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An energy sum rule for fermion levels split by n-body exchange forces is derived and ex-
pressed in terms of Young tableau "hook lengths. " The Franzini-Radicati nuclear mass for-
mula is rederived and generalized to include the effect of n-body operators. The form of a
mass splitting by a three-body term is computed in detail.

I. INTRODUCTION

Qne procedure for dealing with configuration-
interaction problems in complex spectra involves
construction of an effective Hamiltonian operator
on the basis of a single configuration. The pertur-
bation expansion of this operator can be done in

terms of Feynman or Goldstone graph theory. '
The terms in the effective Hamiltonian represented
by n-line graphs are called n-body operators. In

this way it is thought that observed energy-level
spacings can be reproduced by some combination
on n-body operator spectra obtained wholly within

the subspace of the configuration being studied. It
is hoped that n-body terms will become smaller
for larger n, with n=3 and possibly n=4 terms
giving small corrections to the usual one- and two-

body operator spectrum.
In this paper the combinatorial aspects of the

n-body problem involving a spin-independent Ha-
miltonian are solved using group theory of Young
tableau. A simple method is given that may allow
one to estimate the magnitude of some n-body terms
in certain experimental situations.

II. EXCHANGE FORCES

The descriptions of the Pauli principle and so-
called "exchange forces" involving a two-body in-
teraction g(r, r2} such as Coulomb repulsion, are
well known. ' For example, in an (ns)(n s) conf ig-
uration, such as that of the first excited electronic
states in helium, there are the following energy
sum rules for levels of different symmetry:

e"'11=i-J'=e(3S) (triplet states),

e' '=I+ J=e( S) (singlet state},

where t includes the direct integra«f g(r1r2) and
other integrals of one-body operators, while J is
the exchange integral of g(r1r2). 'II1e notation [2]
([1, 1]) indicates that the two-particle spatial wave
function is symmetric (antisymmetric) to an inter-

change of the two particles. The numbers
[t1„ t12, . . .] indicate the number of boxes in rows
of Young tableau ' (Fig. 1) which designate general
types of parasymmetry of an n-particle wave func-
tion. These tableaux are generally defined in con-
nection with the permutation-group (S„) irreducible
representation (IR), which they label. However,
their use as labels for parasymmetry of unitary-
group [S U(m)] IR is probably more widely known. 3

For example, n particles each with half-integral
spin [SU(2)] form various states of definite total
spin, which are labeled by the tableaux as shown
in Fig. 2.

It is now shown how one may derive general sum
rules like the above for a configuration involving

an arbitrary number of particles interacting through
a general n-body interaction. A three-particle con-
figuration will be used to display the preliminary
derivation.

III. (ns)(n's)(n "s) CONFIGURATION

Consider a three-fermion configuration with each
fermion in an s state of different principal quantum
number. The set of all spatial wave functions for
this configuration is a six-dimensional space span-
ned by the permutations of

4. (r1}0.(r2)C.-(r3) -=1t11t203

shown below:

(411t243& 1t34142& 424301& 424143& 43t241& 414342}

The 6&6 representation of permutation groupS, for
which the above is a basis can be reduced to two
pairs of type [2, 1] IR bases:

1t'1
"= ( I/2&t3) (21i,1t 21t&3 $3/1/2 $2$31t 1

+ 244143- Akt1 —4A'34),

42 2(430142 424341+1t342t l 46342)&

41 2(434142 424341 434241+ 414342}&

i891
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[&,1]-
~ 0

Young tableaux designating (a) symmetric two-particle state, (b) antisymmetric two-particle state, and (c)

general n-particle parasymmetric state.

$2
' ' = (I/2 J3)(- 2$11l'21|'3+ @$1++1)'21l'3/1

+ 2424143 4A-61 —
1C 1&34),

and one each of type [1, 1, 1] and type [3] IR base:

= (I/ 6)»»(f111l121l 3+ 434142+ 42~341

1l121111l3 434241 414342)»

= (I/g6) 4 1421''3+ 434142+ 02~301
(3. lb)

+ 42&14+ 4641+ AV34).

A desired completely antisymmetric atomic (nu-
clear) wave function is constructed from products
of each of the above spatial bases g'"'[(3. 1)] with

spin (spin-isospin) bases 8'"' of opposite or coss-

jugage symmetry. For example $' ~ 9' "",
y

[1,1,13ef31 andt

f23 1)ef2 ~ 1 l I, f2 ~ lee f22 1)

each satisfy the Pauli antisymmetry requirement.
Each of these belong to different degenerate energy
levels of definite total spin (spin-isospin) for a
Hamiltonian X that does not involve spin or isospin,
as indicated in Fig. 3. To compute a formula for
these different energies, imagine the matrix rep-
resentation S(X) of the Hamiltonian & in the sym-
metrized spatial basis (3. 1). In this basis the ma-

trix representing the permutation operators has
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FIG. 2. Young tableaux associated
with products of one to eight single-
electron spinors. They represent
functions that have definite total spin.
The circled numbers are dimensions
of respective S KR {see Appendix A).
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g)(2, 1l( )P 0 0

~tlat(p}
0
0 0 0
0 0 0

s(P) =0

0
0

the form shown below:

0
0
0
0

~f1&1,1l(p)
0

0
0
0
0
0

~(S'(p}

~(v)
p("& g X(s) (p) [p] (3. 2)

Pg e [p)

where l'"' and X'"'(p) are the dimensions and IR
characters, respectively, which are easily com-
puted (see Appendix B). The representations of these
are shown below:

Since the Hamiltonian is symmetric, one has

s(x) s(p) = s(p) s(x)

and Schur's lemmas demand that SQ) be almost
diagonal as shown below:

a 0 b 0 0 0
0 a 0 b, 0 0

S(3C)=c 0 d 0 0 0
, 0 c 0 d 0 0
0 0 0 0 e 000000 fI

Now introduce the operators

s(~62, 11}

s(~o, 1,11)

0

(ns) (n's) (n"s)

DOES NOT EXIST
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~
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I
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IN GENERAL IN ATOMIC SPECTRA IN NUCLEAR "SUPER IVIULTIPLET'
SPECTRA

FJG. 3. Atomic and nuclear multiplets associated with Young tableaux involving products of three single-particle bases.
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s(p"') =
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= (123X213) + (123X321) + (123X132),
K=(123X([123]+[132])123)

= (123X312 ) + (123X231) ~

Clearly the average energy of levels belonging to
IR [i1] of S, is given by (e'"') below:

&e'"'& = [1/(f's')'] tr S(X}S(I's')

= [1/(f'" ) ] tr S(XP'"')

= —,Z, ,„;trS(X[p]).~Cv1

One now computes the trace in the original basis

&1&,cs = C.(~, )y-. (r,)e„-(~a),

&,(.)&
1 p x'"'V }

8 [p] a11 pe,~«dr1 l dr2 dr3
tioae of 128

~1 @PsX [P] 41424$

1 Z
c1assss J f a11 ssduauta- J J

ot S tioaN of 13$
tI

x $142 gsX111 4146s ~

et l, i,i] I t

&e 1&11&= I —,'K,

e '= I+J+K.
For notational convenience let

(3.3)

f dr1 fdra f drs&1sgaagssO&f4'gas-=(1230ijk)
da

for any operator O. Then the I,J, and K above are
given by the following:

I= &123 1X23),

J= (123X ([12]+[13]+[23])123)

In the above a class x& is just the sum of permuta-
tions having a given cycle structure:

x, =[1],
111= [12] + [13]+ [23],

x, = [123] + [132].
The property of a class is that every permutation
commutes with it. Using this and the fact that every
permutation commutes with X,we have the following:

~(v3
(e " )= 2 u& dr& dr fdr dfdmdmdk&dqdId .

claesea g ~

Now the coefficients }t1' '/l'~ are computed by
methods given in Appendix B, and the following sum
rule results:

Suppose that X contains only symmetric sums of
one -body and two-body operators:

X=~f(f)+~g(fI)

=f (1) +f (2) +f (3) +g (12) +g (13)+g(23) .

y"'1&=I+-,'Z--', L --', M,

e1a,a1& I a K+L

(e ' ' ') =I ——'J —,'L+ ,'M, ——
(e ' ' ' )=I d+K+L —M. -

(3.5)

Of course if the Hamiltonian contains no four-body
operators, then L and M vanish, and K is zero again
if, also, there are no three-body operators. Now,
a positive J results from a repulsive two-body force,

Then we have

I=(1f (1)1)+ &2f (2) 2) +(3f(3) 3)

+(12g(12)12) + (13g(13)13)+(23g(23)23), (3.4)

d = (12g(12) 21) +(13g(13)31 )+ (23g(23) 32),

K=O.

The notation in (3.4) is the following:

&ouig(y~) &)
= f draf dry(a(rgg~s(rz)g(y5)4„(rg(&(r, }.

The E term will not be zero if in X there is a
three-body operator h(123) which cannot be decom-
posed into a sum of the two-body operators. For
the Hamiltonian

X f(1)+f(2)+f(3)+g(12}+g(13}+g(23}+h(123),

the I,J, and K terms are changed to the following:

I= &f(1)1)+(2f (2) 2) +(3f(3)3)

+ (1 2g(12) 12) + (13g(13) 13) + (23g(23) 23)

+(123h(123) 123) i

J= (12g(12) 21) +(13g(13)31) +(23g (23) 32)

+(123h(123}213) +(123h(123) 321)

+ (123h(123) 132),

K=(123h(123) 312&+(123h(123)231) .
Using the p1"'/l + for S„which are calculated by

methods given in Appendix B, four-particle sum rules
can be written as follows:

e'"= I+J+ K+I.+~,
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and one derives the well-known result that higher
energy is found in the more symmetric spatial wave
functions in atomic spectra. This implies that the
highest total spin will be found in the ground state.

IV. PURE CONFIGURATIONS

Sum rules like (3.3) and (3. 5) are exact for mixed

configurations like nl n'l'n" l".. . but are only ap-
proximations for pure configurations (nf)" .

To show the nature of this approximation an (np)'
configuration will be discussed. The three l = 1
orbitals can be coupled to give an F septet (L = 3),
two D quintets (L= 2), three triplets (L= 1), and a
singlet (L = 0).

The S3 permutation projectors (3. 3) can be used
to help obtain these states. Applying Pti, i, s) to

tj' (r,) g', (r, ) g~„(r,) = (m-m'm")

with m=1, m' = —1, m" =0, one obtains (4. 1) which

is the S singlet:

gt"'~ (1/g6) [(1-10)+ (01-1)+(-101)
—(-1 10) —(0-11)—(10-1)].

(4 1)

Similarly (4. 2) and (4. 3) are two P states with M = 0
which together span the IRbasis for a parasymmetric
IR of permutations:

yP
"~ = (1/QS)[2(1-10) —(01-1)—(-101)

+ 2(-110)—(0-11)—(10-1)],
(4. 2)

$2
' = a [(01 1) ( 101}+(0 11} (10 1}l ~

(4. 3)

An orthogonal set of parasymmetric base vectors
(4. 4) and (4. 5) below turn out to be D states with
M=0:

= ~ [(01-1)—(-101)—(0-11)+(10-1)],
(4 4)

y~t~ "~= (1/QS) [-2(1-10)+(01-1)+(-101)

+2(-110)—(0-11)-(10-1)).

(4. 5)

The completely symmetric base states of definite
total orbital angular momentum are given below
as (4. 6} and (4. 7):

= (1/v'10) [(1-1 0) + (0 1 -1)+ (-1 0 1) + (-1 1 0)

+ (0 -1 1)+ (1 0 -1)+ 2 (0 0 0)], (4 6)

= (1/v"15)[(1 10}+(01-1)-+(-101)+(-110)

+(0-11)+(10-1)—3(000)]. (4 7}

We have now accounted for the M = 0 states for
all the levels that can arise from a (nP)' configura-
tion of a general fermion system. In Fig. 4 these
levels are drawn as dark lines. The dotted lines
denote levels that would arise in a completely mixed

nP n pn "p configuration.
The Young tableau superscript indicates the per-

mutation symmetry with respect to the "internal"
quantum numbers involving spin or spin-isospin.
Clearly the P-F orbital decapulet could never occur
in atoms.

The energy formulas are found by an essentially
identical procedure as was used to obtain (3.3).
As is seen below, the new formulas (4. 8) differ
from the old by a correction term which is added
to the average energy of the P-F decapulet:

e(3'S}=I-J+K,
—,'[e(" "P}+e(~ "D)]=I- —,'K, (4. 8}

ge("""P)+e(n""F)]=I+8+ K+ (0001K1000).

The formulas (3.3) would be exactly correct for
a completely mixed (npn pn p) configuration pro-
vided one considers only the energy of the E multi-
plets.

&. WIGNER SUPERMULTIPLET MODEL

The convenience of the Young tableaux methods
will be demonstrated now in connection with nuclear-
mass spectra. Formulas for mass spectra have
been written and tested by Franzini and Radicati,
and readers familiar with their work may find it
instructive to derive the connection between their
methods and the Young tableaux theory here (Appen-
dix D). The advantage of the tableaux method is
that it is simple to explain and use and is quite
physical. Furthermore, it can immediately be
used to derive sum rules for n-body operator spec-
tra for arbitrary n.

For example, consider the three known isobars
«Pd59 47Ag58', and «Cd57 The total isotopic
spin T3 is half the difference between the number
of neutrons and number of protons. For Pd it is

, for Ag it is P, and for Cd it is +~.

The idea of supermultiplet theory is that these
nuclei are just different (spin-isospin) multiplets
of single configuration. Figure 5(a) is the spectrum
diagrammed as it would appear without the Coulomb
repulsion of the protons. The stable nuclear ground
states are thought to lie at the extreme right of
each multiplet diagram because the Coulomb energy
will split the multiplets leaving the greatest isotopic
spin states of a given supermultiplet the lowest in
energy, a.s shown in Fig. 5(b}.

Now the most difficult question is: What tableaux
describe the supermultiplets to which Pd, Ag, and
Cd belong? We do not know what the configuration
is so we do not know how many boxes in total the
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tableau has. But this does not matter since every
spin-isospin tableau has two parts, the inactive
part and the active part. The inactive part contains
any number of four-box columns, each representing
a quadruply antisymmetric combination of a neutron
and proton with spin up and down, and we are not
interested in it. The active part dictates what
states of total charge (isospiEE) aud spin are allowed,
in a manner described in Appendix C.

Consider Pd with T3 =~&. This means the active
part of Pd's tableau must have 13 boxes. Since Pd
js stable with respect to y decay, it must belong to
the lowest-energy supermultiplet capable of pro-
ducing a T, = z state. Clearly, the active part is
the most antisymmetric combination of two rows
of 13 boxes. Now according to Appendix C the

tableau [7,6) has a ([7, 6] -S= —,', [13]- T5 = ~z) state
while the tableau [6, 6, 1] does not. The reasoEE for
wanting antisymmetric spin-isospin states is that

presumably the nuclear forces are attractive, so
the most symmetric spatial state will be lowest in
energy. Finally, the Ag and Cd tableaux follow
from the choice of the Pd and all are shown in
Fig. 5(a).

Disregarding the inactive parts, we write mass
sum rules using S„characters with n=13, assuming
only two-body forces:

m(Pd) = I+ (X",;"/l"")(-',n(n —1)J),
my, g}=f+ (gE5 5' /f 5' ' }(—n(n —1}J)2

m(Cd) =I+ (&E5,5.1,11/fE6, 5, 1,1&)(—'n(n —l.}j) .
1 2

The factor —,'n(n —1) with n = 13 was factored so that
J now represents the "average exchange integral. "

The group theoretical factors are easily com-
puted using the methods of Appendix B. The an-
swers are most simply expressed by products and
quotients of hook lengths, as shown bel.ow:

D8)
n(n —1) "1115 1 8765431

2 l~e~ 2 654321 roduct
876 5321 =30,
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86 5432 865421 865432
&~,8,1&

———
i

product 7 5 4 3 2 1 product 5 3 2 1 — 7 5 4 3 2 1

1 1

7 5432
64321 i=22,

)

96 5431 9653 21 96 5431
n (n 1) X ||1q' '

1 7 4 3 2 1 5 2 1 1 7 4 3 2 1

2 iSi5|iii ) 2 2 2 2 2

I 1 1

765431
54321

I I t I I II I
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: I I t I I 105
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I05
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I05
Ag

FIG. 5. |,'a) Schematic
representation of the super-
multiplet levels associated
with Pd' Ag and Cd o~.

Here it is imagined that
Coulomb repulsion and spin-
orbit interactions are "turned
off. " (b) Effect of Coulomb re-
pulsion is sketched where
states with more protons
are shown with higher en-
ergy.

A
, Pd
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Hence the sum rule is the following:

m(Pd) = I+ 30J,
m(Ag) = I+ 22 J,
m(Cd) = I+ 15J .

The experimental values of the nuclear masses
must have the Coulomb energies, ' given below,
subtracted:

0. 3364 for Pd
4M = ',

&, amu = 0. 3512 for Agg t 3

0. 3663 for Cd

The resulting "bare" masses are given below:

m'*"(Pd) = 104. 5763,

m'*"(Ag) = 104. 5630,
m'*"(Cd) = 104. 5513 .

A ratio of differences between adjacent mass
values is computed and compared with the same
ratio predicted by the two-body sum rule:

mex xt(Pd} mex P t{Ag}
mexxt(Ag) mexet(Cd) =1.14

(I+ 30J) —(I+ 22 J) 8
(I+ 22 J) —(I+ 15J) 7

Franzini and Radicati made more than a hundred

such comparisons and many of them showed the sort
of agreement obtained in the above example. For
examples that more or less fail these comparisons,
one may use the above hook-length procedure to
write a three-body or four-body sum rule and then
make further comparisons with observed mass
values.

However, in order to demonstrate beyond reason-
able doubt the existence or nonexistence of the
higher-body effects, one needs to study a large
number of isobaric families (each family must have
at least four nuclei) while taking into account other
important effects. "The results of this sort of pro-
gram will be reported in a later paper.

In the meantime it has been noted' that three-
body operator spectra will differ essentially from
that of a two-body operator in odd-A nuclei only.
This was seen when the hook-length formula was
converted to an algebraic formula involving the
isospin T, of the extreme isobar. These formulas
for intervals between adjacent odd-A mass values
are written between the lines in the level schematic
shown in Fig. 6.

APPENDIX A

The dimension of a given IR of S„ is easily com-
puted using the following formula involving hook
lengths of the tableau for that IR

u, = T~+I/2
uz = T~- I/2

u =0
I

l

u( = T~- I/2

U~
= T~-I/2

u~ = I

u&
= 0/-

u, = T~-I/2
u~ = T~-3/2-
uq = I:=I

A = 0„+ I nuclei
DOUBLE TRIPLE
EXCHANGE EXCHANGE
SPECTRUM SPECTRUM

I
I

I
I

I
I

(T & 3/2)(T 5/2)k
I l I
l

, (T+3/2)j
I

(Ts+I/2)j(Ts+I/2)(T3-II/2)k
I

(T~- I/2) j
(T;3/2)j',

(Ts- I/2){T,-5/2) k

0

i, (T;3/2)(T;II/2)k

u, = T+I/2
uq = Tq+I/2
Us= I

u, = T~+ I/2

u~= T, -I/2
U~= I

U4= I

u, = T~-I/2
u = T-I/22
U~= 2
u~= I

,(T3 3/2) (Ts-9/2) k
I

I
I

/
/

l I
I

{T+3/2) ', ' {Ts+I/2)(Ta-3/2)k
5

I

{Ts& I /2) j
I

(T -I/2)j {T-I/2}(T-9/2)k

(T„-3/2)j

~ ~ (Ts-3/2)(T3-3/2)k

A = 4„+ 3 nuciei
DOUBLE TRIPLE
EXCHANGE EXCHANGE
SPECTRUM SPECTRUM

FIG. 6. Schematic representation of the effect of a t~o-body and then a three-body force in odd-A nuclear supermul-
tiplet spectral intervals. T3 is the greatest isospin found in the uppermost supermultiplet level. The constants j and &

are exchange integrals.
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4 3 1

5 2 1 FIG. 7. An IR tableau with the hook
length of each box given within the box.

Def. 4:
a'

interchanging any two numbers
gives a change of sign.

itu3 Pl 0

product of [p] hook lengths
'

A hook length of a given tableau box is the number
of boxes to the right and below that box plus one.
For example, the hook length of each box in the
tableau in Fig. 7 is written within it. The dimen-
sion of IR of Sg designated by this tableau is given
below:

= 9!/(7x 4x 3x 5x 2x 2) = 216 .

APPENDIX 8

The character X,
'"'6 „belonging to a given IR

tableau [p, ] = [p&pz. . . ] and class 1 2 3".. . of S„is
easily found using the formula below and the defi-
nitions that follow

For example, here is the character of the [56, 13]
IR of class 2 11 56 of Seg.

F56, 13&
X211 56 2 11 56 13

1
~2 11 13

1 1
=92 — =1 .

2 0

Sometimes the hook-length formula can make the
above formula even more convenient. For example,
since the dimension is a character of the unicycle
class, one has the following for any IR of S„:

~
lu) (u]—

X1n20

This may be used when calculating a character of
a class that is nearly all unicycles:

8 6 8
[eie 1] g11g i7 g 11 7 g11

X 11 1 2 1 +

1 1 1

f5' 5)1))[6~ 4, 1]
P1+P —1

v f.ui''''upi —Q Ng~gy
A1eg y. .~ 1 2 3 ~ ~ ~

3

pp 2+2
Pp 1+1
Pp

Def. 1:

a
9

la —m a a
b l+'b —m + b + ~

Now the hook-length formula given in Appendix A
may be used.

APPENDIX C

The problem of finding which spin-isospin multi-
plets [SU(2) &&SU(2)] are contained in a given super-
multiplet [SU(4)] is solved once the Clebsch-Gordan
series for IR or S„are known. ' For example, the
Clebsch- Gordan series for all possible inner prod-
ucts of S3 IR are shown in (Cl):

Def. 2:

Def. 3:

2 =1
1

=0

c —m

if any two numbers in the col-
umn are equal, or if any num-
ber is less than zero;

[3]8 [3]=[3], [3]8[2,1]=[2, 1],

[3]8[1,1, 1]= [1, 1, 1]

[2, 1][2, 1]= [3]a[1,1, 1]O+[2, 1],

[2, 1]8[1,1, 1]= [2, 1],

[1, 1, l]8[1,1, 1]= [3]

Now the SU(2) xSU(2) multiplets found in, for ex-
ample, the SU(4) supermultiplet [2, 1] are repre-
sented by those combinations of tableaux ([3], [2, 1]),
([2, 1], [3]), ([2, 1], [2, 1]), ([1, 1, 1], [2, 1]), and

([2, 1], [1, 1, 1]) that are capable of giving [2, 1] in
an S3 inner product. Now, following the procedure
leading to Fig. 3, we identify each of the tableaux in
these pairs with SU(2) multiplets [2S+1]or [2 T+ 1],
and this yields the desired reduction shown in (C2):
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[2, I] of SU(4)

= ([4]x[2]+[2]x[4]+[2]x[2]) of SU(2}xSU(2)

(C2)

Procedures for deducing Clebsch-Gordan series
of 8„for large n exist, ' but for our purposes we

needed only to realize that the single horizontal
row of n boxes is the tableau of the scalar repre-
sentation of 8„. And the inner product of this with

an IR [}i]of S„is just [ii] itself.

APPENDIX D

One may use the hook-length procedure to derive
a formula for the coefficient (Dl) of the two-body
exchange integrals in terms of tableau row lengths

—ss(ia I ) (X Euquaus ss&/I iui usus ass)

[i i(l i —I ) + isa(pa - 3)

+ i s(ps 5}+iis(li4 7)] ~ (Dl)

The coefficient (D2) of the three-body exchange
integrals is also computed this way":

fkgQp@304)

s
= (I/3') [}is(~i—I)(pi —2) '»(i'a- }(»-4}+»(»—4)(} s —5)

+ gs(}i/ —I2pg+ 36}—3(pitia+ pi}is + }ii}i4+ isa}is+ ps}is+ psps)] ~ (D2)

Equation (Dl } can be compared with the Franzini-
Radicati formulas ' by defining the quantum num-

bers &i, Xa, and Q which are the differences (D3)
of the tableau row lengths:

~s = &s —Wa

4= }ia- }is

4= }is—}is

x
i~&~2~,~4i

—(C) (D4)
2

f tP I ff P 03' g l

The quantity (C) given below in (D5) is the eigen-
value of a Casimir operator (D6):

(c&= s~, 4~, +u, ~ (
" '
2

= [S(S+4)+T(T+ 2)+ Y']. (D5)

S= a (Ai+ 2iia+ Xs},

T= —a'(X, +As),

Y= a (~ii —S's)

are used. The Casimir operator C in question is
shown below [(D6)] and can be related to the Major-
ana exchange operator M given in (D7):

C=Q (s( )a.s(j)+t(i).t(j)+4[s(i) s(j)][t(s}.t(j)]].
ff

(D6)

In the last line of (D5}, Wigner's's quantum numbers

Xg+ 2%2+ ~g

(' '2''
2

M =Q [ —,'+ 2s(i) .s(j)][—,'+ 2t (i) ~ t (j)].
ff

(D7)
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