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' In general, J* (~) in the statistical approximation
vanishes beyond & k„but only the first four powers
exhibit a discontinuity in slope at ~ =k~, .

'9W. R. Hindmarsh and J. M. Farr, J. Phys. 8 2,
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Projection-operator techniques are used to obtain a new exact equation for the momentum

of a particle in a harmonic lattice. The equation, valid for all times and mass ratios, per-
mits a simple physical interpretation in terms of a reference system with the particle held

fixed. It is demonstrated that the random forces which arise through the use of two different
projection operators are equal and identical to the force on the heavy particle in the reference
mechanic al system.

I. INTRODUCTION

In recent years projection-operator techniques
have been widely used to develop a molecular theory
of Brownian motion. ' Attention is focused on de-
riving the Langevin equation

P(t) = g P(t) + E(t) .
This phenomenological equation describes the mo-
mentum P(t) of a heavy particle in fluid bath. In

it, f is the friction constant and E(t) a random force
whose stochastic properties are specified. Early
efforts' to examine the molecular basis of the

Langevin equation were concerned with the exact
analysis of the dynamical motion of a heavy particle
in a harmonic lattice.

In the projection-operator method one arrives at
a generalized Langevin equation that resembles Eq.
(1}and involves a complicated "random" force
F'(t). For realistic systems little is known about
the nature of F'(t), and approximations are required
for this quantity if one is to obtain the Langevin
equation. In order to assess the approximation of
recent projection-operator methods that have been
employed for systems with general interactions,
we have used these methods to examine the harmon-
ic lattice model. The motivation for adopting this
model is that explicit calculations may be performed
that are not possible for more realistic systems.

The revival of interest in Brownian motion is
based on recent developments that use projection-
operator methods to obtain generalized Langevin
equations to describe a much wider class of relaxa-
tion phenomena. Our results have implications for
these more general treatments as well.

II. MODEL

The Hamiltonian for the harmonic system con-
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Here F& is the force on particle j given by
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Fq= = —Z Aq, q, .
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In order to compute the momentum of the force
on the zeroth particle at time t,

Po(t) = e' ' Po(0) = Fo(t), (8}

we shall make use of the operator identity

i(A+B) g fAt I ~ i(A+B) (t-1') ~ ~ gAg$B g

sisting of N bath particles of mass m and one par-
ticle of different mass M is

H = Ho+ P(/2M,

where

N P2 N

H, = Z ' + Z -q,.A„q, .
f~] f, j=o

Here Po is the momentum of the particle of mass
M (designated the zeroth particle), q; is the devia-
tion of particle i from its equilibrium position, and

A,&
is the real symmetric matrix chosen to satisfy

the stability condition
N'

Z A, q-—0.
i=0

The Liouville operator of the system is

L=&Lo+iL

where
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We make the identification A+8 = L, A= (1 —&)L,
where 6' is a projection operator and operate with
Eq. (9) on Pp(0) to obtain

P (t)=F1(t) — «Po(t —T} «FIj'(T)FQ(0}» ~
p

M

(19)

Pp(t}=FQ(t)-; f dTe' " "ia'LFQ(T) .

Here F0(t) is the "random" force defined by

Ep(t)-=e"' ~' 'Fp(0) .
With the choice of projection operator

f e-Bilp. . .d ((edpx(" )-=&")-=f,-"dq-dp

(io}

(12)

III. EVALUATION OF RANDOM FORCE

We shall relate the "random" forces F0(t) and

F(f(t) to a mechanical force in a reference system.
In the reference system, specified by Ho, the zeroth
particle is held fixed while the N bath particles are
permitted to move in the field of the fixed zeroth
particle. The force experienced by the zeroth par-
ticle in the reference system is

it may easily be verified that F',(t) = e"o' F,(O), (20)

+ALLO= 0.

Equation (10) reduces to the equation

p (e)=eel(tt ~ eee'"' " ee, — p,)—
~ (E,'(T)E,(O) ), (14)

with use of Eqs. (13) and (6), and the fact that

v, &E'(t)}=(v, F'(t)}+p(F E'(t))=0 (15 )

since (EQ(T)) = 0.
The equation of motion for Pp(t), Eq. (14), is an

exact equation which is independent of the harmonic
model. Its validity depends upon the definition of
the projection operator, the fact that (F'(t)) = 0,
and Eq. (13). In order to proceed one must consider
the properties of the random force F'(t). For sys-
tems with realistic interactions it has not proven
possible to say anything in detail about the fluctuat-
ing force. However, in the harmonic model it is
possible to relate F'(t) rigorously to a physically
understandable mechancial force in a reference
system.

Other choices for the projection operator are
possible. Mori has suggested a different projection
operator,

where iLQ, defined in Eq. (5), is the Liouviile op-
erator corresponding to Hp. We use Eq. (9) with
the choice A + B = (1 —5')L and A = L 0 to relate F0(t)
to F,'(t) Oper. ating on Fp(0) gives us

F;(t)=E'(I)+ 1 dTe" "'""1(1—(P)I.,F,'(T) .
(21)

To proceed, we evaluate Fp(T). Since iLQ de-
scribes the motion of the bath particles relative to
the zeroth particle held fixed at an arbitrary posi-
bon qo, it is useful to change coordinates to

(22)

In this coordinate system

F&(0)= —Z A»q (0)(je=0, 1, . . . , N (23)

E',(t) = - Z A„q', (t), (24)

where

qp(t) e(I Pi
q

0
(0) (25)

The q, (t) may be computed using the standard nor-
mal mode analysis for harmonic lattices. The re-
sult is

and hence iLO does not depend on qo. It follows that

, «P' ~ ~ »
(2( } 0 &(P2}) (i6)

qi(t) = & [C»(t) qg(0)+D»(t) p~(0) ], (26}

where the double angular bracket defines the
average

f e "(~ ~ ~ )dq" dp" dqpdpp
dp

Eg (t ) (1e- ((P &I (i(E (0) (16)

This definition of the projection operator leads to
an exact equation of motion of the form

For this projection operator q'„iLQ= 0 and (Ff (t))
= 0, where Eg(t) is the "random" force defined by

where C»(t) and D &(t)(are related to the normal
modes of the N-particle system. Consequently
Fp(t) may be written as

F00(t) = —Z Api Z (C(i(t) [qy(0) —qp]+D»(t)p1(0) j,
1=1 f=i

(2'I)
where we have made use of Eq. (22). If Hp is trans-
formed according to Eq. (22) it may easily be shown
that &q1) = 0. It follows that &q~(0) }=qp and that
(Fp(t)) = 0.
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From the definition of fL, [Eq. (6)] and Eq. (27),
it is easy to see that iL,F 0(t) yields an expression
that is independent of the coordinates qj(0) and

p&(0), j= 1, . . . , ¹ Therefore we have

(1 —(P) iL, F()(t) = 0, (28)

and from Eq. (21) we arrive at the important result

mass m, the exact equations of motion are
t

P.(t) =(F.)(f) +K.'(t)- —d7 e"""
go

x X. P, (0)(K()(0)K,(r}), (35)
S=o, t

where
(29)

n, P=0, f, (F.)(f) = e"'(-F.
& (s6)

The "random" force is identical to the force on the

zeroth particle in the reference system. This
simplification is realized in the harmonic lattice
because the coordinates at time t are linear in the
initial coordinates and momenta.

Had we chosen the Mori projection operator [Eq.
(16)]we would have arrived at an equation analogous
to Eq. (21):

Ff(t)=FO(t)+ J dre"' &' ""i(1—(P„)L;Fo(r) .

(so)

Using Eqs. (6) and (27) once more, we see that

iL, FO(r) is proportional to P, Conse.quently, using
the definition of (P„[Eq. (16)]

and

(37)

The canonical average is with respect to the Hamil-
tonian of the bath particles with the two Brownian
particles held fixed, and iLO is the Liouville oper-
ator corresponding to this Hamiltonian. '

V. CONCLUDING REMARKS

The important results we find from our analysis
are the following:

(i) The exact equation of motion for the momen-
tum of the zeroth particle of mass M in a harmonic
lattice is

(1 —(Pe) iLi Fo(t) = 0, (31) P,(i) =Fl(i) ——f s i', (i — )(sl( 1);(oi) . (s6)

we find

(32)

(Fo(&)Fo) =((Fo(~)F() )) .
We may now write Eq. (14) as

(33)

t
P (t) = F (t) —— d7 P,(t —T) (F'(7)F,(0)) .

M
(s4)

This expression is an exact equation of motion for
the zeroth particle, in which the "random" force is
a simple mechanical force in the reference system
of N bath particles and one fixed particle. Notice
that this expression is derived without reference to
the mass ratio of the zeroth particle to the bath
particles and is, in fact, exact for all mass ratios.

IV. MANY-PARTICLE MODEL

Two (or more) particles of mass M separated by
variable distances in a harmonic lattice may serve
as an important model for a variety of hydrody-
namic and radiation field problems. Our considera-
tions may be extended to this case, once again
leading to exact equations where the terms that ap-
pear have an immediate physical interpretation.
For example, in the case of two particles of mass
M at 0 and l in a harmonic lattice of N particles of

The equivalence of Eqs. (14) and (19) can now be
established by noting from Eq. (27} that(F,'(~}F,(0))
is independent of Po and qo and therefore

To our knowledge, previous workers have not ar-
rived at this representation of the exact dynamics.
The representation is of interest because of the
simple interpretation of the "random" force Fo(t).
For nearest-neighbor interactions, it is possible
to show that (( P, P(t))) is equal to the exact result
of Rubin. ' It should be emphasized that this equa-
tion is independent of mass ratio (m/M) and may
be easily extended to many dimensions, to more
complicated mass distributions, and to quantum
systems. We have not been able to arrive at a cor-
respondingly simple exact Fokker-Planck equation
for the distribution function of the Brownian par-
ticle in a harmonic lattice.

(ii) For the harmonic system, the "random" for-
ces Fo(t) and F(j(t) are exactly equal to Fo(t). This
identical behavior for F((t) and Fo(t) need not be
expected for systems with more general interac-
tions. This is the first case where it has proven
possible to interpret the "random" force, contain-
ing a modified propagator, exactly in terms of a
reference mechanical system.

(iii) For general fluid systems, it is believed that
(Fo(t)FO(0)) approaches (Fo(t) Fo(0)) for all times as
the mass ratio (m/M) becomes small. This point
has recently been examined in detail by Oppenheim
and Mazur. For the harmonic model, these two
correlation functions are exactly equal independently
of mass ratio.

Quadratic Hamiltonians are used to describe
relaxation for a variety of physical problems. We
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expect the projection-operator method wi11 provide
an economical way to arrive at exact equations
which allow a direct physical interpretation of all
terms without the presence of complicated modified

propagators present in the projection-operator

analysis of more realistic systems.
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A force has been observed on a small thin disk which is immersed in a polyatomic gas
when a thermal gradient is established and when a magr etic field is applied. This thermo-

magnetic force is normal to the surface of the disk and is an even function of the magnetic

field. Measurements are reported of this force effect as a function of magnetic field and

pressure for 02 and NO in the temperature range 30-35'C. These new results are compared
to a related thermomagnetic effect on the thermal conductivity of a polyatomic gas (Senftle-
ben-Beenakker effect) .

I, INTRODUCTION

It has been known for forty years that a magnetic
field could influence the transport properties of
some gases. The first observation of such an in-
fluence was made when it was discovered that a
magnetic field causes a decrease in the thermal
conductivity of oxygen. ' Two years later it was
discovered that a magnetic field also causes a de-
crease in the shear viscosity of oxygen. These
effects in Oz were later observed in NO and were
extensively studied. It was observed that the trans-
port coefficients decrease in a magnetic field 8,
that the effect is an even function of 0, and that
the effect approaches saturation as a function of
field divided by pressure H/P.

All of the measurements can be explained quali-
tatively in terms of a model in which a rotating
diatomic molecule of Oz is considered as a disk
with a magnetic moment in the direction of the
axis of rotation. ' Each disk clearly has a lower
probability of a collision when moving in its own

plane than when moving perpendicular to it; equiva-
lently, a disk has a lower coliision probability
when the velocity and the rotational angular mo-
mentum vectors are perpendicular than when they

are parallel. In the absence of an external magnetic
field this causes no observable asymmetry in the
properties of the gas because the velocities and
angul" r momenta are randomly oriented and the
asymmetries are averaged out. When a magnetic
field is applied the averaging out is partially de-
stroyed by the precession of the angular momenta
about the field. The way this leads to a change in
measurable properties of the gas can easily be
imagined, for example, by picturing a molecule
whose angular momentum and magnetic moment
are perpendicular to the field. If the field and the
magnetic moment are large enough to cause sub-
stantial precession between collisions, the disk
presents a more nearly spherical collision cross
section and the possibility of relatively unimpeded
motion in the plane of the disk is lost. Upon aver-
aging over all orientations of velocity and angular
momentum of the molecules, the result is that the
change in collision cross section causes, on the
whole, a reduction in the thermal conductivity and
the viscosity. Since these effects were thought to
be only properties of strongly paramagnetic gases
(the only ones studied) and since the Gorter' model
explained the measurements reasonably well, in-
terest diminished.


