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S-matrix elements typically encountered in atom-atom scattering may be phenomenologically
parametrized using meromorphic functions of complex angular momenta. The contribution to
the scattering amplitude of each pole of the S matrix is of such a simple nature (effectively,
decaying oscillations for parameters encountered in practice) as to greatly facilitate the de-
duction of the phase shifts from scattering data. Some of these poles should be close to the
true (Regge) poles of the exact S matrix about which much theoretical information is available.
There is some discussion outlining how many diverse phenomena such as rainbows, orbiting,
and curve crossing can all be parametrized under the same scheme, thus leading to their uni-
fied treatment.

I. INTRODUCTION

Atom-atom scattering at low energies typically
involves many hundreds of partial waves. The theo-
retical analysis of such problems has been domi-
nated by semiclassical considerations. Thus for
example, the phase shifts are deduced from poten-
tials via the WEB approximation. Similarly, sums
over partial waves are first converted to integrals
and then approximated by stationary phase methods.

In a particularly well-known paper' written in
1959, Ford and Wheeler discussed in some detail
a whole range of semiclassical scattering phenom-
ena. Since that paper there have been many applica-
tions, refinements, and extensions of their ap-
proach. Just at the time that Ford and Wheeler's
paper was being published, the field of high-energy
physics was beginning to turn its attention to what
has become known as Regge poles. In fact, also
in 1959, Regge was motivated to study the general
properties of nonrelativistic potential scattering S
matrices considered as analytic functions of the
angular-momentum variable. ' Although these in-
vestigations were not motivated either by semiclas-
sical problems or by problems associated with the
handling of many partial waves, they are in fact
related by a long and historic line to investigations
which were just so motivated. For example, in
Sommerfeld's book on partial differential equations,
he discusses the Green's function describing radio
propagation near the surface of the Earth. He notes
that the contribution to this Green's function from
about 1000 partial waves is contained in what has
come to be known as one Regge-pole contribution.
Obviously any mode of analysis which condenses the
effect of so many terms into what is in fact a single
relatively simple analytic expression may be of
great use.

It is the purpose of this paper to indicate how
some of the many varied and interesting effects
seen in atom-atom scattering experiments may be

analyzed using S matrices which are simple analytic
functions of complex angular momenta and which
involve only a few parameters particular to the sys-
tem being studied. Further, it will be seen that
these parameters can be simply and directly related
to the experimental data so that this mode of analy-
sis becomes a useful tool in the attempt to deduce
the phase shifts or, equivalently, the potential.

In Sec. II the basic results are derived. In Sec.
III a numerical example typical of a system with
large slowly varying phase shifts is given and how

a more detailed analysis may be performed is dis-
cussed. Rapidly changing phases typical of orbiting
and level-crossing situations are discussed in Sec.
IV. The problem of total-cross-section measure-
ments is touched upon in Sec. V. The particulars
of any one type of system have not been investigated
in great detail but rather we have attempted to show
the great intrinsic range and power of the method.

II. BASIC RESULTS FOR DIFFERENTIAL CROSS SECTION

Oc+ lp y

where the subscripts C and T stand for "core" and
"tail, " respectively.

The (diagonal) S-matrix elements in the angular-
momentum representation are similarly written as

S(X) = e~'"= So(X)Sr(X) = e""&e'"r
where we will often use the variable

X=l+ —', l=0, 1, 2, ~ - ~ (3)

We are concerned here with the elastic interaction
between two atomic systems at least one of which
is uncharged, so that there is a long-range attrac-
tive tail and a short-rage relatively sharply cut-
off repulsive core. It is convenient to treat these
two parts in rather different ways and, reflecting
this, the phase shift g is considered as the sum of
two parts
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~= —4I (lmlt,') ~It'- It',
~

'.Much of the problem with which we are concerned
amounts to summing, in an interesting manner, the
parh~1-wave series

ikf(8)= Z~XP„ t(s(x) [S().) —1], x= cos8 . (4)

To do this we decompose the sum into a core and
tail part

ikf = Q„XP„ t~s(x) [Sr(So —1)+(Sr —1)]

=ikfc+ikfr .
After these preliminaries, the basic approach

of this paper may be discussed. The core phases
vanish rapidly beyond some angular momentum
called l~. For /&l~, they decreased to large nega-
tive values rapidly and monotonically. In this re-
gion it will also be seen that the tail phases needed
in physically interesting cases vary much more
slowly than the core phases so that, qualitatively,
fo is similar to the hard-sphere scattering ampli-
tude. Since the structure of this amplitude is well
known and since the number of partial waves needed
for its accurate computation is relatively small
(compared to that needed to compute fr), it may
well turn out to be quite reasonable, in practical
cases, to simply compute the sum for fo by ma-
chine. Alternatively, however, we shall discuss
simple and standard analytic approximations to this
sum.

The case of the tail contribution is quite different.
It is impractical and unedifying to sum the large
number of partial waves needed to accurately com-
pute fr. Analytic approximations based on the
stationary phase approximation have been given. '2
In this paper, we indicate another type of analytic
approximation which is more general in scope,
more accurate in principle, more interesting in
theoretical connotations, and possibly somewhat
simpler in form.

S& will be represented by the simplest type of
meromorphic function in complex X which is at the
same time unitary and symmetric. One writes

N
Sr= QSp, (6)

p~)

S,= (It'- Its')/(It'- It', ) . (7)

Thus S~(X) = S~(- X) for any X and Sz(X) = [S$(X)]
for real X.

The general properties of an S matrix paramet-
rized in this fashion can easily be derived. In par-
ticular, one has that the tail phase q~ is the sum of
contributions, one from each pole with

pT ~pppi (8)

(9)tl~ = —arg(It —It p) —arg(X +I). t

Similarly, one has for the deflection functions

e,=Z, e, , (10)

A pole in the I (and III) quadrant corresponds to
attraction and provides a positive monotonically
decreasing function of increasing X as its contribu-
tion to g and vice versa for a repulsive pole. Fig-
ure 1 illustrates this and other basic properties of
e~ ard gp.

Note in particular the restrictions

~
np(0) Ip( )

~

~ v

e, (o) = o.

(12)

(13)

Since typically in such systems some tens-of-radians
worth of attractive phase shifts are experienced in
the tail region, Eq. (12) implies that a few attrac-
tive poles will be needed in general. Similarly,
repulsive cores force the phase shift to large nega-
tive values as X - 0 [e(0):—w] and Eqs. (12) and (13)
imply that such being the case, parametrization of
these phases would require cumbersomely large
numbers of repulsive poles. This is the basic rea-
son the core region is treated by another method in
this paper.

It is interesting and appropriate at this point to
note that Regge's investigations3' '7 give us insight
as to why attractive poles are more useful than re-
pulsive poles. He has shown that for ReX & 0 the
only singularities S(X) may have are simple attrac-
tive poles. Repulsive poles as defined here do not
in fact exist in the exact S matrix; repulsion is due
to other singularities in the half-plane ReX &0.
However, it still may be useful to phenomenologi-
cally simulate at least part of the repulsion with
poles.
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+q, (/2(x-iO) (I+e "'")-'. (Ir)

As long as i ImX ~, 2, one or the other of these
terms will be strongly damped for all ~. The case
jImX I-2 corresponds to, in the context of atom-
atom scattering, orbiting and will be discussed
separately. Thus, except when poles lie exception-
ally close to the real axis, one has, to excellent
approximation,

ikfr= Qp p( p —&p )Q)tp (x —iop), (18)

0p = 0 s gn(im)( p).

The great power and simplicity of this formula
is further revealed upon noting that for large X~
one has the following rapidly convergent expres-
sion':

'" r~x+-'~
Q1 1/2 (cos 8 7 20) = 2 & e +f (r /4+)t& )

2 sin8 I"()(+1)

xF (-2', —,', I + )(; I',), ~ vie" /2sin8

(2o)

The tail amplitude can now be computed exactly
using the Watson-Sommerfield transformation

ikfr= Z„)(P„,/2(X) ( r-1)
= (2wi) ' $ (w/cosw)()((P„, /2 (-x) (Sr —1)d)1 .

(14)

The contour in complex X encloses clockwise the
poles due to cosmic. This contour may now be opened
up until it stretches along the imaginary axis leav-
ing in the process the contributions due to the poles
of Sr. The imaginary axis ("background") integral
vanishes due to the antisymmetry of the integral—
this is the reason for insisting S~ be symmetric in

Thus we have

ikfr= (2wi) '-,'w (|) d& [P„,/2(-x)/cosw)(] Sr
—Zp-2 w [P1p 1/2(- x)/cosw)(p] Cp(X p &p )

(15)
where the integral has now been rewritten as a
clockwise circuit about the poles of S~ in the X~

plane. Cp(X p —)(.$') is the residue of Sr at the Pth
pole using the notation

Sr —Cp(X )Sp, Cp(l(p) = Cp

so that the function Cp()(2) is the cofactor of Sp in
Sq.

The formula may be clarified by noting a relation
between various Legendre functions on the cut,

w P (-x)
= Q (x+ io) (1+e 2"") '

P1-1/2 (1/w) [Q1-1/2(x + 20) Q)t-1/2(x + 20)]

(-) -f X8 (+ ) +i)t&

(23)

(24)

where q,
"' are slowly varying in comparison to

other factors. This integral has no end-point con-
tribution to first order because S, ()(,) = 1. Thus
the main contribution is, as usual, ~ from the sta-
tionary phase of

8( ) e t1() e2(t)

q(-) - s S() ) fd) i ((/2)ei(1-1 )
s:—(i/w) q„(x+io) )( S(A )e '" (2w/- 6')",

"s-g/2

(25)
2—dq

d~ "s(e)
(26'/

convergent asymptotic series. ' By inserting an
accurate approximation for the I' functions'~ we ob-
tain the final form useful for computation:

1/2
t), „,(cost t '0)= [(, . (t

— (,),
4

& equi(r/4+)tN)p

(n ——,')'
P.= ~f. &". fo=» f.=, ~) f.1-

n=O n(n+ X

Thus, the contribution of a pole is given by, up to
a slowly varying factor, the form exp(+ i Re) p8
—(im)1 p(8)—a decaying oscillation in angle, the

frequency and decay rate of which are simply re-
lated to pole position. The simplicity of this re-
sult should make it possible to roughly guess at the

pole positions from direct examination of experi-
mental differential-cross-section data. This would

be a necessary initial step in a least-squares fit to
experiment in an attempt to deduce the S matrix
from the cross section.

Another example of this simple correspondence
can be seen in th numerical example of Sec. III in
which the peak in the deflection function is caused
by a group of N = 10 poles clustered about 200+ 20i
:-)(p (for every P). Thus the value of 8r=N8p, at
its maximum, when X~=ReX~, is simply obtained
from E(I. (11) to be 2N[(Re)(p)2- (Im)(p)2] '/2/

(Re)(p Im)(p), which is the classical rainbow angle
(in the example this turns out to be close to 1 rad).

An analytic approximation to the core amplitude
may be obtained via the saddle-point method. It
should be emphasized that it is possible and prob-
ably worthwhile in practice to simply sum this
series. However, it is useful in any case to see
what the general properties of such a sum are from
an analytic expression. One writes

ikfc = f d)XP(„/ ((Sc2—1), (22)

I' denoting the hypergeometric function. For
8&30', the series converges, while for 8-30' it
diverges, but for large A. it is an initially rapidly

d'n
s=2 a (0

dX
s

(27)
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This must be added to ikfr to obtain ikf and provides
in practice a practically flat hard-core reflection-
type amplitude. A numerical example illustrating
the use of these results is given in the Sec. III.

III. NUMERICAL EXAMPLE
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As a typical example of the data to which methods

may be applied we have taken the results of Cham-

pion et al. on 6-eV elastic P+ Ar scattering. They

find a phase shift which reaches a maximum of

about 30 rad at X=150 and then decreases monoton-

ically to about —100 rad at X = 0. The width of the

attractive region is about 100 units of angular mo-
mentum and the deflection function has a minimum

at about X = 200. As a rough simulation of this we

placed 10 poles close to the point 200+20i in the

complex 1. plane (10 poles &-3 rad/pole=-30 rad).
For the hard-core phase shift g~ it proved conve-
nient to use the expression
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g
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which can be obtained by taking the S matrix for
hard-sphere scattering (Xc =kx radius of sphere)
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FIG. 2. The phase shift and deflection function for the
configuration of 11 poles described in the text and in
more detail in the caption to Fig. 3, plus a Debye hard
core starting at +=150. The scattering cross section
correspon~&~0' to this is given in Fig. 3.

and applying the Debye approximation to the Hankel

functions. This approximation is valid except near

the edge of the sphere and has the virtue of being

simple and accurately simulating small X behavior

of q~. In the present example we have taken X~

=150. Finally, a single repulsive pole was placed
at X =200 —200i which had the effect of canceling the

asymptotic behavior of the attractive poles causing

the phase shift to go as X ~ as &-~. Because of
the large imaginary value of this pole's position it

FIG. 3. Smoothed differential cross section due to 10
poles at Q = 200+ 20i+ exp[(P/10) 2xi] P = 1, ... 10 and one
at Q&

= 200 —200i plus a Debye hard-core phase. Also
shown is the cross section due to the hard core aloneand
the classical hard-core cross section. Evidently, the
structure is due almost entirely to the poles. The rain-
bow angle is given by a simple algebraic function of the
pole positions. The first few computer points have been
simply connected by straight lines.

can have essentially no effect on the differential
cross section for angles I9-200 rad. '

Figure 2 contains the phase shift and deflection
function which result when using these parameters.
It must be emphasized that the experiment cited
above was used only to suggest relevant parameter
values for a numerical example. In a serious fit-
ting attempt, modifications would be made to im-
prove the bumpy shape of the deflection function;
for present purposes it serves to enable one to
distinguish clearly the basic shapes of the core and
the pole by marking the boundary between the two
regions.

In Fig. 3 one has the cross section averaged over
an angular window of 2'. The core contribution was
obtained directly by summation up to X~ = 150.
This figure shows that the characteristic oscilla-
tions observed, including the rainbow, are all
basically contained in the pole contribution.

A careful analysis of such experiments along
these lines might involve a least-squares fit to
the data while varying X~ and the X~. This would
result in a best analytic expression for the S matrix
in which the informational content of the experi-
ment was conveniently codified. One could then,
if desired, obtain the implied potential via the
well-known %KB-based inversion formula. "
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IV. POLES NEAR THE REAL AXIS
N N 1

ef AP~ ef)t} eon& &

P=1 n=0

Any physical phenomenon which causes large
and/or rapid changes in the phase shift over finite
intervals of X implies singularities of S near the
positive real axis. Below the onset of inelasticity
the singularities must be simple poles'; above,
they may be more complicated but could of course
be approximated by simple poles.

Two common phenomena of this type which come
to mind are orbiting' and level crossing. ' In the
case of orbiting one has a range of angular momen-
ta in which there are a number of resonances. A

packet composed mainly of such angular momenta
will remain in the vicinity of the potential a rela-
tively long time before dissipating; hence, its cen-
ter must orbit some time about the potential center.

In the case of level crossing, particles whose
trajectory remainsarelatively long time in the re-
gion of crossing will be preferentially depleted
from the elastic channel. The phase shift at angular
momenta close to values corresponding to such tra-
jectories must again suffer large changes in their
real and imaginary parts. This may also be pa-
rametrized, without unitarity, using poles near the
positive real axis.

As Eq. (17) indicates, poles near the axis will
contribute both positive and negative frequency
oscillations in angle to ikf&. Consider the case of
orbiting in which for each pole ImXp &0. Equation
(17) may be expanded into a convergent series in
powers of e '"P, each term of which allows an in-
teresting interpretation in terms of ray theory.
The contribution (—1) e ' "Q„,&2(x —fo) arises
from rays performing m complete orbits before
escaping. During each complete orbit the ray ex-
periences a phase change 2w Rek p = k && (2wr p) = wave
number && circumference of 8th orbit; it experi-
ences an intensity loss (e "' "p ) . From this one
can deduce the approximate half-life of the reso-
nance associated with the pole as follows: The num-
ber of revolutions to halve intensity A is given by
N 2p t Imkp I

=-,'; the distance traversed in these N
revolutions is 2vNrp = ,'(rp/Imkp) = (-1/2k)
&&(Re&p/Im&~); the time taken to go this distance is
distance/velocity = (m/2k') (Rek~/ImXp) = half-life. "
The terms multiplying Q„,~2(x+f0) have a similar
interpretation; they correspond to rays traveling
in the opposite sense and which must execute at
least one full orbit before escaping.

One can finally ask about the qualitative features
of the contribution to the amplitude of a group of
such poles. As a simple model consider a se-
quence of N such poles equally spaced parallel to,
and above, the real axis. Their main contribution
to the scattering amplitude is of form [using (17)
and (21)]

= e'"«2 (sin~N68)/(sin —,
' 68), (so)

It is of some interest to ask, in the context of the
present results, to +hat extent the total cross sec-
tion can be inferred from partial knowledge of the
differential cross section. A large contribution to
the total cross section comes from small-angle
scattering. Differential cross-section measure-
ments have of necessity an associated minimum
angle of measurement. Therefore, to infer the
total cross section, a theoretical extrapolation must
in effect be performed. Low-angle scattering is
dominated by diffraction plus refractive scattering
of high partial waves by the asymptotic tail of the
potential. It is the latter which are not directly ob-
served in the differential-cross-section experiment.
The diffractive contribution can be inferred to within
the accuracy of the differential-cross-section ex-
periment, since it is determined by the phase shift
at low and intermediate partial waves, and these
phases are in turn determined by the intermediate
and high-angle cross-section data.

One has from the optical theorem

v = (4v/k) Imf(O) = —(4&/k') Z„X(S—1) . (31)

If one were to use the expression for f obtained via
methods presented here from a differential-cross-
section analysis one would write

o =oc+or = (4g/k) imfc(0) +(4v/k) fr(0) . (32)

However, note that one can write

Sr =Z~ C~(Xf, —X~ )(X —Xj, ) '+ 1,

Sr —1=[S~~Cp(Xp —Xp )]X +O(X ),

(33)

(s4)

so that unless the poles are carefully balanced to
eliminate the leading term in the asymptotic expan-
sion Eq. (34), the long-range behavior of S —1 is as

and corresponds to an inverse power potential
going as r . It is most often true that the potential
decreases at a faster rate, while even if it did de-
crease as r the coefficient of this term obtained
from a. fitting procedure may be incorrect due to
ignorance of small-enough-angle data. One should
therefore write

where b, = Xp 1 Xp This function has its first
major maximum at 8 ~= 2v/6 with width - (1/N)8 „.
Thus, the net effect of an orbiting situation or a
single level crossing will often be a few widely
spaced narrow blips superimposed in the background
amplitude.

V. TOTAL CROSS SECTIONS
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g = g c + 0'g + 60'g

where
(32')

herr = —-T ReZ X(S —Sr)
4m

k
(3S)

B,(X„)=e „. (37)

One can therefore only proceed by estimating S

and S is the true matrix having correct asymptotic
form, while X„ is the lowest X such that

S(X ) —Sr(ks) = 0, B(X&)—B (X~) = 0 . (36)

One might empirically determine &„by noting that
it should be near that value of X such that the re-
fracted waves cross the minimum angle of resolu-
tion 8 „of the experiment,

for X & X„using additional information concerning
the long-range part of the interatomic potential.
hc can be then calculated; chic is again probably best
calculated by simply summing the series Xc; oT
can be given analytically using the behavior" of the
Q functions 8 =0;

o'r = (4p/ft ) ReZp Cp [ ) Xp —X~p )

+(2/r) (&p —&p')g(Xp+-,')], (38)

g(z) = lnz —(2z) ' —O(z ') .
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