respective
values at the critical point of the substance; i.e.,
the reduced variables were taken as P,= P/P,,,
V,=V/V,., and T,= T/T,.. The applications of the
van der Waals LOCS all derive from the fact that the

These two laws of correspond-

van der Waals equation of state may be written in
a universal nondimensional form in terms of P,,
V,, and T,.2

The more modern form of the LOCS uses inter-
molecular potential parameters to form reduced
variables from unreduced ones. Thus if € and ¢
are, respectively, a characteristic intermolecular
potential energy and distance, and m is the molec-
ular mass, then the reduced pressure, volume,
and temperature may be written as the nondimen-
sional quantities

P*=03p/e, V*=V/No?3, T*=kT/e . (1)

In Eq. (1), N is Avogadro’s number and k is Boltz-
mann’s constant. The quantum-mechanical param-
eter referred to above is A*=%/0(me) /2, where
h is Planck’s constant.

The Schriédinger equation for N, particles inter-
acting with a two-body potential €f(¥/0) can be
written in the universal nondimensional form®-¢

|27 2 (gha) o2+ st - 57

XE,(FF,..., FR)=0. @)



