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An operator expansion of the T matrix is shown to lead to an equation for describing charge
polarization on elastic scattering similar to that reported previously by use of the infinite-
channel close-coupling approximation in the second Born approximation. The resulting equa-
tions are used to calculate the charge-polarization corrections for elastic electron scattering
from H and He at incident electron energies of 100 eV, 500 eV, and 40 keV over the angular
range of 0' to 50'. The results agree well with those of Bromberg and LaBahn and Callaway for
elastic scattering from He with an incident electron energy of 500 eV.

In the first paper in this series'2 it was shown
that an old approach to the problem of describing
the effects of charge polarization on the elastic
cross section was capable of yielding results in
excellent agreement with experiment at incident
energies as low as 500 eV, providing certain rea-
sonable assumptions were made concerning the
choice of the one adjustable parameter present in
the theory. This approach called the infinite-chan-
nel close-coupling approximation in the second
Born approxtmation (ICCCA) was also found to
compare favorably with the results of the extended
polarization potential method of LaBahn and Cal-
laway. ' Other theoretical approaches, which in
principle can be used to attack this same problem
but where detailed calculations are not yet avail-
able for the case of He at 500 eV, are versions of
the coupled-channel partial-wave theory, ' the
method of equivalent potentials, ' and the phase-
grating approximation. ~ Recently two studies have
appeared which apply the nuclear independent-
particle model to the calculation of charge polar-
ization in elastic electron scattering for the case
of He at incident energies of 100 to 500 eV with
excellent results. This last approach can in some
sense be considered a variant of the approach out-
lined in Ref. 5.

The purpose of this paper is to investigate the
use of the T-matrix formalism for the description
of charge polarization. This approach depends
only on an operator expansion and bypasses the
necessity of using closure as an approximation.

I. T-MATRIX DESCRIPTION OF CHARGE POLARIZATION

In the nonrelativistic T-matrix formalism, the
exact elastic scattering amplitude can be written
as

f(s) =f'"'(s)+—1

40 e a ' vA Ve'"I'o ~o '
H-E-i~

where

f'"'(e) =(i/4o) (kole '"s''o &A e'"' "o
I go&

and tt)o is the ground-state wave function of the
target; k, and k, are the wave vectors of the in-
cident and scattered electron; V is the interaction
potential between the incident electron and the
target; and H is the complete Hamiltonian with
E the total energy. The operator A is an anti-
symmetrizer acting to the left which permutes the
coordinates of the incident electron r o, with those
of the target electron in such a way that the over-
all matrix element is antisymmetric with respect
to electron exchange. The procedure to be fol-
lowed here' is to express V in the Fourier form

V= 1 dq ef q ~ ro
7T2

Af N

g e-&4 ' ~„-4&~ I'„
n=1 v*1
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where atomic units (1 a. u. = 13.6 eV) have been
employed and it has been assumed that the target
is a molecule with M nuclei and N electrons. Note
that R„and r„are nuclear and electron coordi-

nates, respectively, and Z„ is the nth nuclear charge.
The inverse operator can be commuted through the
product Ve'&' o with the result'

1
H- E —ie

1k' ' PO

V dq
r2 2

r
N 1.e " ' " 0, V-a, +&'(1 ~ „),2;q. ~'0„-2'q. T, ~ 2q K, )n*1

Hp V —e p+ 2q2+ 2iq ~ ~„—2iq ~ p+ 2q, ~ 4 ~

where e o is the ground-state energy of the target
and M„ is the ratio of the electron mass to the
nuclear mass and will be neglected in this work.

To proceed further it is convenient to neglect
exchange effects. Since the matrix element under
evaluation represents contributions from the
second and all higher Born approximations, the
neglect of exchange at this stage should be a sec-
ond-order effect at high incident energies. Ex-
change corrections to the non-charge-polariza-
tion part of the scattered amplitude should be
obtained, where possible, by making use of
partial-wave amplitudes describing elastic elec-
tron scattering including exchange. "

Next, the inverse operators can be expanded in
powers of

~~
p+ V ~ p+ iq' n Vn 2iq' Vp

or

Hp+ V —E p+ 2iq ~ V„—2iq

The first term in this expansion will correspond
roughly to the second Born approximation. The
convergence of such an expansion will not be con-
sidered here. The justification for this particular
choice will rest instead on the physical reason-
ableness of the final result and its connection
with previous results.

If the remaining potential term in Eq. (1) is
also cast into Fourier form, the final result for
the matrix element can be written as

0 V Ve'"'' ' yo
4~ o H-E —i&

2 dq ~~' ~l ~~ ~in ~ gi~at

q lK+ql, ., „., q +2q ~] —~&,.1 v.1 ~ + q.

q'+2q k, —I~ „,„, 2q'+2q k, ie-
where K is the elastic momentum transfer R, —k,. Equation (4)does not look very familiar as it stands, but
if the new variable m = k, + q is used, then the leading term on the right-hand side of the result

I 1 ~te-~ks'"O V V ski'PO ~/i

4& H —E —ie
' ''o

2 dm + ~ g e& «kq-m&'&n+~m-Ifs&'~S& a Z Z&e

g e&«]- '& + m-ks '~a 3 N ~&( g-m)'&v+(
+Z + 2 ~, ~ 10m -k -iE u-1 g 1 2m 2m kj ~f (6)
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can be easily identified as part of the second Born
approximation for elastic scattering. In fact if all
energy denominators were of the form m —k —fe,
Eq. (5) would be identical to the ICCCA result. The

physical meaning of the new energy denominator
2m~ —2m k, —iz can be understood in terms of a
binary collision model. For electron-electron scat-
tering, the momentum- and energy-conservation
conditions for a binary collision are

k(+Po=m+Po ( k(+Po=m +Pa (6)

where m is the momentum of the incident electron
after the first of its two collisions within the target
where the usual double-scattering interpretation of
the second Born approximation is employed. The
quantities Pp and Pp represent the initial and final
momenta of the first target electron encountered.
There are two more such conditions for the second
collision, but they are not needed in the present
argument except to take care of energy conservation
for the over-all process. It can be shown from Eq.
(6) that if the incident energy k~( is much greater
than the binding energy of the target electron Pp,
then 2m —2m'k, =0. '3 Since the largest contribu-
tion from the energy denominator comes exactly
when this condition is fulfilled, the energy denomi-
nator approximately imposes the conditions for
conservation of energy and momentum in a binary-
electron collision. The energy denominator en-
countered in the ICCCA method and in the nuclear
terms in the T-matrix approach imposes energy-
and momentum-conservation conditions for the col-
lision of an electron with an infinitely massive
particle.

While it can be expected that the new energy de-
nominator should lead to an improved description
of the scattering at larger scattering angles, the
results will be singular at 8= 0 as in the ICCCA
case with k, = k. In order to avoid this difficulty
the energy denominator can be written in the form
21m ——,'k, I

—~k, and the final term —,'k; ean be re-
placed by —,

' k, = —,
'

(k, —r&E,«), where r&.E,« is an ef-
fective energy loss. The physical justification for
such a procedure is that 2(m —m k() is not exactly
zero but, according to conservation of energy and
momentum, is equal to 2Po (P, —Po), which it is
assumed can be replaced by its average value. In
this approximation, the effective energy 4E,f f
should be approximately given by 4 times the av-
erage of Po ~ (Po —P(&). The evaluation of this aver-
age will not be attempted here; rather, the effective
energy bE,«will be employed as an adjustable
parameter subject to the constraints that

4m I . SRef~& (8)Imf, (0) and —m I im
k 4, p ak

must simultaneously yield reasonable values for
the total inelastic scattering cross section and the

-
&vol

e"""'""
I eo) &eoI e" ""

I e, ) ), (7)

which is identical to the ICCCA result except for
the new energy denominator. The superscript 2
denotes the fact that this is a kind of second Born
correction in the sense that it is a matrix element
of order V~ in the interaction potential. The second
Born approximation for ordinary potential scattering
can be combined with the first Born nonexchange
amplitude, and the two terms can be replaced by
the partial-wave amplitude for the static potential.
The resultant total amplitude can be written as

f(8) =f "(8)+f'*(8)+f,. (8) (8)

where f (r8) is the elastic partial-wave amplitude
which is available for Hartree-Fock atomic wave
functions for most atoms in the Periodic Table over
a large range of energies. ' The exchange ampli-
tude f *(8) can be approximated by its first Born
value. In some cases the partial-wave amplitude
including exchange has been obtained, " and if avail-
able it should be used in place of the sum fr "(8)
+f *(8). Here the small-angle approximation' to
f *(8) is given as

f *(8)= —2N, Q(K)/k(,

where F(K) is the x-ray coherent scattering factor
and N„ is a constant determined from an approxi-
mate treatment of the initial spin state of the tar-
get. (Note that this treatment is exact for H and
He. ) For singlet states N„= 2, for doublet states
N„= 1, and for triplet states 1V„=2. Note that only
the term

2Ref *(8)f "(8)= 2I f "(8)Icos&I(8)f *(8)

in the cross section, where &7(8) is the phase of
f "(8), should involve the constant N„. The terms
involving f *(8), if included, should be multipled
by 1, 1, and 3, respectively, for the spin states
mentioned above. The expression for the differ-
ential cross section can be written as

static polarizability with the correct dependence on
the incident energy.

If the missing electron-electron terms in Eq. (5)
needed to produce the usual expression for the elas-
tic second Born amplitudes, but with energy de-
nominators for electron-electron collisions, in the
absence of exchange and polarization, are added to
and subtracted from Eq. (5), the charge-polariza-
tion amplitude may be written as

» [2)m ——,'It() ——,'k~( —ic])k( —mt Im —k, I

N N

Q Q (&y I

s(((R( m& F„+t'm--I &
~ 5+ &I y )

a-1 y =1
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—„„=I
f"(8)I'+ 2I f'"(8)

I
cos g(8) [Ref",'(8)+f'*(8)] f (2&(8)

2N

+ 2I f"(8)
I

sing(8) lmf,",',(8)

+fz*(8) + Ref' '(8) +Imf, (8)z (10)

dm K — k, -m m-k,
[21m- —,'k, I

——,'k, —ie] Ik, —ml Im-k, Iz

where it is not clear whether it is justifiable to re-
tain the last three terms. In previous work the
term f *(8) did not make an appreciable contribu-
tion to the final result and can probably be discard-
ed. If higher Born terms are thought to give appre-
ciable corrections, then the terms ~f„,(8) should
of course be neglected. Again, as in the previous
study of the ICCCA method this term did not make
an important correction, although its omission did
lead to a slightly improved comparison with experi-
ment at small angles. In this work both the pertur-
bation expression [nonsquare terms in Eq. (10)] and

Eq. (10) will be employed in comparisons with ex-
periment.

II. INTEGRAL EVALUATION

For the case of a one-electron target system or
a Hartree-Fock description of a two-electron tar-
get system in a ground singlet state, Eq. (7) can be
written as

(11)
where 1V is the number of electrons in the target
and

f(x) = f dr p(r} e'*'

is a one-electron x-ray coherent scattering factor,
where p(r) is the one-electron density. As in Ref.
2, the density can be expanded in a series of Yuk-
awa functions'~ to high accuracy (a 0. 1/z) so that,
for instance,

f (k, —m) = Z y»x»/[x, +
I k, —mI ]

1=1

L L
f»z»»(8) = 4N g y,. Q y&([f(K) —1]A(0, 0)+ A(&», 0)

r ~1 )=1

+ A(0, X»} —A(X», X») ], (12)

where the basic integral to be evaluated is

1 dm

2»» (21m- —,'k»Iz ——,'k, —iz}(a + Ik, —mI }(g+ Im —k, l ) (13)

1

A(o, p)= 8, dz
W

where

dm
(Im ——,'k; I

——,'k, —ie}(Im —pl + r )

(14)

p=-,'k, (1+z}+-,'k, (1 -z),
7 =-', (&'+ p'}+-', (»r' —p')z+-,'K'(1 —z') .

Just as in Ref. 2, Eq. (14) can be rewritten in the
same form as used there by letting q= m ——,'k;, so
that

1
A(u, P)= dz

dq
(q ——,'k, —ie)(l q —p' I~+a~)2

where p'=p--,'k, . By use of the results obtained
in Ref. 2, the real and imaginary parts of A(o, P)

The analysis is quite identical to that of the first
paper in this series except for the different energy
denominator. That is, we have

I

are found to be expressible as
& 2 2

ReA(a, P)=Ax(a, P)=—,, z

(16)

ImA(n, P) =A»(o, P)

The final remaining integrations over p can be car-
ried out analytically in a straightforward way; the
results are presented in the Appendix. Extension
of this type of approach to Hartree-Fock wave func-
tions or configuration-interaction wave functions
with Slater orbital analytic basis sets is described
in Appendix B of Ref. 2.

IIL NUMERICAL RESULTS

The real and imaginary parts of the polarization
amplitude were evaluated for incident energies of
100 eV, 500 eV, and 40 ke V as a function of the ef-
fective energy AE,« for both H and He using the po-
tential-field parameters given in Ref. 13. In the
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FIG. 1. Variation of 0&peg with changes in the effective

energy ~~f for the H atom as a function of the incident

energy.

FIG. 3. Variation of 0'& e& with changes in the effective
energy ~eff for the He atom as a function of the incident

energy.

c„„=(4m/k, )fmf~', (0), (18)

reasonable values of the polarizability given by

(19)

are obtained and vice versa. In the limit as K-O,
& is independent of the incident energy as shown in
the Appendix. The small differences between Figs.
2 and 4 were caused by rounding errors in the nu-

case of H the field is essentially exact (accurate to
better than +0. 1% for the electron density), and for
He it is an excellent approximation to the Hartree-
Fock field (again +0. 1/p accuracy in describing the
electron density).

Figures 1-4 show that if bE,« is chosen to yield
accurate values of the total inelastic scattering fac-
tor from the relation

merical estimation of the limiting slope. The pur-
pose of the numerical estimates was to determine
the angular range over which the cross section ex-
hibited a first Born behavior for a potential of the
form o/(r'+r~~)'. Further, the energies AE„, for
which the exact polarizabilities are given turn out
to be fairly close approximations to one-half the
value of the mean excitation energy [see Eq. (A8)].
The mean excitation energy which gives the proper
value for the Bethe asymptotic inelastic cross sec-
tion is exp'�(- 1)/M„, j, ' ~ and is given by 12.64 eV
for H and 31.77 eV for He", twice these values,
25. 3 and 63. 5 e V, correspond rather well to values
of ~,«yielding reasonable estimates of o„„and
& for all incident energies studied so far. In this
paper the compromise values of bE,«= 25 eV for H

and ~,«=61. 1 eV for He were employed for all
the calculations.
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FIG. 2. Variation of the static polarizability a with

changes in the effective energy bEeff for the H atom as
a function of the incident energy.

FIG. 4. Variation of the static polarizability n with

changes in the effective energy ~,ff for the He atom as
a function of the incident energy.
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In Figs. 5 and 6, the dependence of the real and

imaginary parts of the polarization amplitude on the
incident ener gy as a function of scattering angle is
displayed. In Table I a breakdown of the various
correction values for scattering from He at an in-
cident ener of 500gy 0 e V is given. Comparison with
experiment' and the results of a calculation by the
extended-polarization potential (EP) method are
given in Fi . 7.'g. . The agreement is rather good and

the artial-
might even be better if exchange wer '

l d d
'

w reincu e in
e partial-wave method. The results of WaLker"

show that the exa e exchange correction at angl l h lessig ty
rger an zero will tend to lie below the Born ex-

change value. Note that the major source of dis-
crepancy between the present results and those of

Bromber ' for 0 )g' ) 10 is the exchange correction
and not thehe polarization correction. It would of

the secon
course be expected that at lower energie h

e second Born approximation fails, the results

rection
at larger angles will generally contain tn ain greater cor-

gi l
rec ions from higher Born terms th th

g e results.
s an e small-an-

In Table II the re suits for the present approach
are compared with those obtained earlier by the
ICCCA method for '

and 500 e
or incident electron energ f 100ies o

0 eV. The comparison for 40 keV is not
since the diff

r e is not given
e i erences between the results of the two

lar ran e wh

methods was less than 2%%u f allor values in the angu-
ar range where the polarization correct'ec ion was sig-

TABLE I. Am plitude and phase of the elastic partial-
wave electron scattering factor th
arts of t

c or, e real and imaginary
par s o the polarization amplitude d th, an e first Born
exchange amplitude for He with
500 eV.

wi an incident energy of

8'
) f~~(8) ) 7)(8) Itef ~'(8) Imf~I (8) fE~( 8 )

0
2

4
6
8

10
14
20
30
40
50

0. 4192
0. 4161
0.4072
0.3931
0. 3749
0.3538
0.3074
0. 2402
0. 1563
0. 1057
0. 0754

0. 185
0. 186
0. 189
0. 195
0. 203
0. 212
0. 238
0. 288
0. 393
0. 509
0. 622

0.2432
0. 1345
0. 0749
0. 0472
0. 0331
0. 0248
0. 0154
0. 0085
0. 0036
0. 0018
0. 0010

0. 3053
0. 2683
0. 2028
0. 1476
0. 1068
0. 0772
0. 0405
0. 0158
0. 0040
0. 0014
0. 0007

0. 0577
0. 0572
0. 0557
0. 0534
0. 0504
0. 0469
0. 0395
0. 0288
0.0163
0. 0094
0. 0056

nificant )0. 1( . %%u of the total intensity) . The im a'-
nary part of 6)f„i, ) in the T-matrix approach at 8 =

' y. e imagi-

y ower, which means that it ields
reasonable estimates of 0

i yie s more
a es o 0„„. Comparison of the

resu s or the two methods wits with experiment (see
a e III), indicates that the ICCCA

better at s
e result may be

a small scattering angles. Until a more
realistic treatment of excho exchange is employed, it will
not be clear which method isis best at larger angles

ough in theor the T-y the T-matrix approach should
be superior.
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TABLE II. Comparison of polarization amplitudes calculated by the ICCCA and T-matrix approaches for H and He
at 100 and 500 eV.

H

Ref~t (0)
(k

ICCCA

100 eV
Imf $ (e)

(A)
IC CCA

Imf &
(&)

( )
ICCCA

500 eV

ICCCA

Imf, (~)

( )

0
5

10
20
30
50

He

0
5

10
20
30
50

0.640
0.280
0.116
0.031 8
0.016 7
0.007 96

0.515
0.382
Q. 266
0.118
0.0550
0.021 0

0.721
0.354
0.176
0.060 0
0.025 1
0.006 65

0.616
0.477
0.350
Q. 174
0.085 3
0.0228

P. 731
0.588
P. 371
0.124
0.0389
0.005 40

0.412
0.392
0.339
0.209
0.11P
0.0254

Q. 697
0.554
0.339
0.1Q3

0.028 2

0.001 91

0.324
0.305
0.258
0.145
0.067 3
0.009 10

0.281
0.012 2
0.00471
0.002 00
0.000 584
0.000 097

0.223
0. 042 0
0.012 9
0.00494
Q. 002 97
0.000 974

0.297
0.024 0
0.010 2
0.002 45
Q. 000 760
0.000 119

0.243
0.058 5
0.024 8
0.008 49
0.003 65
0.000 957

0.475
Q. 142
0.041 5
0.004 68
0.001 19
0.000 206

0.309
Q. 179
0.082 3
0.018 4
0. 005 37
Q. 001 18

0.473
0.139
0.039 5
Q. 004 01
0.000 927
0, 000 137

0.305
0.173
0.077 2

0.015 8
0.003 99
0.000 666

aEffective energies used in the ICCCA calculation were 4E&f =12.6 eV for H and &E~~ = 31.18 eV for He.
Effective energies used in the T-matrix calculation were 4E&&= 25 eV for H and &Egff 61.1 eV for He.

In order to analyze the possible sources of error
in the T-matrix and ICCCA approaches it is helpful
to recapitulate the underlying assumptions. It was
assumed in the ICCCA method that the bound-state
optically allowed transitions dominated the inelastic
scattering and that the differential cross section for
these transitions is given accurately by the first
Born approximation. These assumptions, neglect-
ing relativistic effects which introduce errors prob-
ably not greater than 10-20% for incident energies
less than 50 keV, ' should become increasingly bet-
ter with increasing energy. These same assump-
tions are implicitly contained in the T-matrix meth-
od as developed here because of the way in which
the inverse operator was expanded. It was also as-
sumed that the form of the optical theorem

&&.& =&.&~».+«.a = («/f&) Imf &o"& + («/» imf "&(o)

(20)

70—

o—o Experimental Curve (Bromberg)
—~- - Partial-Wove Cross Section Without Exchange
——- Extended Polarization Potential

method
der Perturbation
rge Pf)lorizotion ond

first Born amplitude for the potential a/(ro+r )
seems reasonable, although by no means rigorous.
The fact that

4 I; 8 Ref "',(8)
a~

yields an excellent estimate of the polarizability,
lends some credence to this approach. The effec-
tive-range parameter ro in the potential is given in
Table IV as a function of the incident energy for H

and He. Insofar as it does not appear that a high-
energy form of the effective-range theory, predicting
the effective range as a function of energy, has yet

was valid. This seems very reasonable since
(4»/k) 1mf+& for He at 500 e V is 0. 085 A' and Brom-
berg's experimental value' is O. 095 A . The v„„
values obtained from Imf

'
', (0) seem to be reasonable

values' and Eq. (17) can certainly be expected to
improve with increasing energy. Thus it would
seem that the limiting magnitude of Imf~&(0) is de-
termined by the total inelastic cross section.

The proper behavior of the real part of the polar-
ization amplitude at small angles is more difficult
to ascertain. It seems likely that the large r depen-
dence of the scattering potential must have the lim-
iting form 1/r . Because of this, the procedure
of fitting the Ref~&(0) in the limit as 8-0 to the

40
ocf

.30

tion with
xchonge

.10

0 2 4 6 8 10 12 14 16 18 20

FIG. 7. Comparison of the experimental results for
the absolute differential cross section for He at 500 eV
with the results of various theoretical calculations.
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TABLE IH. Comparison of results for the elastic dif-
ferential cross section, including exchange and polariza-
tion, given by the ICCA and T-matrix methods, with ex-
periment.

0
2
4
6
8

10
14
20
30
40
50

lf1
ICCCA (A. )

0. 630
0.472
0.344
0.273
0.226
0. 189
0. 134
0.077
0. 030
0.012
0. 0064

If12T
(A. ')

Q. 653
0.480
0.360
0.287
0.237
O. 197
0. 137
O. 079
0. 031
0.013
O. 0066

lf I expt~
(A2)

0.530
0.418
0.303
0.242
0. 196
0. 161
0, 114
O. 064
O. 026
0. 011
O. 0057

Data of Bromberg (see Ref. 17).

been developed, little can be said about the quanti-
tative behavior of the ro values reported in Table
IV. Qualitatively, it seems reasonable that the ef-
fective range should increase with increasing inci-
dent energy as the 1/r interaction is made less im-
portant out to larger distances from the nucleus at
high incident energies.

The analysis of the charge polarization given in
Ref. 7 indicated that ro for He varied as the square
root of the incident energy as ro(a. u. ) =IE+0. 4
and ro(a. u. ) =IE, respectively, where E was the
incident energy in eV. A similar analysis of the
data in Table IV yielded the results ro(a u. ) = (E./
13.5) —0. 9 for H and ro(a. u. ) = ~DE —D. 14 for
He. The dependence of ro on E was approximately
linear between 100 and 50 keV. This can be regard-
ed as an independent confirmation of the ideas pre-
sented in Ref. 7. It should be noted that the use of
the smaller values of r~ (i. e., z~ E) will worsen the
agreement between the results presented here and
the experimental results. The differences cannot
be considered significant though, since the methods
in Ref. 7 differ significantly in other ways from the
method described here.

Variation of the potential-field parameters (&, 's)
by 2% indicated similar percentage changes in ro,
0', and o„„. Thus, the only possibilities for
changes within the present theoretical framework
would seem to lie in the use of correlated wave
functions to describe the target system or correc-
tions from higher-order Born terms. The latter
seems unlikely however in the keV range of incident
energies.

The foregoing discussion brings up one last com-
parison between the results of this paper and pre-
vious theoretical results for H given in the work of
Mohr for an incident energy of 34 keV. The re-
sults of the comparison are summarized in Table

TABLE P. . Variation of rp in the limiting potential
a/{rp+r )2 with incident energy for H and He obtained
from the Ref~&(e) in the small-angle limit.

Element

He

Incident energy
(eV)

50
100
250
500

1 000
5 000

10 000
50 000

100
250
500

1 OQO

5 000
10 000
50 000

(Ry a.u. )

4, 3

1.53

rp
(A.)

0. 9
1.3
2. 2

3.2

4. 5
10
15
29

0. 6
O. 9
1.4
2. 0
4. 7
6.6

13

V. Since the method of this paper agrees with ex-
periment and the calculations of the EP method for
He at an incident energy of 500 eV and since the
formalism should be even more exact at higher en-
ergy, the strong peaking of the elastic cross sec-
tion at 34 keV found in the work of Mohr is indeed
puzzling.

The results of the T-matrix method for H at the
other two energies, 50 and 19. 5 eV, for which re-
sults were reported by Mohr showed a stronger
peaking in the forward direction with decreasing
energy. At 54 eV the intensity at 8= 0 was 4 times
the Born value and about 16 times the Born value
at 19.5 eV. While the validity of the T-matrix ap-
proach must surely be questionable at these lower
energies, the qualitative behavior of the result does
seem to be reasonable. The results of Mohr at
19. 5 and 54 eV show the same qualitative behavior
(intensity at 8 =0 for 19.5 eV is approximately twice
as large as in the case of 54 eV). Why the polariza-
tion correction, which is decreasing with increas-
ing incident energy between 19.5 and 54 eV, should
start to increase again at a higher energy seems to
be an additional anomaly in the results presented
by Mohr.

The calculations in this paper were carried out
on the Hokkaido University FACTUM 23060 computer
in double-precision arithmetic. Comparison with
single-precision results indicated that no rounding
errors of any consequence were present in the cal-
culation. Calculation of the real and imaginary
parts of the polarization amplitude for 100 different
values of the scattering angle at each of three differ-
ent energies required 50 sec in double-precision
arithmetic. Judging from the comments in the lit-
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0. 000
0, 025
0.050
0. 075
0. 100

If I
2 partial
wave
gg

0.318
Q. 315
0.312
0.309
0.306

Polarization
correction

0. 063
Q. 014
0. 009
0. 006
0. 005

I f I

total
(A&

Q. 381
Q. 329
0.321
0.315
Q. 311

total
&)(}

2 x104
3
1.5
1.2
0.9

See Ref. 5.

TABLE V. Comparison of the total elastic differential
cross section for H at an incident electron energy of
34 keV.

be predicted in advance if experimental data on the
angular dependence of the differential cross sections
for the most prominent inelastic events are avail-
able. If the first Born approximation describes the
angular dependence of the differential cross sec-
tion of the main inelastic transitions (i. e. , those
transitions accounting for 80% or so of the total in-
elastic scattering) correctly, then the method de-
scribed here and in Ref. 2 must give a good descrip-
tion of the polarization process. On the other hand,
if there are serious discrepancies between first
Born theory and experimental results for major
contributing excitation processes, then a failure of
these approaches can be anticipated.

erature concerning computing difficulties (see Ref.
3 and Mohr in Ref. 4} in other methods, ii appears
that the present scheme is simpler than previously
proposed methods, although the potential user
should not lose sight of the fact that it is essen-
tially a high-energy approximation.

Another advantage of the ICCCA or T-matrix ap-
proaches is the fact that their success or failure can
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AppENDIX: EXpLICIT FORMULAS FOR THE CALCULATION OF At ~~' ~) AND A„(0(, p)

As in the ICCCA method, the results for the imaginary part will be given first, since they are the
simplest to obtain. Only two formulas are needed to calculate the imaginary part:

kq c- a+(b'-4~)"'g(a P&= '
&n8(b'- 4ac}"' c —a (b' 4ac-)"'-

where

I( z ) 4[&y4~ & a2(k2 +kR)+ 1(k2 k2}2]Q
(A2)

with

a=A~+~g(k, +k~+K~)+a, b=2AB+2B(k, + k, +K )+b(), c=B —2BK +co,

A= ~(ai+Pi) B= —'(a —P~) ao= ()K (kq+k(+ ~K )+ II}(k~ k) —b~= ~XI(k - k +K ) co= ~K~(k~ — K

Note that Eq. (Al) can be used for the nonequivalent cases A, (a, 0) and Az(0, p) as well as Az (n, a) when
ew0. Also Eq. (Al) for the three cases A, (a, p), Az(a, 0), and Az(0, p) will remain finite at zero angle with
the result

(QzQ)4k, (n —p)ap+-,'a(k, -k, )+-,'p(k, +k, )+ II)(k, -kp} (A8)

Equation (A2) is needed for the cases where a= pe0 8 =0 and c(= p=0, 8=0. Note that Eq. (Al) will also
suffice for the case a=P=O but 8 40.

Again, as in the ICCCA case, the real part of A(a, p) is more complex, and the integral for the general
case can be written as

1 1
a isa ((to+ Bozi}8(b —4ac) ( ~ ))z rz ')"'(z —z, )

' ' (z+()z ~ yz')'"(z —z, ) ) '—(A+B )
-1

(A4)
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where

n=-,'(no+ PZ)+ —,'KZ=A+ ,'K-', P=&an' -P') =B, y=- ~K,2

Ao = A + 2 (k( - k( + K ), B() = B —jC z z, , = [-b+ (b'- 4ac)»']/2c 1

with (2, b, and c given as in E(1. (A2). The result of the integration in E(l. (A4) is

(n ~ ne. ),,&„( az-('-n')z, ~ na' ()z n)'
R g(b2 4cc)1/2 (}s }

)1/2 4n( }s (
)1/2

(a —() K )z, a n( K (n ~ ((z ) ( (a —( —K )z ~ (a ~ (I ~ ((
)4P(l } )"'arC~n

2 ~ 2

~~

~

I a II
~

2 2 2
I~ ~ 0

~
~ I~~r Ctan

2 2

~
2

~
~

2 2 2

( i ~ })'/2 ' 4n(} ~

)1/2

(n' P '+ K')z, + n'+ 3P'+ K'
(—arctan

4pv )a2l
(A5)

where n, Z=vz, 2 +Pz, 2+ n. Strictly speaking E(l. (A5) is valid only if n, 2&0. Since this was the case
for the corresponding term in the ICCCA method, only the arctan form is displayed here. Individual a, 2

terms were tested in the computer program to make sure that n, 2 was always negative.
For the special cases at zero angle where (AS) breaks down, the formulas

AR(n, n)=[n +2(k( —k, )]/4n[n +zn (k(+k() +(TkZ, -k, ) ],
(e-o&

(A6)

can be used with

7r A.
' —Bo~i A o

- Bozo
AR(pz 0) 4K(b2 4s c )1/2 (z 2 1)1/2 ( 2 1)1/2

p
— apcp

Ao= —,'(k, —k, +K ), So= ZK

(AV)

The signs depend on whether or not z, 2 is negative or positive. Since in the cases investigated here ~& & -1
and z2& 1, the plus sign can be used for both terms. The limiting value of the slope of Ref„,(8) as K- 0
yields the polarizability as in Ref. 2 according to

4 . BRef ((8) 16 ~ y(
0. = ——lim

g ~ p BK 26K,gg ) gX] (A8)

which is identical to the previous result if the effective energy 4E,« is taken as twice the mean excitation
energy discussed in Ref. 2.

Two further cases which bear some mentioning are the integrals AR (n, p) and A„(0, P), which are not
equivalent in this treatment, and are given as

1 Ao+Boz (n'-K') z, + 3n'+K'
A„(n, 0)=, 2,1/2

} }
1/2 arctan 4, '

)„2
—

2 2sgn(z1+1)
Sjb -4acj &I a&l j 40. (I ag l

p+&oz2 (n —K )z2+3n +Kz ztzn, )„, ——, znn(z, ~ 1) ) (An)
l a2l g 4aj l a2 l

R ( P ) g(bZ 4 1/2
(

1/2 —arctan ' „, + —z((sgn(1 —z,)
1 (Ao+ Boz,) (K' —P') z, + 3P 2+K

8 5 —4ac l apl 4P I (z(l

(A+Bz
»z —arctan K P ) 2+ P + ' „(1 zg (A10)

2 2

(is, i
)"' 4P (l a l

)1/2

with the signs giving +-,' m, ——,
'

m, +-,' w, and ——,
'

m, respectively, for the cases investigated so far. The
constants are defined as before by setting either p or n equal to zero.
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The cross section for elastic scattering by electron impact on NO shows resonances in the
energy range 0-2 eV. These resonances, with a spacing of about 0. 16 eV (co~=0. 17 eV), are
associated with vibrational levels of NO, and there is a near-coincidence in energy between
the 4th vibrational state of NO and the 6th vibrational state of NO . The width of these reso-
nances increases monotonically from 0. 02 to 0. 10 eV as the vibrational quantum number of
NO goes from 1 to 6. The energy dependence of the vibrational cross sections exhibits peaks
at the positions of these resonances, and the magnitude of these peaks is measured. The vi-
brational states of NO can decay by the emission of an electron into various vibrational levels
of NO. The branching ratio for a few of these decays is measured. A potential energy dia-
gram of NO is drawn, using the experimental evidence.

I. INTRODUCTION

This paper presents the results of measurements
of elastic and inelastic processes occurring in ni-
tric oxide at incident electron energies below about
2. 0 eV. This work is an extension of previous
work' of a similar nature in 0&. It is now well
known that vibrational excitation can occur by "di-
rect" excitation of the vibration, and by excitation
of a compound state with subsequent decay into a
free electron plus a vibrationally excited molecule.
The latter process seems to be the dominant mode
of vibrational excitation in diatomic molecules such
as N~, CO, Oz, and H2.

' The "direct" process is
larger in those molecules which have a permanent
dipole moment.

Nitric oxide forms a stable parent negative ion
(as does Oz), and it has a permanent dipole mo-
ment. Thus one may expect not only excitation via
the compound state formed by the traversal of the
NO potential curve in the Franck-Condon region

of the NO molecule, but also a significant contri-
bution from direct dipole interaction. Previous
work in NO appears to have been confined to a study
of resonances in the elastic scattering cross section
at low electron energy. These resonances have
been observed both in transmission and in pure
elastic scattering.

We show in this paper that the vibrational excita-
tion cross section for NO consists of a series of
spikes superimposed on a monotonically increasing
background. The spacing of these spikes is about
1.60 mV, equal to the spacing of resonances in the
elastic cross section. In contrast to O~ *, which
has a lifetime against autoionization of about 10
sec, the lifetime of NO is considerably shorter,
leading to broader spikes in the elastic and the vi-
brational cross sections. Further, we find that
these spikes become broader at higher energies.
We find, as in the case of oxygen, that the com-
pound states prefer to decay into the lower vibra-
tional states of the molecule, though the branching


