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The effect of a static electromagnetic field on the 2P-nS and 2S-nP He z isolated lines is sys-
tematically investigated. Exact expressions are given for the shift of the allowed component,
and the behavior of the corresponding transition probability under static perturbation is consid-
ered in detail. The usual hydrogenic approximations for the Stark constants are discussed with
reference to the most recent values for the oscillator strengths available. They are found to
be consistent, expecially for the 2 P-n S and 2 S-n P lines with n ~ 3, when accurate data are
used for the unperturbed excitation energies. The shifts determined with either nondegenerate
or degenerate perturbation theory are critically compared, and the greatest difference is found
for the magnetic sublevels in the presence of crossed fields. The fourth-order Stark effect is
also considered. Calculated shifts are compared with the existing experimental data, and at-
tention is also given to the methods used in plasma spectroscopy for the evaluation of the static
Stark effect.

I. INTRODUCTION

Usually, the Stark broadening of lines whose
shape conforms to a static pattern consisting of an
allowed transition with a neighborhood of weakly
excitable forbidden ones is studied within the iso-
lated-line approximation. ' This consists of a dy-
namic treatment of the free-electron contribution
to the line core and a hydrogenic (or Coulomb)
evaluation of the statically perturbed atomic param-
eters, which in practice reduces to a Stark-con-
stant calculation.

The aim of the present work is twofold: first,
to examine in detail the effect of a static electro-
magnetic (electric + magnetic) field on the static
pattern of a line usually assumed isolated; and
second, to estimate quantitatively the various static
approximations made in the isolated-line concept,
which consist mainly of the unperturbed-wave-func-
tion assumption and of the hydrogenic approximation
for the transition probabilities in the Stark-constant
calculation. In particular, we pay special attention
to the 2P-sS and 2S-nP (with n )3) transitions of He z.

The corresponding lines are very often encoun-
tered in plasma diagnostics, and their atomic pa-
rameters [mainly the averaged Rark constant used
in the reduced expression (1) for the isolated-line
profile] can now be computed with a very good ac-

curacy, a fact which allows us to draw quantitative
conclusions.

Recently, there have been many efforts' ' devoted
to the partially degenerate 2P nQ (n) 4, -Q=P, D,
F, . . . ) lines emitted with or without magnetic field
present. The corresponding profiles show the in-
teresting feature that their spectroscopic character,
isolated or quasihydrogenic, depends strongly on
the electron density. A quantitative evaluation of
this effect needs a careful investigation of the ap-
proximations used for the statically perturbed
atomic quantities. Therefore we give critical at-
tention to the various yerturbation methods of cal-
culation for the Stark shift. Our investigation being
mainly limited to sublevels (n, l) with n & 10, we may
safely consider the Zeeman perturbation within a
first-order treatment.

II. GENERAL EXPRESSIONS FOR SHIFT AND TRANSITION
PROBABILITY

The electromagnetic perturbation we consider is
taken to be always far greater than any relativistic
effect of fine (a fortiori hyperfine) structure This.
approximation is necessary in order to define easily
the perturbed eigenstates in the LS-coupling
scheme. When the magnetic (or electric) perturba-
tion is comparable to the fine structure, one is
faced with a very complicated situation, which has
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been recently cleared up by Descoubes. For the

problem of Stark broadening in plasmas, we may
limit ourselves to a situation where the separation
LeKH/2m, c (m, being the electron mass) between
the outer components of a line remains much larger
than the most important fine-structure splitting
encountered in the group of sublevels involved in
the broadening process. More precisely, we have
to be able to neglect the energy difference '

E ('Lz g)
—E ('Lz+&) &~E ('Lz) —E ('Lc..i)

where E('LI) represents the energy of a level with

orbital number L and total angular momentum J.
If we restrict our considerations to the n P states
which are the most affected by the fine-structure
splitting, and are very often used in line measure-
ments, we have to consider a magnetic intensity
given by the relation

try of the applied static perturbation is that used
previously' (see Fig. 1) with the magnetic intensity
taken along the Oz axis and the electric intensity
orientated at 8 with o =cos8.

The shift of the allowed component nlm -n'l'm,
located at the line center, is given then by a
straightforward generalization of the usual second-
order expression for the electric-field-perturbed
energy of a nondegenerate level, i. e. ,
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the energy difference being evaluated in cm '. The
minimum magnetic intensity is given in Table I.

A. Static Shift of Allowed Component nlm ~ 2l'm'

Thus we see that the presence of a moderate mag-
netic intensity allows us to work with the spheri-
cally symmetric wave functions of the LS-coupling
scheme, labeling the quantum numbers (n, l, m)
independently of the spin multiplicity. The geome-

1

where r(x, y, z) is the optical-electron position
vector. The spin part of the Zeeman effect is can-
celed in the foregoing difference. The dipole selec-
tion rules show" that the cross-term contribution
in x and z vanishes. The ket Inlm& refers to the
spherical quantum numbers of the optical electron,
the inner electron being considered in the He'

ground state. E«~ and E„., ~ represent the energy
of the corresponding sublevels in the presence of a
magnetic field. 4E& gives the electromagnetic shift
of the f states. Hence Eq. (2) may be given the
form (with r& and X in A, H in kG, and F in kV/cm)

pz r&E 46. 28 (m —m')H+1. 82 Z (E„&~—E„",(",~") '
hc n", r",m"

xlu''l&xc I*/,
I

(&I' ~ (& —"u"'
I&"&Ix/&a,

l

"»" "I'&I)x(0 "x', (3&

which is very suitable for numerical applications.
Equation (2) is a direct extension of the Kirkwood
formula' which is valid for the pure Stark effect.
In the above expressions, the Stark shift of the
lower sublevel (2, l, m ) which is not greater than
10 cm ' for 10 kV/cm has been neglected (in this
work we consider only the lines with n'= 2, the
most interesting ones in plasma diagnostics).

B. Transition Probability of Component nlm ~ Zl'm'

The Stark perturbation of the (2, f', m ) wave func-

TABLE I. & values (kG) necessary for the use of
LS coupling.

Inlm&, = e Fao [a &n "f"m "I z/a Infm&n" i" m"I ~

+ (1 - '&)r"'
&n "l"m "Ix/a,

I
nlm & ]

X
En) tft E„

where (n, l, m )4(n, f, m). The unperturbed wave
functions have a definite parity, so that

tion is again omitted. The magnetic field introduces
no modification in the wave-function expression. If
lnlm& labels the (n, l, m) wave function, then the
first-order-perturbation contribution is"

10.7 1.5

2P 3P 4P 5P 6P
0. 7 0. 5

showing that there is no first-order Stark contribu-
tion to the transition probability. Let us consider
the quantity
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v„"," ",„, =eFao[a(n"f"m "le/aolnfm)+(1 —a )' (n"l "m "lx/aolnfm)] (5)

Then, the second-order contribution may be given the form'

2
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with (n, l, m) «(n", l",m "), (n "', l'", m '"). Now,
the selection rules" allow a second-order contribu-
tion to be added to the unperturbed transition proba-
bility.

The sum Inlm) + inlm)o is normalized to unity.
Therefore, expression (6) shows that the unper-
turbed wave function will be depleted to the benefit
of (n, la 2, m ), with im '( & )m+2) under the
influence of a static electric perturbation. In the
presence of partial degeneracy for the upper levels
(n, l, m) and small F values, this process is respon-
sible for the disintegration of the allowed and iso-
lated nlrb-n'i+ 1m components into nl + 2m-n'l +1m
for a pure Stark effect. In the presence of a non-
parallel magnetic intensity (a «1), there also ap-
pears nL+2m+1-n'L+1m+1, nl+2m+1-n'L+ 1m,
and nL+ 2m + 2-n'l + 1m + 1, polarized parallel
(bm = 0) or perpendicular (hm = I 1 ) ) to H. An ac-
curate estimate for the Stark depletion of the upper
(n, l, m) level may be obtained with n = n and the
aid of the symmetrized (singlet) or antisymmetri-
zed (triplet) product

U=2 'io [u, (1)u„g (2)+u„, (1)u, (2)]

of hydrogenic wave functions. If we specialize to
the case P ~~ H (a = 1) and sublevels (n, 0, 0) [mainly
perturbed by (n, 1, 0)] and (n, 1, 0) [perturbed by
(n, 2, 0)], then the depletion considered will be mea-
sured by the ratios

I (n001 Z/ao In10) I (R"„o)I oo E so) 3(E oo
—E,m)

(6a)

[(nlOI Z/aoln20) 1' 4 (R"„f)
(E io E ao) 15(E io E„oo)

(6b)

l
(nlm! r/aol n'l'm')

l

with the aid of the absorption oscillator strengths
recently given for Her by Green et al. " So, it re-
mains necessary to discuss the electromagnetic
static shift of isolated lines.

where R"„r"may be given the hydrogenic values
1. 5n[no (f, l)o]&»

For instance, in Table II, we have plotted F
values such that the (n, f) wave functions with 3 &n

&6 be reduced by an amount of 0. 5'. It then ap-
pears that for n & 5 and the usual discharges in
plasma spectroscopy with N, & 10"e cm-', the un-
perturbed-wave-function approximation becomes
of questionable accuracy for the isolat. ed levels
(n, 0) and (n, 1). Furthermore, it must be noticed
that the population of (n, l, m) due to other per-
turbed levels should also be taken into account, and
degenerate perturbation theory with linear Stark
effects has to be used for the determination of
perturbed wave functions in those cases (n & 5 with
F &10 V/cm).

When the unperturbed-wave-f unction assumption
remains valid, it is possible to obtain accurate
values for the transition probabilities

III. STATIC SHIFT OF 2I'-nS LINES

The scalar nature of the nS wave functions al-
lows us to write

l(n00!2/ao!n"10) l'= ~ l(n00lx/aoln "lm")l'

/no n"p/ ( n" 10 noo)

FIG. 1. Geometry of the static electromagnetic perturba-
tion.

where f„& "& denotes the absorption oscillator
strength of the given transition. With the accurate
f values recently obtained for He r by Green et al. '
and the above relation, Eq. (2) becomes

m 'eSH
AE„00— E2
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TABLE II. Electric intensity (V/cm) needed to
deplete nQ states by 0. 5%.

TABLE III. Fp values (kV/cm) needed to shift the
n$ states by 1 cm '.

4. 28X105
9. 70x10
3. 11x10
1.22 xx10

3$

8. 15 xlo
1.61 X10
5. 03 X10
1.96 X10

5. 24 X 10
1.11x10
3.54 x103
1 39x103

P
8. 85 x10
5. 71 x10
1.88x10
6. 94 x10

3$

Hydrogenic
(Ref. 7)

735
151

52
23
12

Eq, (12)

896
173.34
59. 12
29. 4
13.4

1$

Hydrogenic
(Ref. 7)

535
115
40
18
9. 5

Eq. (12)

546. 54
119.61
42
19.01
9. 88

)2 Q fnS-n''P (10)„" 2( „",0 — n00)

A. Stark Constants (0 = 0, e = 1)

The Stark shift produces a lowering of E pp a
feature which already appears in the hydrogenic
Unsold treatment. ' In order to get quantitative
estimates, it appears of interest to introduce the
electric intensity Fp which is necessary to shift
(n, 0, 0) by 1 cm ', so that

Eelmtr (pf p )2 cm-1

gives the Stark shift of (n, 0, 0) with the aid of

4. 9206 x 10
f S- "Pf + 00 @ "10) )' (12)

an n-independent expression in accord with the
spherical symmetry of the nS state. Zhe magnetic
dependence of E„", " is negligible with respect
to the difference E gp E pp for &&10 0 and
n & 10 (the main values we consider in this work).

in kV/cm.
In Table III, the I p values are given for 2&n&6

and 2 & n "&8, and compared with those obtained by
using the hydrogenic wave functions (11).

It may be easily seen that the introduction of
more sophisticated wave functions, such as those
used in the oscillator- strength calculations, "does
not produce results differing very much from the
hydrogenic ones for the singlet (para) states,
when accurate unperturbed energies' are taken.
Therefore, it is a fortiori possible to compute
Stark constants for the sublevels (n, l, m) with ex-
pression (7) for n & 2 and l & 1. The hydrogenic
approximation appears less suited for the triplet
states n'S. Nevertheless, it is to be noticed that
we have included eight sublevels (n", 1, 0) in our
calculation, while the hydrogenic values" are
given with only one perturbing level (n, 1, 0), so
that the inclusion of four additional states would
give hydrogenic data significantly weaker than the

TABLE IV. Comparison of the nS shifts (cm ) as given, respectively, by the degenerate and the nondegenerate meth-
ods. An over-all minus sign (2P-gS lines are shifted toward the red) has been omitted. Upper nondegenerate values
(in parentheses) havebeen obtained from the hydrogenic data given in Table III.

10

6X10 4

0. 059

50 1.49

100 5. 92
200 23. 34
500 137. 08

F Degenerate
(kV/cm) [Eq. (13)]

4'S
Nondegenerate

[Eq. (12)]

I(6.25xio 4)

t 5. 66xiO-4

0. 0566

(1.56)
1.41

5. 66
22. 64

141

Degenerate

2. 9X10 3

0.294

7. 34

28. 66
81.21

449. 47

51$

Nondegenerate

(3.O86 X iO-')
2. 74x10
0. 274

(vv. is)
6. 85

27. 4
109.6
685

Degenerate

1.08 X10

1.07

26. 09

92. 64
267. 78
839. 87

63$

Nondegenerate

(1.11 X10 2)

1.024 x10-2

1.024

(2v. o5)
25. 6

102.4
409. 6

2560

10

50

100
200
500

4xlo 4

0. 036

0. 896

3. 56
14. 11
87. 97

4 3$

J(3, 69& iO-')
I 2. 86X10

0. 0286

(o. 92)
0. 715
2. 86

11.44
71.5

1.8xlo 3

0. 175

4. 42

17.17
67. 51

338.71

5 3$

(1.89xio 3)

1.15xlo 3

0. 115
(4. V25)

2. 875

11.5
46. 0

287. 5

6. 7xlo 3

0. 66

16.42

61.01
200, 4
739.97

6'S
(6. 94xlo 3)

5. 57xlo 3

0. 56
(iv. 36)
13.92

55. 7
222. 8

1392.5
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(Ho+ Ho+As/ao - () I y) = O, (13)

with A = 0. 0427 (F in kV/cm). Ho is a diagonal
operator (in the LS scheme) accounting for the dis-
tortion correction of the unperturbed eigenvalues
from those given by the hydrogenic Hamiltonian
Ho= P /2m —e /r. This comparison is detailed in
Table IV.

The degenerate values (taken from the Pfennig-
Trefftz tabulation'o) are, of course, expected to be
inaccurate for the nS sublevels. Nevertheless, a
quantitative estimate of this inaccuracy would be of
value in order to determine an upper bound for the
error made in the matrix-diagonalization method,

present ones. As a by-product, the hydrogenic-
nonhydrogenic energy difference would become
smaller, especially for the n 'S state.

B. Degenerate and Nondegenerate Stark Shifts

It is also of interest to make a connection with
previous work' ' and compare the nS shift values
obtained from Eqs. (11) and (12) with the results
of the degenerate perturbation calculation obtained
through the diagonalization in the subspace of quan-
tum number n of

the only technique of practical use for profile cal-
culation of degenerate lines4'" in the presence of a
magnetic f ield.

For the singlet states the agreement between the
degenerate and the nondegenerate values appears
quite good with F&100 kV/cm. Of course, as F
increases, the shifts diverge. The nondegenerate
triplet values, excepting 6'S with F& 200 kV/cm,
are situated significantly below the degenerate ones.
The hydrogenic nondegenerate values (given in pa-
rentheses) are computed with the F, values given
in Table II. They lie above the accurate ones and
close (even very close for the n S states) to the
degenerate ones. This feature is explained by the
use of hydrogenic wave functions and the large cen-
tral distortion correction of the nS (greatest for
n S) states in the degenerate matrices. ' ' More
precisely, when Fs 200 kV/cm, the nS states in-
teract very weakly with the others, nQ (Q= P, D,
D, . . . ), and the degenerate method is expected to
give nondegenerate results, ' if the same atomic
parameters are used in both cases.

IV. STATIC SHIFT OF 2S-nP LINES

Now, Eq. (2) specializes to the form

eOH, , ~ I( 1 I*/a I
"Oo)l' l(o) I / ol

"1 )I')
nl fn 200 , eFa, a'Z +

Enl 0 En"00 Enlo- En" 2o

I( 1 I / , I
"1 ")I' I( 1 I / olo"IOo ")I')

+ 1 —Q Z +
n" fn" Enl 0 n" 20 Enlo En" oo

(14)

with m '=m+1, and neglecting the magnetic depen-
dence of the denominator.

The level scheme of Hez (see, for instance, Ref.
9, p. 127) shows that the above expression is es-
sentially negative for the n'P states and strictly
positive and greater (in absolute value) for n 'P.

The interaction of level (n, 1, m) with level
(n, 0, 0) is described by the relations

I &s 10 I z /ao I n "00) I
' f„"o ~~

, (15a)
Eoio Eo"oo 2(Eoio- E&»oo)

l&slml~/aoln QO) {' f„"o
E.m- E" oo 4 (E. o- E" oo)

obtained, respectively, by using Eq. (9) and the
equalities

l&niol s/aoln "00)
I

= 2f&nlm fx/aofn "00)
I
',

The interaction between (n, 1, m) and (n, 2, m )

could be expressed in an analogous way with the
aid of the absorption oscillator strengths f„z „"~
Unfortunately, the data of Green et al. ,

"which
are the most accurate now available, still maintain
a 5% uncertainty. So, as is shown in the Appendix,
it is sufficient to work with hydrogenic values for
the radial integrals

R"„, = Jo R„,(r) R„"o(r)r dr (16)

and to neglect the singlet-triplet dif'erence in the
matrix elements.

The introduction of Eq. (15) and the use of the
one-electron angular dependence (see, for instance,
Ref. 11, p. 253) for the matrix elements in Eq.
(14) give, respectively,

(17)
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for the central Zeeman component, and

H( 5'',)', tR '".),
' 4- ', „v 3f:, (B "„), ('6'~ ')

)

nlrb

~ 200 +
2m, c 3 „.~ 5 E„,~ —E„"o~ „" 4 (Enso En"oo) 10 (Ensm En"oo)

(18)

for the outer (m =+ 1) components. Of course, the
accuracy of expressions (17) and (18) would increase
with more refined radial integrals (or oscillator
strengths) I.n the general case, the introduction
of a magnetic field produces two Stark constants:
a longitudinal one, specialized for a = 1, and having
a maximum at m = 0, like the usual Stark con-
stant, ' and a transverse one, specialized for n
=0, which is not a straightforward extension of the
pure Stark constant.

A. Longitudinal Stark Constants {H= 0, 0, = l )

The previous F0 comparison is repeated in Table
V. The most accurate nondegenerate values are
given, respectively, by Eqs. (17) and (18) for theI = 0 and m = I 1 [ components (in parentheses), with
the use of a Fo expression analogous to Eq. (12).
The relative agreement of the nondegenerate data
with the hydrogenic ones taken from Bethe and
Salpeter" appears quite good for the singlet states
with n &3. Also, it is of interest to comment on
the huge and nondegenerate 2'P value. This level
is shown to be more difficult to shift than any other
excited levels (see Table III) of He r. In fact, this
result is only true for second-order perturbation
theory, because the 2'S-2'P interaction is then
nearly canceled by the sum of all the 2 P-n S, D
(3 &n &8) interactions. In this case, a more sig-
nificant result would certainly be obtained by in-
cluding higher-order corrections, as considered
later. Nevertheless, for the purpose of using
optical lines in plasma diagnostics, the present
calculation is more than sufficiently accurate, and
makes clear that the 2'P shifts are unobservable
in practice.

The change of sign (and of absolute magnitude)
for the Fo(m = 0)-Fo(m = I 1 I ) difference from singlet
to triplet is due to the unperturbed He r level
scheme, which produces a partial cancellation of
the m = 0 shift for the n P state localized between
n S and n D, if one remembers that a Hermitian
perturbation has a tendency to make close levels
repel each other. The same eQ'ect is absent for the
nz = )1l n P levels, which are not coupled with n S
(as long as n = 1), and for the n P states situated
above all the n'Q other levels. In the latter case
n S and n Dperturbations add their contribution.

B. Degenerate and Nondegenerate Stark Shifts

The pure Stark shifts (H= 0, a= 1) are given in
Table VI. In contradistinction to the nS case (see

C. Combined Stark and Zeeman Shifts

The combined Stark and Zeeman effect of the 4P
sublevels is illustrated, with a few parameters, in
Table VII. The degenerate shifts are those pre-

TABLE V. +0 values (kV/cm) needed to shift by
I 1 cm i

I the m=0 and m= I1 I (this latter in parenthe-
ses) sublevels. Hydrogenic values are given only for
m=0.

Hydro-
genic

n (Ref. 7)

2 735
3 157
4 42

17. 5
6 9

3p

Eqs. (17)
and (18)

1629 (1313)
116.12 (112. 12)
37. 16 (34. 56)
16 (15.6)
8. 18 (8. 05)

Hydro-
genic

(Ref. 7)

535
42
13. 8
6
3. 1

fp

Eqs. (17)
and {ie)

636 (1213)
40. 88 (50.51)
13.66 (16.73)
5. 95 (7. 41
3. 05 (3. 6i)

Table IV), the accurate nondegenerate values are
now situated always higher than the degenerate
ones. This feature is the immediate consequence
of the non-negligible interaction of nP with nQ
(@=D,F, etc. ) in the degenerate method. ' It is
worthwhile to note that the degenerate-nondegener-
ate difference is systematically enhanced in Table
VI, because the n"S and n''D states (2&n" &8) are
included as perturbers in the nondegenerate expres-
sions (17) and (18).

Nevertheless, the foregoing remark remains
valid, because the accurate nS shifts where evalu-
ated under the same conditions. An identical con-
clusion may be deduced from the nondegenerate hy-
drogenic shifts (m = 0) given in upper parentheses.
These latter (except 4 P with F & 100 kV/cm which
is little influenced by 4'D) lie above the degenerate
shifts. The hydrogenic data, taken from Table V,
included only the nP-nS and nP-nD perturbations in
the subspace spanned by the (n, I) sublevels. More-
over, the degenerate-nondegenerate difference ap-
pears very small for O'P and n P with F & 100
kV/cm. In the presence of higher field strengths
(F & 100 kV/cm) the electric shift becomes compa-
rable with the nP-no distance, and the degenerate
results are to be preferred against the nondegen-
erate ones. These features, as well as those pre-
viously noticed for nS, allow us to understand com-
pletely the meaning of degenerate perturbation theo-
ry when it is applied to well-separated levels and
isolated lines.
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TABLE VI. Comparison of the nS shifts (cm ) as given, respectively, by the degenerate and nondegenerate methods

for the m = 0 and m = I 11 sublevels (the latter in lower parentheses). Upper nondegenerate values (upper parentheses)
have been obtained from the hydrogenic data (m =0) givenin Table V. The n P shifts are to be considered with a plus sign
(2 S-n P line shifted toward the blue). The n P shifts are to be taken with a minus sign (2 S-n P Iine shifted toward
the red).

F
(kV/cm) Degenerate

4'P
Nondegenerate

5'P
Degenerate Nondegener ate Degenerate

6'P
Nondegener ate

10

50

100

200

500

5. 1 xlo 3

(3.4xlo 3

O. 51
(o. 34)

ll. 57
(8. o8)

36.63
(27. 17)

96. 87
(v4. 3v)

300. 12
(226. 8O)

(S.2S x 1O-')
S. 36 x 10-3
(3.57 x 10 3)

0. 54
(o. 36)

(13.12)
13.40
(8. 92)

53. 60
(3s. vo)

214. 40
(142. 80)

1340
892. 5

2. 67 x 10-2

(1.78 xlo )

2. 59
(1.v8)

39. 80
(31.91)

96. 30
(78. 76)

214. 95
(178.92)

590. 19
(463 ~ 49)

(2. 78 x]0-~)
2. 82 x10 2

(1.82 x 1O-')

2. 82
(1.82)

69.50
70. 60

(45. 52)

282. 40
(182.11)

1129.6
(V28. 4)

7060
(4S52)

0 ~ 1
(0. 066)

8. 57
(8. S3)

77. 83
(66. 15)

169.48
(142. 67)

356. 85
(2es. se)

933
(vse)

(0. 104)
0. 11

(o. ovv)

10.75
{v.6v)

260
268. 75
(191.82)

1075.01
(v6v. 3)

6718. 75
(4795. 62)

26. 875
(19~ 183)

10

50

100

200

500

6x]o
(v x lo-4)

0. 056
(o. o69)

l. 42
(1.73)

5. 61
(6. 8s)

21.67
(26. 3V)

109.07
(135.59)

43P

{5.66 x 10 )
7. 24 x 10 4

(8. 37xlo 4)

0. 072
(O. 084)

(1.42)
1.81

(2. lo)

7 ~ 24
(8. 3)

28. 96
(33.so)

181
(2oe)

3. 1X10 3

(3.7 X 10 )

0. 31
(o. 3v)

7. 84
(e. 16)

30.30
(34 ~ 60)

98.57
(112.41)

315.35
(392. 04)

53P

(3.2o x lo-')
3.91 x 10

(4. 11x 10 )

0. 39
(o. 41)

8. 16
9.76

(lo. 2v)

39.06
(41.09)

156.24
(164.36)

976. 50
(1027.25)

1 2xlo
(1.4xlo- )

1.21
(1.4o)

29. 97
(32. 72)

92. 24
(100.72)

217. 28
(250. 29)

571.34
(V12. 34)

63P

(1.23 x 1O-')
1 ~ 49 xlo

(1.54 xlo 2)

1.49
(1.54)

30. 75
37.35
(38. sv)

149.4
(154.3)

597. 60
(617.12)

3735
(385v)

viously derived in Ref. 10 with the aid of the diago-
nalization of the operator

/I, +sr, ~ +1 ~ 4 —(1 —a ) ~—n)
L~ x 8 1/2
h ao ao

A=0. 9143F/H (F in kV/cm, H in kG) (19)

in the (n, l) subspace. For the case of parallel fields
(a= 1), the degenerate values may equally be ob-
tained from Eq. (13) and addition of the magnetic
shift meh H/2m, c. The corresponding data may be
seen within the parentheses of Table VII and are
localized a little higher (in absolute value) than the
degenerate ones. This fact is due to the nonfactor-
ization into smaller submatrices of the Stark and
Zeeman degenerate perturbation matrix. There-

fore, the interaction between partially degenerate
(n, l, m) sublevels is made stronger, and the corre-
sponding shifts become weaker. The same remark
is true for the m = x 1 states and nonparallel fields
(aW 1). The relative degenerate-nondegenerate dis-
tance increases from its parallel value and accounts
for a stronger off-diagonal interaction in the degen-
erate treatment. In the presence of crossed fields,
the three m components are influenced especially
the m =111 ones), even in the presence of a weak
perturbation, as may be deduced from 4'P data.

This behavior confirms the results of the degen-
erate perturbation theory obtained previously for
the 2P-nQ (Q= D, F and n& 4) components with a = 0.

V. FOURTH-ORDER STARK EFFECT

Until now, the nondegenerate electric perturbation
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TABLE VII. Shifts of the 4P states in presence of a magnetic intensiQ. Some Stark (H=O) values are reproduced
for the purpose of comparison. Degenerate values are obtained from Eq. (1.9) or from Eq. (13) with addition of the mag-
netic shift for & = 1. The latter are given in parentheses.

Singlet Triplet

0
I1I

—1
0
1

0
I 1I

—1
0
1

Nondegener ate

H=O
0. 134
0. 089

H=0. 2 kG
0. 121
0. 089
0. 1215

H=O
53. 60
35. 70

H=40 kG
33. 84
53. 60
37. 57

Degenerate

F =5 kV/cm
0. 129
0. 086

F = 5 V/cm, 0.' = 0
0. 083
0 ~ 085
0. 130

E= 100 kV/cm
36. 63
27. 17

E=100 kV/cm, o =1
25. 27 (25. 30)
36. 57 (36.63)
29. 00 (29. 04)

0
I 11

—1

0
1

—1
0
1

Nondegener ate

H=O
—7. 24
—8. 37

H=40 kG
—10.24
—7. 24
—6. 51

H=40 kG
—12.465
—7.35
—8. 735

Degenerate

E =100 kV/cm
—5. 61
—6. 85

E= 100 V/c m, 0,' = 1
—8. 677 (- 8. 715)
—5. 582 (-5.613)
—4. 942 (-4. 985)

E=100 kV/cm, & =1/~2
—8. 48
—6. 266
—4. 453

has been discussed only within the second-order ap-
proximation. This procedure is valid as long as
higher-order corrections remain negligible. In this
section, we intend to evaluate these latter contribu-
tions. It is to be pointed out that from a rigorous
point of view this procedure is questionable because
the explicit F nondegenerate series is only an as-
yrnptotic expansion of the true result and could di-
verge with the inclusion of higher-order terms.
Nevertheless, it is possible to skip in the present
situation this point of rigor with the aid of the fol-
lowing argument: The foregoing evaluations show
that for a sufficiently high electric intensity produc-
ing a shift comparable with the intersublevels dis-
tance, the degenerate method is to be preferred.
Hence, in practice the nondegenerate calculation is
limited to a domain where the considered series is
converging ' and higher-order corrections to the
second-order term are meaningful for sublevels
(n, l) with n& 3.

First, we note that for the given range of F values
the electric perturbation of the wave functions may
be, as before, neglected. Therefore, following
Dalgarno's presentation of nondegenerate perturba-
tion theory, ' we consider, respectively, the third-
order,

(i I hl s ) (s) hl t) (t) hli)
g ~ g (E, -Eg)(E, -Eq) (20)

and the fourth-order&

(il hl r) (r Ibis) (sl hl t) (tf hl i)
„,g, I (E„-E()(EI —Eq)(Eq E()—
@2& g, I(il hit)I

(Eg -Eg)' (21)

T=-h-(ilhli)

for an arbitrary perturbation and simplifies h-=h
with the Stark operator h=- eF' r. It may be seen
immediately that E', ', and any odd contribution,
vanishes for such a vectorial interaction. A com-
plete evaluation of Eq. (21) would be rather tedious
in the general case (a v 1), and so we restrict our con-
siderations to a situation with parallel fields (a = 1)
aa,d obtain

contributions to the shift to the excited level i. The
index i is excluded from the various summations,
and E', ' represents the second-order shift consid-
ered above. As before, the various excitation en-
ergies E, , E„, etc. , are to be taken unperturbed,
or with a first-order magnetic perturbation. The
operator h is defined by

1(nlm I s /aol n'l'm) I 1(n'l'm I ~/aal n"l "m ) I

(E„.,+-E„, ) (E„, —E&„)
~ts )st

I (nlml &/aaln'I'm) I

~. v (E"i~ E.i )'- (23)
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where (n', I'), (n", I")&(n, I).
Moreover, for sublevels (n, I) with 3&n&6 and

l=0, 1, the Her level scheme' makes it obvious that
the most important contribution to Eq. (23) is given
by the first term with n= n", schematized in Fig. 2.
As a consequence, Eq. (23) is well approximated by

ll, I+ 2~Pl

s, I+I,m

~(2) g(2)g(4) (
nlm &+ ~ nlm

nlm+
n l+ 2m nlm nl+ Im nlm

(24)

providing an estimate for E'„,' in terms of second-
order shifts. It appears of interest to plot the
E' "/E' ' ratio, as is shown in Table VIII, for some
nS levels and F = 100 kV/cm. It is then worthwhile

Hence, the foregoing estimates for the fourth-order
Stark effect could provide a numerical prescription
for the use of the degenerate perturbation theory.
For instance, the given ratio is equal to one for 6'$
at 20 kV/cm and for 6 'P at 10 kV/cm.

VI. COMPARISON WITH EXPERIMENTAL DATA

A. Pure Stark Effect

It is also of interest to get a quantitative under-
standing of the absolute accuracy of the computed
shifts with the aid of the available experimental re-
sults. For E& 100 kV/cm and nL levels with n=4, 5
and L & 1, a systematic confrontation between ex-
perience and the results of the degenerate theory
has been achieved by Foster, who has shown that
for the considered shifts, the theoretical results re-
produce the experimental ones within the accuracy
(0. 5 cm ') of the latter. Moreover, the new degen-
erate computed values established by Pfennig and
Trefftz, ' with the aid of more accurate unperturbed
energies, remain within Foster's experimental un-
certainty.

On the other hand, the agreement between the
Sjogren experimental results and the Foster (or
Pfennig-Trefftz) shifts is not so good for F & 100
kV/cm, as pointed out by Minnhagen. ~ Therefore,
it is worthwhile to resume the corresponding con-
frontation with new computed values, as may be
seen in Table IX(a) for 4 S and in Table IX(b) for
43P

n, l,m

FIG. 2. Graph of the first and most important contribu-
tion to the fourth-order Stark effect.

TABLE IX. Comparison of calculated and measured
shifts (cm ) for the pure Stark effect of 4 S and 4 P.

F
(kV/cm)

110
217
319
403

Nondegene ra te
calculation
[Eq. (10)]

—3 ~ 468
—13 ' 472
—29 ~ 114
—46. 466

(a) 43S

Sjogren
measurements

(Ref. 25)

3 ~ 7
—13.0
—30.1
—44. 8

Degenerate
calculation
tEq. (13))

—4.796
—16.832
—35.778
—56. 257

It clearly appears that even in the presence of a
very high electric perturbation (F & 400 kV/cm), the
4 $ shift is well accounted for by the quadratic re-
sult. The degenerate method is to be preferred for
the 4 3P shifts, however.

B. Combined Stark and Zeeman Effects

(FLH)

In Table X a comparison between the results of
Eq. (19) (degenerate method), Eqs. (17) and (18)
(nondegenerate method), and the measurements per-
formed by Foster and Pounder and by Lebowsky
and Steubing ' is presented for 5 p and 5'P, re-
spectively, in the presence of crossed fields (n =0).

The more recent Lebowsky-Steubing data appear
well reproduced by the degenerate results, a fact
already pointed out in Ref. 10. In the presence of
strong magnetic fields, and even moderate electric
fields, there appears a rather important discrepancy
between the degenerate values and those given by
Eqs. (17) and (18), especially for m = 0, 1, the qua-
dratic shif ts being then larger (in absolute value) than
the experimental ones.

TABLE VIII. Approximate ratio of fourth- to second-
order Stark shift for some nS levels with+=100kV/cm.

E(4)/ E(2)

(b) 43m

Nondegenerate Sjogren
F calculation' measurements

(kV/cm) [Eqs. (17) and (18)) (Ref. 25)

Degene ra te
calculation
[Eq. (13))

Triplet

9.44 x10-'
9.47 x10
0.68

Singlet

0.12
2. 22
7.7

110
217
319
403

—8.762 (—10.13)
34. 100 (- 39.42)
73.68 (- 85. 19)

—117.72 (—135.95)

—6.55
—30 05
—65. 55
—96. 25

—6.906 (— 8.424)
—25. 597 (- 31.148)
—51.822 (- 63.122)
—76.830 (—94. 364)

'The ) m ) =1 values are given in the pa, entheses. .
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TABLE X. Comparison of calculated and measured
shifts (cm i) for combined Stark and Zeeman effects of
5 3P and 5 P, respectively, in the presence of crossed
fields (0. =0).

(a) 53P (8=25.8 kG, E=64kV/cm, 0'=0)

the contrary, it is bad for the 2S-nP lines with

n= 3, 4. This fact may be easily explained by the

non-negligible nP-nQ interactions, which are at
present not taken into account in the nondegenerate
definition of the Stark constant.

Nondegenerate
calculation

[Eqs. (17) and (18)]

Foster-
Pounder

measurements
(Ref. 26)

Degenerate
calculation
[Eq. (19)]

TABLE XI. Averaged Stark constant C in cm i per (100
kV/cm) .

—1
0
1

—133.294
—164.495
—166.895

—123.0
—125.3
—139.8

—128.52
—130.00
—132.41

Line

Nondegenerate

[Fqs. (10), (17), Hydrogenic
and (18)] (Ref. 1)

Landolt-
Borns tein

experimental
{Ref. 1)

(b) 5 P (H=32 kG, E=13.9 kV/cm, & =0)

Nondegenerate
calculation

m [Eqs. (17) and (18)]

Lebowsky-
Staubing

measurements
(Ref. 2V)

Degenerate
calculation
[Eq. (19)]

—1
0
1

27. 697
36.144
39.128

25. 6
27. 9
28. 8

25.01
28. 56
29.09

VII. APPLICATION TO STARK BROADENING

A. Stark Constants for Isolated Lines

Although we have discussed at length the approxi-
mations on which the isolated-line concept is based,
it still remains to evaluate with the aid of accurate
atomic data the quadratic Stark constants which ap-
pear explicitly in the reduced profile expression
[see Eq. (4. 14) of Ref. Ij. In order to get a con-
nection with the hydrogenic results already given in
Ref. 1, we consider the quadratic constant 8 aver-
aged over the magnetic quantum numbers of the up-
per level of the considered transition. Then, we
obtain

1 $-4P
522. 2

1'$-3 'P
53V. 1 A

1iS 21P
584.4 ~

2 3S-4 3P
3188 A

23$-3 P
3889 ~

2 iS 4iP
3965 ~
23P 53$
4121 A

2'P-5'S
4438 ~
2'P-4'S
4V13 A.

2iS-3 iP
5016 A.

2iP 4iS
5048 ~
23P-3 3$

7065 ~

41.58

4.606

0.0127

—7.98

- 0.657

41.61

—11.564

—27. 80

—2.85

4.639

—5.681

—0.328

39.4

4.10

0.0046

-6.83

—0.67

39.4

—15.6

—28. 10

—3.14

4.14

—5.79

—0.37

—6.2

—0.71

37.3

—2.9

4.3

—5.2

—0.25

C(0)

for lines with upper nS levels, and

C = -.'(C'"+ 2 C'")

(26)

(26)

2 iP-3 iS
7281 A,

3P-5$
12850 ~

—0.712

—10.792

—0.72

—15.0

for lines with upper nP levels. C ' represents the
quadratic shift of the sublevel (n, I, m) referred to the
lower level (n', I') and averaged over the magnetic
number m' (see Table XI).

C data then deduced from Eqs. (10), (17), and
(18) for singlet lines appear nearly equal to or a
little higher (in absolute value) than the results
given in Ref. 1. The triplet values show much
larger discrepancies, and their hydrogenic esti-
mates lie systematically higher than ours. The
comparison with the available experimental materi-
al shown in Ref. 1 suggests fair agreement between
computed and measured values for the 2P-nS lines
(especially the important 4713-A) with n = 3, 4. On

3'P-O'S
13477 A

3 'S-4'P
15088 A.

3 3P-4 3$

21127 A

3'P-4'S
21138 A

4 iP 5 iS
4eoee A.

4'P-5'$
4e9so A

—32. 28

42. 28

—2.06

—10.662

—69.25

—3.576

—320 2

40. 1

—2.48

—9.9

—67. 5

—8.9
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B. Static Splitting of Partially Overlapping Lines

For the quantitative evaluation of partially over-
lapping lines such as 2P-nQ (@=P,D, F, . . . ), with
n& 4, one has to compute simultaneously the static
shifts of all the sublevels (n, I, m) pertaining to a
main quantum number n. This procedure, per-
formed with the aid of the diagonalization of Eq.
(13) [or Eq. (19)], leads to cumbersome algebraic
manipulations for degenerate eigenquantities, which
are unavoidable in the presence of a magnetic per-
turbation. Happily, for a pure Stark effect, the
above-mentioned partition of the perturbation ma-
trix into smaller submatrices allows us, as pointed
out by Griem, to write the complete profile

L(~)=Z~ L (~) (27)

A detailed evaluation of the Stark effect for the
excited He z levels appears interesting not only in
providing more accurate atomic parameters needed
in optical spectroscopy. It is also of value in order
to get a deeper insight into the various time-depen-
dent perturbation methods of calculation. Usual-
ly, great theoretical attention is devoted to the dis-
cussion of the validity of the perturbation approach
for the electric shift of well-isolated levels, (see,
for instance, Refs. 19 and 20), such as the ground
state or the first excited ones. Indeed, our esti-

as a sum of magnetic profiles indexed by the upper
magnetic quantum number. For instance, the line
centered at 4471 A (n= 4) may be given the form (27)
with m=0, 1, 2, go=5 ', andg, =gz=-,'.3

Therefore, the evaluation of static quantities may
be obtained by solving algebraic equations of low

order. Using that method, Griem and also Gieske
and Griem have computed the 2 P-n D, F profiles
with the aid of degenerate perturbation theory, and
corrected them with a quadratic interaction arising
from the n P level. Actually, the results derived
in the present work show that for all field strengths,
the static nP shifts, with n& 4, have to be calculated
within degenerate perturbation theory. This
amounts to a lowering by 20-25% (for F & 100
kV/cm) of the k Stark constant used in Ref. 3, and
to reducing only by 2 and 3% the 4 P contribution
to the Lo and L+1 profiles, respectively, of the
4471-A line.

Indeed, these remarks give additional support to
Griem's procedure3 of treating apart the relatively
isolated 2 P-n P components, if the remaining
Stark interaction is considered with the degenerate
theory.

On the other hand, the quadratic calculation
seems well suited to include the contribution of the
n S-n Q (n&6) interactions as long as F& 100
kV/cm.

VIII. THEORETICAL REMARKS

mates of the 2S and 2P shifts confirm the usefulness
of such investigations. But this work also shows
the need for a better understanding of the behavior
of upper excited levels in the presence of an elec-
tric field. Particularly, the case of the nS shifts
that are more influenced by the Stark interaction
with the distant n'P states (n' 0 n) than by the degen-
erate coupling with the nQ (Q=D, F, .. . ) levels lying
in the same subspace has to be examined with a
special attention. The foregoing calculations then
confirm the difficulty, previously emphasized by
Dalgarno, of establishing standard prescriptions
for the choice of a given perturbation method of
partially degenerate levels. At first sight, it ap-
pears possible to consider a very large perturbation
matrix including all the levels of interest with var-
ious main quantum numbers, so that the distant
nS-n'P interaction would be included, and the cor-
responding shifts could be taken as the most accu-
rate ones. Moreover, it is likely that these values
would not differ very much from the quadratic ones,
because for small electric perturbation (relative to
the nS-n'P distance) degenerate theory (see Tables
IV and VI) is expected to reproduce the nondegen-
erate results. Numerically, the problem still re-
mains, in view of the inaccuracy (increasing with
the size of the perturbation matrix) of the diagonal-
ization techniques. Nevertheless, it is likely that
extensive machine calculations could lead to prac-
tical rules.

Moreover, in the presence of a nonparallel mag-
netic field, the e1.ectric perturbation may introduce
strong interactions between the magnetic sublevels,
thus adding to the inaccuracy of the diagonalization
procedure, ' a fact which tends to obscure the
physical meaning of the eigenvalues.

In conclusion, it is possible to state that the elec-
tric properties of excited levels cannot be well un-
derstood within the one-level approximation used
for the first excited states, and that it is necessary
to solve the eigenvalue problem for the whole spec-
trum [or at least the most excited part of it, i. e. ,
all (n, I, m) sublevels with n& 4] simultaneously.

APPENDIX

We briefly outline the method for extracting the
radial integral from the absorption oscillator
strength. The desired relation is provided by the
Hohrlich expression written with Griem notation,

f~~.= 2(Eg-Eg )(2J'+ 1)(2L+ 1)(2L'+ 1)

&&W(LJL'J'& Sl) W(LLL'L'; 01) L)(R„"i ), (Al)

where L& = sup(L, L') and W is a Racah coefficient.
f«. represents the absorption oscillator strength
of the J-J' transition with
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IL-Sl ,l-&L+S, IL' S-I -J L—'+S'.

The fez. are themselves linearly connected to the

usually tabulated orbital oscillator strengths

fq~ =[(2$+1}(2L+1}] Q (2J'+1}f~~. . (A2}

For example, let us consider the singlet line
2'S-3'P (S=0). The coefficient W(1122;01)
=0.2562 and f«. =f«. give

(R },,=100.6,

with the fi &p g ~n value due to Green et al. These
data differ very little from the hydrogenic data,

(R„"", ) = 1.5 [n —(l + 1)~]'~

(Qq)„~ = 101.25 .

(The same procedure could be repeated for n'P
with n& 4. ) But the difference between the data of
Green et al. and the hydrogenic data remains much
smaller than the 5% uncertainty of Green et al. in
the f„&p „&n .

Moreover, the same argument is even more valid
for the n P states with n& 3, in view of greater un-
certainties appearing in the corresponding oscilla-
tor strength values. Therefore, in practice, it is
sufficient to work with hydrogenic radial integrals
(given on p. 255 of Ref. 9 or tabulated by Green
et al. ~v) and to neglect the singlet-triplet difference
in expression (16).

Also, the Bates-Damgaard Coulomb results for
He do not appear more accurate than the results of
Green et a/. These remarks suggest strongly that
new and more accurate f~ „-n data should be calcu-
lated with the aid of the configurational method of
Green et al. 17

H. R. Griem, M. Baranger, A. C. Kolb, and G. Oertel,
Phys. Rev. 125, 177 (1962).

H. R. Griem, I'lasmas Spectroscopy (NIcGraw-Hill,
New York, 1964), p. 83.

H. R. Griem, Astrophys. J. 154, 1111 (1968).
C. Deutsch, L. Herman, and H. W. Drawin, Phys.

Rev. 178, 261 (1969).
H. A. Gieske and H. R. Griem, Astrophys. J. 157,

963 (1969).
A. J. Barnard, J. Cooper, and L. J. Shamey, Astron.

Astrophys. 1, 28 (1969).
C. Deutsch, Phys. Rev. A 2, 1258 (1970).
J. P. Descoubes, These d' Etat (Universitb de Paris,

1967) (unpublished).
SH. A. Bethe and E. E. Salpeter, Quantum Mechanics

of One and Theo Electron Systems (Springer, Berlin, 1957),
p. 188.

~ C. Deutsch, H. W. Drawin, L. Herman, and Nguyen-
Hoe, J. truant. Spectr. Radiative Transfer 8, 1027 (1968).

~~Reference 9, pp. 242 and 244.
J. G. Kirkwood, Z. Physik 33, 521 (1932).

isA Messiah, Mgcanique Quantique (Dunod, Paris,
1959), Vol. II, p. 587.

L. D. Landau and E. Lifschits, Mbcanique Quantique
(Mir, Moscow, 1967), p. 161.

"L. C. Green, E. K. Kolchin, and N. C. Johnson,
Astrophys. J. 144, 369 (1966).

~A. Unsold, Ann. Physik 82, 355 (1927).
L. C. Green, E. K. Kolchin, and ¹ C. Johnson,

Ph/8, Rev. 139, A373 (1995}.
H. Pfennig and E. Trefft2;, Z. Naturforsch. 21a, 697

(1966); Max Planck Institute fur Physik und Astrophysfk
Munchen Report No. MPI/PAE/Astro 18/65 (unpublished).

~9A. Dalgarno, in Quantum Theory, edited by D. R.
Bates (Academic, New York, 1961), Vol. I, p. 187.

2 M. H. Alexander, Phys. Rev. 178, 34 (1969).
L. B. Redei, Phys. Letters 1, 191 (1962).

22J. S. Foster, Proc. Roy. Soc. (London) A117, 137
(1928).

L. Mi~~agen, Z. Physik 113, 292 (1939).
J S, Foster and E. R. Pounder, Proc. Roy. Soc.

(London) A189, 287 (1947).
2 I. Lebowsky and W. Steubing, Ann. Physik 7, 360

(1959).
2 Reference 2, p. 50.
2 L. C. Green, P. P. Rush, and C. D. Chandler,

Astrophys. J. Suppl. 3, 37 (1957).
2~D. R. Bates and A. Damgaard, Phil. Trans. Roy.

Soc. London 242, 101 (1949).


