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The above theory assumes that the thermomag-
netic-force effect is an effect over the area of the
disk rather than an edge effect. This last state-
ment needs experimental verification and a new

apparatus is presently being built which will allow
measurements to be made on a number of different
size disks with varying edge-to-area ratios. We

hope to show conclusively whether our new results
are a surface effect or an edge effect.

The exac t molecular-collision mechanism giving

rise to the thermomagnetic force is not known

and theoretical calculations have not yet been re-
ported. We conclude that the thermomagnetic
force is closely related to the SB effect. It is
hoped that the work reported here on the force
effect will contribute to a better understanding of
the molecular interactions in polyatomic gases
and also to a better understanding of how these
molecular interactions are reflected in the trans-
port properties.
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The hydrodynamic equations of a superfluid helium film are solved numerically to yield
the dispersion equation of third sound over a wide range of thicknesses, including both un-
saturated and saturated films. An analytical approximation to the dispersion equation is
found that is good for the entire range where the equations are valid, and which becomes par-
ticularly simple in the case of either very thin or very thick films. A clear physical picture
is formed of the processes determining the properties of third sound in thick helium films.

I. INTRODUCTION

In a previous article, '
whi, ch will henceforth be

referred to as I, we obtained a full linearized hy-
drodynamic description of the lateral motion that
is possible in a thin superfluid film situated upon
a flat solid substrate and in equilibrium with its
own vapor. The equations obtained there were
solved explicitly to determine the dispersion equa-
tion for third-sound waves only in the limiting case
when

which means, in practice, very thin films and low

frequencies. '
Although this case includes all the third-sound

experiments conducted on unsaturated helium films
by Hudnick's group at UCLA, ~' it is also of interest
to solve the equations outside this regime. Atkins's
original pioneering experiments to detect third
sound and measure its properties were in fact made
on saturated helium films' (i.e. , adsorbed films
that form upon the walls of a vessel containing liquid
helium, at a height of no more than several centi-
meters above the surface of the liquid), which are
considered to be thick films in the context of this
article, and he has published some data on both the
velocity and the attenuation of third sound in such
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films. 4

We have therefore set out to try to extend our
solution of the third-sound equations to thicker films
and higher frequencies than those allowed in our
previous solution. ' In Sec. II we rewrite these equa-
tions in a precise form (i.e. , without any approxi-
mations that are unjustified for thick films or high
frequencies) and then solve them numerically to ob-
tain the dispersion equation for third sound. The
solution thus found is exceedingly regular not only
for thin films, but for thick films as well, which
leads us to attempt, in Sec. III, to fix up the ana-
lytical solution of I so that it becomes an exact
solution of the revised equations, and to try to iden-
tify those parts of it that are of greatest importance.
Finally, in Sec. IV, we find, a Posteriori, what

physical assumptions and approximations must be
made in the original equations in order to get as an

exact solution the approximation obtained in Sec.
III. This leaves us with both a set of convenient
equations to describe analytically the properties of
third sound in thick films, as well as a clearer un-
derstanding of the physical processes that determine
these properties. Section V is a summary and dis-
cussion of this work.

11. THIRD-SOUND EQUATIONS: NUMERICAL SOLUTION
AND DISCUSSION

As in I, we shall be discussing lateral motions in
a thin superfluid film, adsorbed upon a flat solid
substrate and in equilibrium with its own vapor.
Our physical system is described schematically in
Fig. 1 where we have chosen to include only one
lateral direction —the one where the observable rno-
tion takes place. In saying this we are not implying
that vertical motions do not exist in the film (on the
contrary, they must be present too whenever there
is any periodic lateral motion) but merely noting that
only the lateral motions lead to large-scale observ-
able effects, e. g. , superfluid mass transport
third-sound waves.

To describe these motions, we derived in I a basic
set of linearized hydrodynamic equations of motion
for the situation described in Fig. 1, which we re-
produce here in a slightly modified form:

~v
yh+hp, ' +J„=0,ex

He VAPO/

He FILM

&&~&SSSTRATE. l&l
FIG. 1. Schematic drawing of a vertical section of

the helium film.

density averaged over the thickness, p, is the su-
perfluid mass density averaged over the thickness,
v, is the average velocity in the x directicn, defined
by

1
v~ =— — psvmdy ~

hp,
0

T is the equilibrium temperature, T& is the instan-
taneous film temperature, S is the partial entropy
of the film per unit mass,

-=('-'),
where M stands for the total mass of a constant-
area film, L is the latent heat of evaporation from
the film per unit mass, f is the van der Waals ac-
celeration acting on atoms of He near the surface
of the substrate, C„ is the average specific heat of
the film per unit mass, J„ is the net mass current
flowing from the film into the gas (i. e. , the net
rate of evaporation), and Jo,„b and Jo, are the net
flows of heat from the film to the substrate and to
the gas, respectively.

The only real difference between these equations
and the corresponding ones of I is in the presence
of the term

Kqh 8 T~

L 9x

in (2). This term wa. s discarded in I for being
small in very thin films, but we now wish to con-
sider films so thick that it can no longer be auto-
matically neglected.

In order to solve these equations we must first
substitute explicit expressions for J„, J~,„b, and
J~. These depend not only on the variables of the
film h, v„and T&, but also on the variables of the
gas and the substrate which are in contact with the
film. For example, J„is given by

~ TS &v, pg hCq ~ Kyh ~ Tp
pyh + 1+ — hp, ' — Ty+ J„=p~(vg, —h ), (4)

1
(~Q sub+~op) 0 s (2)

—8T~ eh
v, -S ' +f —=o, (&)

~X ~X

where h is the thickness of the film, ~z is its heat-
conductivity coefficient, p& is the total mass density
of the film at the liquid-gas interface, p~ is the film

where p~ is the average gas density, v~, is the y
component of the gas velocity at the film-gas inter-
face. Owing to the boundary conditions between
the film and its surrounding media, any motion that
occurs in the film excites corresponding motions
in these media. Therefore the variables of the
surrounding media vary with time and we must con-
sider their equations of motion as well as those for
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- jaut+Nf»
t (5)

and for solutions of the gas and substrate equations
(see I} in the form of a wave having one component
traveling in the x direction, together with the wave
in the film, and another component traveling in the

y direction, away from the film (i. e. , a component
that is radiated away from the film),

the film. All the equations we consider are linear-
ized.

We look for a solution of (1)-(3) that has the form
of a traveling wave

where p,
' is the amplitude of density oscillations in

the gas; Z=- C2,/C„, . ~, is the heat-conductivity co
efficient of the gas; C~~ and C„~ are its constant-
pressure and constant-volume heat capacities; cpp,

c+, and c are the complex velocities of the three
wave modes in the gas:

(viscous mode), (14)

(thermal conduction
Cpg C g Kg Ca) ]

e- i sot +ik»-tfgy, Imq~&0 in the gas.

e '"""~&&" Imq, & 0 in the substrate (6}

(7)
mode), (15)

As a result of solving the equations for the sub-
strate and taking into account the boundary condi-
tion that the heat current flowing from the film to
the substrate is proportional to the temperature
discontinuity at the interface, we can write

Jo,„0= B(Ty —T),
where

1 1 t'~.~~ )2
su0~os—u0'C2 su0

C2 j
-1/ 2

(6)

ImB& 0; (9}

I/B& is the Kapitza resistance, z,~ is the heat-con-
ductivity coefficient of the substrate, p,~ is its
mass density, C»„~ is its heat capacity at constant
pressure, and c3 is the complex velocity of third
sound, defined by

C2= (0/k (10}

~p ra T~I

p~ T y-1 T

~v s cpg vg»

Cg c3 C3

C2 Coi t Tz2
s

P2CP2C2 ( C02 C2 j T

2TCer CS C01 )( W (12)+
C2 C02 C2

0Jqg = ~ Kg = Kg+) +
8$ ( C02 C02 j

(13)

As a result of solving the equations for the gas, '

we can express all the gas variables in terms of
the independent amplitudes of the three different
wave modes of the form (7) which exist in the gas.
Choosing v~„T,~, and T, , the x component of the
total gas velocity, the temperature amplitude in the
second (thermal} mode, and the temperature ampli-
tude in the third (acoustic) mode, as the basic in-
dependent amplitudes, we can write the following
exact expressions:

(acoustic mode), (16)

Iml/c0, & 0 for i= 1, 2, 3; (17}

g, is the shear viscosity coefficient in the gas; and
c is the velocity of sound in the gas. Equations (15)
and (16) are exact only up to terms of the order

z,&o/p, C2, c or ti,~/p, c2, (i6}

which are much less than I and which we shall con-
sistently neglect, as in I.

We would like to digress at this point in order to
draw attention tg the fact that the condition that de-
termines which square root is to be taken in (14)-
(16), as well as in (9), is that the imaginary part of
the root be negative. This condition ensures that
any companion waves in the surrounding media al-
ways move away from the helium film. In I we used
instead the condition that the real part of the same
roots be positive. In the case of the acoustic mode
[Eq. (16}]this leads to the other root. We believe
that the present assignment of sign is the correct
one, whereas in I it was in error. When we use
condition (17), we find that the acoustic wave ex-
cited in the gas has an amplitude that increases ex-
ponentially as we move away from the film. This
seemingly paradoxical result can be understood once
we realize that the waves that are further away from
the film were emitted at an earlier point in the film,
where the amplitude of third-sound oscillations was
correspondingly greater. Since the attenuation rate
of third sound is larger than that of ordinary sound
in the gas-which is how the acoustic mode propa-
gates-we get an exponentially increasing amplitude
for the acoustic mode in the steady state.

When Eqs. (4), (6), (12), and (13) are substituted
in Eqs. (1)-(3) we find that there are more inde-
pendent unknown amplitudes than equations. The
three additional equations that are needed to deter-
mine them all are the boundary conditions for the
film-gas interface':

v, =0, (Ie)
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I I
p f i (20)2 T p, k T/m

k~T L 9 T
m k T/m 2 T

(22)

I I
7 ~T ~p fhq
2 T p~ k&T/m

where
,'p, (k-,-T/2vm) '";

Tf 1
h $ are the am pl itude s of osc i11ation of Tf and

h; T~ = T~2+ T~3 is the amplitude of the total temper-
ature oscillation in the gas (there is no contribu-
tion to this from the viscous mode}; and m is the
mass of a He4 atom.

Most of the preceding equations in this section
have been discussed and derived in I. But whereas
in that reference we only attempted to write down

and solve the full equations in a certain limit, we

now write down the exact equations, which number
five instead of six since we immediately use (19}to
substitute for v, in (12), the only place where it
appears. The exact equations, neglecting, as
always, terms of order (18}, are

(
~p h1 tKg 1 co1 T~2 ~p TC~~ 1 c01 Tg31-~ ——v—
pf h hpf Cpg C02 C3 T py h& Cp3 C3 T

TS T f& — sKy (dh Ty1 EKE T 1 T~2 1 Tg31+—v- +hpf Cg+ +I hpx L ~ c3 T hp& L co2 T co3 T

hfp, h, TSo, T~, 0
C3py h c3 py

(22)

pn jh(d ~p h~ ih(d ~p 1
2L Tf1 T~2 y + 1 T~3

keT a p~ g h a p~ keT/m T T y —1 T

hi L 9 Ty 9 2Kgct)T Tg2 7 1 2K'

KENT

Tg3
keT h k&T/m 2 T 2 aP~02 T 2 y —1 aP~03 T

where
v =(p, /p, )(v, /c, }, a = (k,T/2vm)-'".

At this point it would be wise to summarize the
limitations on the use of this "exact" set of linear-
ized equations for third sound in thin superfluid
films: (i) The quantities in (18} must be much less
than l. (ii) The quantities

g& (d g&CO
2 I DS 2 I PS

Pf C3 PyC3 Pf C3

must also be much less than 1. gf, (,, and g3 are
the shear viscosity coetficient and two of the bulk
viscosity coefficients of the film. (iii) The film
thickness must be much less than the viscous pen-
etr ation depth in the film, and the mean free path
in the gas and in the substrate must be much less
than 1/q, and 1!q,„b, respectively. These, in turn,
must be much less than the thickness of the gas
and the substrate, respectively, so that we may
ignore the possibility of reflections.

Keeping these limitations in mind, we have solved
this set of equations numerically to obtain the
complex velocity of third sound c, over a rather
wide range of film thicknesses and for several fre-
quencies and temperatures. The results for the
real velocity are identical to the results of I in the
case of thin films. For the thicker films that we

considered, the real velocity is always identical to
c30, defined by

(hf p, /c, Dpi)(1+ TS/L) = l.
We have therefore not plotted out these results.

The results for the coeffficent of attenuation of
third sound, &, derived from the imaginary part
of 1/r. „show an interesting behavior. Consequent-

ly, in Fig. 2 we have plotted the values of & as a
function of the thickness h for T = 1. 3'K and for
frequencies &--1 kIIz and v == 5 kHz. ' For compari-
son we have also plotted on the same figure the re-
sults of the approximate analytical so1ution for
v = 5 kHz obtained in I and expected to be valid in the
limit

K (d/p„Cp c3 && 1 j t/g (0/pg c3 ~~ 1

i. e. , for small thicknesses and low frequencies.
We have also plotted in the same figure the predic-
tions of Atkins's theory for n.

The general behavior of n is as follows: For
small thicknesses (but not too small) it decreases
with increasing h, approximately as h ", and is
proportional to ~" . In this region the approximate
results of I are completely in agreement with our
present computation. Then n passes through a
minimum and thereafter increases with increasing
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h as h'", while also being proportional to (d . In
this region it has the same behavior as a function
of h and cu as predicted by Atkins's theory, but

the values differ by a factor of order 1. Also con-
tradicted by our numerical results is Atkins's basic
assumption that Te remains fixed while only Tf
oscillates. We find that, in fact, that T, oscillates
with an amplitude comparable to that of Tf, even

though they are no longer identical, as was the case
in the very thin films.

In any case, the great regularity of the results
for thick films and their similarity to Atkins's old

results prompted us to try to obtain a useful an-
alytical approximation for the entire region de-
scribed in Fig. 2. This is done in Sec. III.

111. THIRD-SOUND EQUATIONS: ANALYTICAL SOLUTION
FOR ARBITRARY FILM THICKNESSES

In order to get an analytic solution, we return to
the approximate equations (44)-(48) of 1 and fix
them so as to be equivalent to (23). This is done

by redefining the J coefficients of I and defining

two new coefficients Nj and N2. The equations then

become

e "/4 C 1/2 C
1 ——hj — ' v — - N1T' — ~ ~ J1Tg3 —0

pf C3pf '1 TC~~f 40 Pf

e fr/4 C 1/2
h — ' 1+—v ———+ hC + T — ~+ (NT' —JT )=0

cp L '1 pL ~ " c fj pL3 f f 3 f
2 e 2 g3

—h —v ——Tf -0f S
C 1 sj C3 3

(24)

i~P L k 1/2
1 — ~ 1 ~ f/g + — —s T + s 1 e&'~4 ~ &+~ N ] ~ TP4' p~

' T 2m ~& 2m 2AC~ ~ '
p&

iu / PeC~e p 4'
4~ 1 1 P /2 Te —0

pf gu

9k~ 9k~
fh + ————s Ti+ ——JT' —C JT =0

T 2m fj 2m 6 e Pe e3=

while their (exact) solution becomes

hf p, TZ TS J3 TS
~p Tg

8
hC

ZKfh Js &r/4 pe CpgKe N
LNj TS J4

(u " c,' TC~ L J3
1+——— =0 . (25)

The various coefficients are now given by

1 c3 Cpj 2Kg C3 Cpj
C3u Cp3 C3 pg C~eTu c3 Cp2 C3

fr/4 g 3 .P1

1/2
gr/4 Kg(d C32=—e 2

Pe CpeC3 Cp2

~('d Jq p~
3 1 u1/2f

(gJ7 p~ TS TSJ4=—Je+ 1/2 —~ —+ 1+—
u f p I

J =—J 1+ 1 —9 kq™ 2~p, L ~J ~ TS 1-~ -~ 1-p~ 2~T Je 2B 2K~+h

P P T/ PLI mP ITS ) P P , P
'

,, PP, C, I
32 L Af J'q p L p~ J4 py 16AL
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LN1 Ts ~J L 1-P X 4CO 2

1/2zm fg /4 PE bt EJ =1 ——N2 !

T$ uJ2 ] /4 p C~ K, 1/2
2 cr /4 pz ezKz4~J C K

Js=-J1 1+—+ 2
' —,9—= —,+

pgCpgu L (d

u" '= 1/c„,
C3 Pf Pf

(26)

If x&u/psCsscs and therefore also p&u/pscs, are at most not much greater than 1, while zf(0/p Cs ccs 1,
the following approximations can be made:

Js Jv= 1, Zs= Js= Ji(1+TS/L), Js= J,(1 —ps/PI), Js= J, ,

z(@PAL y T$ T$9 k~ T icgpf T$ p
16Af p& L L 32 m Af L p&

(2'7)

9 k~T/m
( )

9 ks T i(up~ TS ~p S

Equation (2V) also serves to define J,b. A good approximation for the dispersion equation (25) then hecomes

hfps TS 9 ksT imps TS p TS ' Tf t!B;,is pCsx, '~

c3p& L 32 m Af L pj L p&L &u &u

9 iuT i p (?'s '( s)(, rs)' (28}

In the case of very thin films this equation reduces to

2 1/2 1/2 C K
1/2" - 1hf p. T$ Tf;./4 P.C~~Kz1+—=1+ 2 + Psub ssub sub B B ~ Ir I 4 Psub Dsus sub (29)

C23pf L L pf 47 CO ('d

whereas in the case of very thick films it reduces
to

hfp, TS b 9 ksT i(up~ TS

espy L 32 m Af L

x 1 —~ 1+— . 3{}}

The results of calculating the attenuation of
third sound from each of these formulas (28)-(30)
are plotted in Fig. 2. The results obtained using
(28}are in full agreement with the results of the
numerical solution of the third-sound equations
described in Sec. II. In fact, to the accuracy
shown in the graph they are identical: They never
differ by more than 27(;, and in fact are usually much
closer than that, except near the minimum of the
attenuation curve. The graphs show that, except
for the region around the minimum, it suffices to
use the simpler dispersion equations (29) and (30)
to get the correct attenuation. These statements
hold for the velocity of third sound as well.

In I we worked out the relative amplitudes of
oscillating quantities for very thin films, where
(29) is valid. We now write these amplitudes for
the opposite extreme case where (30) is valid:

s —T~q T&, @ups 1 —+ 1 TS, (31)T T 16Af pf

Tf, L
T hf 1o ~ (33)

Tf1 L TS
T hf L

(34)

Since we are talking about the region where
~p&TS/16Af is not small compared to 1, we find
that T~ —Tf, is not negligible compared to Tf1.
This fact is borne out by the numerical work de-

~Tg Tf& ~p (oc3S TS L ~ (32)T T p fC~ J1 L T$pf

—J 1+ —~ 1+——1
Tf1 L ~c3 T$ n. TS

h T hf ' fJ1 L p~ L
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in the gas. T,3, however, does come out to be
much smaller than Tq, . v and h, /h are nearly the
same in this region, and are both much greater
than T~, /T. All these conclusions are borne out by
the numerical results of Sec. II, which are in

quantitative agreement with the approximate re-
sults obtained here for thick films.
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FOR THICK FILMS
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The conclusions that we reached at the end of
Sec. III seem to hint that it might be possible to get
the results for thick films by neglecting certain
parts of the exact equations (23) or (24) which are
evidently not important in the final result. In order
to do this we note the following.

(a) Looking at earlier versions of Eqs. (20) and

(21), ' namely,

FIG. 2. Attenuation coefficient f3. vs film thickness
h for T=-1.3 K. The two solid lines are the results of
a numerical solution of the third-sound equations at fre-
quencies of v=1 kHz and v=5 kHz. For thick films n is
proportional to v and h ~ . For thin films there is a
whole region where n is proportional to v' and also,
approximately, to h . The same solid lines also rep-
resent, to within the accuracy of the drawing, the re-
sults of Eq. (28) for &. The two dashed lines represent
the results of the two approximate dispersion equations
(29) and (30) for thin films and for thick films, respec-
tively. The dot-dashed line represents v hat purported
to be (see I) a hetter approximation than (29) for thin
films. However, where it deviates appreciably from
(29), it evidently does not suffice to give the correct be-
havior, so its usefulness is therefore curtailed. The
dash-dot-dot-dash line represents the prediction of
Atkins's theory (Ref. 9) for n. The calculated values of
n depend on various experimental coefficients of the gas
and the substrate. We have used the following values:
p~1, =5 g/cm; Cp~b=31. 4&T erg/g deg; ~~b=3. 5&10
erg/cm deg sec; C--- 2k&/m; &e=286 erg/cmdeg sec;
pe= 8. 3 (T/1. 5) pP; hf =261 (kp/m)(l/h ) erg/g (h in
atomic layers) [see Ref. . 2 and W. D. McCormick, D. L.
Goodstein, and J. G. Dash, Phys. Rev. 158, 249 (1968)J;
1/Bf 1 . 9 && 10 (1.51/T) '4 erg/cm sec deg (the Kapitza
resistance) [see Gerald Pollack, Rev. Mod. Phys. ~41

48 (1969)]. We also assumed that p, /p~ was equal to its
value for bulk He at the same temperature and at zero
pressure. This should be remembered if one tries to
apply these results to very thin films, where this is
known to be untrue.

scribed in Sec. II. On the other hand, T& —T~ ise
never simply equal to T&, as Atkins in his originalff,
paper on third sound assumed' in order to enable
him to separate the motion in the film from motion

Jg 1 — = p, y
—pe + se — Ty —Te)

(36)

elo = —A uy —p + s — (Ty —T ) (36)

9k~
)

This we immediately substitute into (36) to get

J„= 1 —~ (T~ —Tg).
16A p (3&)

We note that this expression is different both in
form and in derivation from the expression found
by Atkins et al. " and used by him in his theory of
third sound. Nevertheless, quantitatively the two
expressions lead to results which do not differ very
much, i. e. , only by a factor of order 1.

(b) Heat conduction is unimportant as a source
of attentuation in the regime of thick films. The
main source is the evaporation and condensation of
helium atoms on the film, as shown by the appear-

where p. &
and pe are the chemical potentials of the

film and gas per unit mass and se is the entropy per
unit mass of the gas, we can easily convince our-
selves that a large value of T& —T„ if not canceled
by p, &

—p„would lead to a prohibitively large ther-
mal flux J@e. To maintain such a large thermal
flux we would need a value of sT,/sy so large as to
cause Te to change by something like its entire am-
plitude of oscillation over one mean free path in the
gas! In practice, the role of Eq. (36) is to ensure
that this cancellation takes place. %'e can therefore
replace it by
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ance of the coefficient A in (30). We consequently
ignore the heat-conduction terms as well as the heat
capacity of the film in the equations of motion.
Lastly, we ignore the contribution T, to the tem-
perature oscillations in the gas as compared to T, .

These approximations allow us to write the equa-
tions of motion in the following form:

8&s
p&h+ hp '+ J„=0,

8X
(38)

TS 8v,
p h+hp 1+— ' =0

8x

or (39)

8$~-hp TS '+LJ~=O,
8x

—8' 8h
v, —S +f —=0,

8X 8X
(40)

J„= 1 -~ T~ —T~), (41)

L 9k~Jg =0= —A —
Tq ———(Tq —T (+fll). ('42(

~T i~p~TS T$
N T y +L»'

When J» is much larger than 1, as it will be for
very thick films or high frequencies, this can be

The second form of Eq. (39) is especially useful for
comparison with Atkins's equations. These equa-
tions can easily be solved and shown to yield exactly
the results (30), (31), (33), and (34) which were ob
tained in Sec. III as an approximation.

These results verify the assumptions we made
above as well as the physical picture that they im-
ply: In the regime of thick films (not too thick
though, as we pointed out near the end of Sec. II),
the attenuation of third sound is governed mainly by
the processes of evaporation and condensation of
helium atoms between the film and the gas. Made
as an assumption, this statement formed the start-
ing point in Atkins's original theory. His other as-
sumption —that T~ does not oscillate and conse-
quently that one does not have to consider equations
of motion for the gas —turns out to be wrong in all
the regions we investigated.

Despite this incorrect assumption, and the differ-
ent way of calculating the rate of evaporation,
Atkins obtained results not too different from ours
for the thick films. This can be understood if we
use (31) to rewrite J„of (3V) in terms of T&, alone:

written as

16 L kgT
T 9 kqT/m 2wm

By the Clausius-Clapeyron equation this can be seen
to differ from Atkins's expression only by the fac-
tor f T.his is the main cause of the difference be-
tween our results and his.

V. SUMMARY AND DISCUSSION

We have worked out the solution of the third-
sound equations, which were derived in I, for
ranges of film thickness and sound frequency far be-
yond those discussed in I. This was done in three
different ways, each of which contributed its share
to the understanding of the physical properties of
third sound. We obtained an analytical expression
that is a very good approximation of the dispersion
equation over the entire region where the equations
are valid. This expression simplifies at the two
extremes of very thin films and low frequencies,
and thick films and high frequencies, leading in the
former case to the expression that was obtained in
I. The validity and quality of these approximations
was checked by an exact numerical solution of the
equations.

From our investigations, there emerges the re-
sult that the attenuation of third sound in thick films
is governed by the evaporation and condensation of
helium, as originally assumed by Atkins. His other
assumptions are not verified, however, and as a
consequence, our result for the attenuation in thick
films differs slightly from his (for thin films it is
completely different; see I).

The only published experimental data on attentua-
tion in thick films were gathered by Atkins in some
early experiments. ' His measured values were
larger then his theoretical predictions by 2-3 or-
ders of magnitude. Since our predictions only differ
from his by a factor of order 1, the discrepancy
remains. In view of the rather poor reproducibility
in these experiments, we believe that a new set
of measurements of & is required in order to de-
cide whether the discrepancy is real. If so,
mechanisms contributing to the attenuation will
have to be looked for outside the framework of the
equations that we have been using.

Finally, we wish to remark that, just as measure-
ments of the velocity and attenuation of third sound
in thin films could be devised so as to supply us
with information about the various physical phenom-
ena on which they depend, such as the Kapitza re-
sistance, so we could presumably devise experi-
ments on thick films to teach us about the evapora-
tion and condensation of helium from such films.
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The theory of homogeneous isotropic turbulence of current carriers in metals and semicon-
ductors is developed in terms of the magnetic field fluctuations. A quasinormality hypothesis

is used to truncate the chain of equations for the correlation functions. A k spectrum in wave

numbers and a 1/f spectrum in frequencies are obtained. The 1/f spectrum is also obtained

for fluctuations of current and voltage in a ring-shaped circuit embedded in the turbulent field.
These results are used to construct a universal theory of 1/f noise in electronic circuits.

I. INSTABILITiES AND FLUCTUATIONS WHICH

GENERATE TURBULENCE: BASIC CONCEPTS

The instability which might be responsible for
turbulence in the plasma of current carriers in
electronic circuits has been described' ' as a
"magnetic barrier instability" (MBI}. This is a
new type of current instability which has been
shown to occur only in the presence of a trans-
versal potential barrier such as a semiconductor
junction, '& a bad electric contact, or the surface
of the cathode in vacuum tubes and gas discharges.
The nature of this instability is related to that of
the pinch instability inasmuch as in both cases the
self-magnetic-field is important. The difference
is that the MBI is a linear effect which is propor-
tional to both the self-magnetic-field and the-in-
ternal electric equilibrium field of the barrier.
The latter is usually very strong. The critical
current of the MBI is very low compared with the

critical pinch current, and may be taken to be ac-
tually zero for systems in which transversal in-
homogeneities are properly taken into account.

The MBI should occur only in systems with cur-
rent carriers of both signs present in the barrier
region. This is obvious from the theory of the
MBI, ' in which the possibility of carrier accum-
ulation without appreciable space charge is essen-
tial. A strong argument for the MBI as a source
of the actually observed 1/f noise is its univer-
sality. The same MBI has been shown to occur in
the Debye sheet at the surface of the cathode in a
gas discharge or vacuum tube, as well as in a
metal-semiconductor contact, in a semiconductor
junction, in a bad contact involving an oxide layer,
and in the contact between two carbon grains or
between two grains in an evaporated thin layer.

Other possible sources of turbulence are the
generation-recombination and shot noise fluctua-
tions. Although these fluctuations do not have a


