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In a previous investigation, a general theory for spontaneous emission from a system of N
identical atoms or molecules was developed. This theory was based on the master equation
recently derived in another paper. In that paper, the master equation relating to spontaneous
emission from a system of harmonic oscillators was also derived. In the present investiga-
tion, the normally ordered correlation functions for the oscillator system are calculated and
these are then used to calculate the radiation-field correlation functions in the far zone. These
correlation functions are compared for two different modes of excitation, viz. , (i) when each
of the oscillators is excited initially to a Fock state, and (ii) when each of the oscillators is ex-
cited to some coherent state. It is found that the even-order (2n) correlation functions for the
second mode of excitation (superradiant excitation) are of order N+ higher than those for the
first mode of excitation. It is also shown that the photoelectron counting distribution for the
superradiant excitation is Poissonian. Finally, the non-Markoffian effects in the spontaneous
emission are studied in detail and their connection with exact results is described.

I, INTRODUCTION

In a previous paper, ' a general theory for the
spontaneous emission from a system of N identical
atoms or molecules was developed which was based
on the master equation that the author recently de-
rived. This treatment provided a quantum theory
of the superradiant phenomenon, which also has
the important feature that it allows the development
of a systematic procedure for making successive
approximations. There, the master equation that
described spontaneous emission from a system of
harmonic oscillators was also derived. This master
equation was solved and the superradiant state of
the harmonic-oscillator system was discussed.

In Sec. II of the present paper, we first consider
briefly spontaneous emission from a system of os-
cillators which are not confined to a region smaller
than a wavelength, and the enhancement of the decay
rate due to the presence of other oscillators is

found. In Sec. III, we obtain the normally ordered
correlation functions for the oscillator system.
These are then used in Sec. IV to obtain the radia-
tion-field correlation functions in the far zone. The
correlation functions for two different modes of ex-
citation, viz. , (i) when each of the oscillators was
excited to a Fock state, and (ii) when each of the
oscillators was excited to some coherent state, are
given explicitly. We call the second mode of exci-
tation the "superradiant excitation. " Various char-
acteristics of this superradiant excitation are
studied in detail. In particular, we find that the
2nth ordered correlation functions for the super-
radiant excitation are of the order (N)~ higher than
those for the first mode of excitation. We also find
that the photoelectron counting distribution for su-
perradiant emission is Poissonian, which is typical
of a coherent field. In Sec. V, we study the non-
Markoffian effects in spontaneous emission and es-
tablish the connection with more exact results. In
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particular, we show that is is possible to introduce
a function f(f) whose exact value is given by Eq.
(5. 13) which describes the entire dynamics of spon-
taneous emission. Finally, in Sec. VI, we study
the spontaneous emission into a single mode. The
radiation rate for the two above-mentioned modes
of excitation are studied. In particular, we show
that the superradiant emission into a single mode
leads to a coherent field distribution with an ampli-
tude which is an oscillatory function of time.

II. SPONTANEOUS EMISSION FROM LARGE SYSTEMS

%e found that the emission from a system of
harmonic oscillators is described by the following
master equation:

(i) If at t= 0 the oscillators are excited such that

E("'((z.), (z~};O) = g F'"'(z„z,*;O), &a, (O)& = O

(2. 9)

which would be the case, for example, if each of
the oscillators was in some Fock state in»&, then
(2. 8} reduces to

I (t) = 2ot, g, (re '"')„&a,'(0)a, (0}). (2. Io}

F'"'(( ), ( r);0}=g l 5"'( — }j, (2. 11)

(ii} At t = 0 each of the oscillators was in some
coherent state Izp&, i. e. ,

=yp Z
~ (,t', ) ~ c.c.) .

fj ~i
(2. 1) then (2. 9) reduces to

The notation is the same as that of I. The master
equation (2. 1) was derived for a system of oscilla-
tors which were confined to a region smaller than a
wavelength For. large systems, one obtains the
following master equation:

(2.2)

(2. 12)Ic(f) = 2~pl zol'~(re '"')»,'
fj

The radiation rate can thus be calculated if the
matrix e +' is known. This matrix can, in prin-
ciple, be computed by using the method of contour
integration. For the special case, when z&~ = &0

for all i and j, it is easy to show that

(e o(t) -= I - (I/IV}(I e 2N(ot) (2. 13a)
The master equation (2. 2) is equivalent to the fol-
lowing Langevin equation:

z» = -Qt y»t z

In matrix notation Eq. (2. 3) becomes

z(t) = —rz(t),

(2. 3)

(2. 4)

where z(t} is the column matrix with element z»(t)
and y is the matrix with elements y„. The solution
to (2.4) is

z(I}=e "'z(O) . (2. 5)

This solution can be used to calculate the time de-
pendence of the normally ordered moments. In
particular, the total energy associated with the os-
cillator system is

W(f) = ~,Z, &at(f)a, (t)&

= otp &z'(t)z(t) &, (2. 6}

= o»pZ (e '"')»»&at(0)a, (0)&,
ij

(2. 7)

where in the second line the average is taken with
respect to the phase-space distribution function
Eo"'. Using Eq. (2. 5), Eq. (2. 6) reduces to

IV(t) = o»o&z'(0) e '"'z(o)
&

(e 2rt) (I/A(}(I e ~"ot).

Equations (2. 13a) and (2. 13b) then lead to the re-
sults given in Sec. V of I. For the case of two
oscillators, we find that

(2. 13b)

(e '"')« = cosh(2y, zt)e z"o',

(e "')»t=-sinh(2y(zt)e "o'.

(2. 14a)

(2. 14b)

On substituting (2. 14) in (2. 10) and (2. 12), we
obtain

Iy'(I) = 2(((p [rp cho(s2 fy) tzrtz stnh(2ytzf)]

»Z»(a (0).a»(0)& e +P'

Ic(f) =4(((pl zol (ro+rtz) e "'"~"»'.

(2. 15)

(2. 16)

A result similar to (2. 15) has been found recently
by Lehmberg who concluded from this that the
the oscillators tend to trap the radiation. Qn the
other hand, our result (2. 16) shows that the oscil-
lators also exhibit superradiance when each of them
is excited initially to some coherent state. It also
shows the enhancement of the decay rate. ' In the
case of small systems, the decay rate is exactly
twice the decay rate of an isolated oscillator.

and hence the radiation rate is given by

I(f} = ——= 2(((oZ (ye " )zt&»t(a0)ta (0)t (2. 8)

III. NORMALLY ORDERED CORRELATION FUNCTIONS
FOR OSCILLATOR SYSTEM

We specialize (2. 8) to the two following cases:
In this section, we will calculate the normally

ordered correlation functions for the oscillator
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system. It is well known that the normally ordered
correlation function can be computed in terms of the
Green's function K'"'(z, z~, tlzo, zf, 0) associated
with the master equation for F& ', and the phase-
space distribution function Ez"', e. g. , (a'(t, )
a (tf) a(t„) ~ ~ ~, a(t&)/ is given by

(a'(t, ) ~ a'(t„)a(t„). ~ ~ a(t, )&

d z~ d zpFg zpy z &0
1

and the initial condition

K' "'((z,j, {z,*),0
~
{z,), {z,~), 0) =II 6 (z &(z, —zo) .

(3. 3)

It is easily shown that the solution of (3. 2) subject
to the initial condition (3.3) is

K'"'((z, ), (zj'}, t~ (z,'), (z&'*J, 0) = II 6"'(z, —z', ) e'""o',

(3. 4)

xII[K'"'(z„zy, t, ~z, „z', „t, , ) ~z, ~
]. (3. I)

We now introduce the Green's function K'"'({z,j,
(z&o'), tI(zo&]; {z+},0) which satisfies Eq. (2. 1},
namely,

where z, is related to z, by the relation
N

Z, =z, +(I/N)(e"o'"- 1) Ez, .
gal

The relation inverse to (3. 5a} is given by

z, =r, —(I/N)(1 —e o'")IZ, .

(3. 5a)

(3. 5b)

BK'" 5 8= c,
( Z, (*,(('*'&~ c.c.),(jJ Z$

(3.2) We now use the solution (3. 4) to compute various
correlation functions. We have, for example,

I'. ..(t; 0) -=(a,'(t)a, (0)&

Z&1) d& Z~~) Z'(1)w Z'(&) +) Z&1) Z'(1)g ] Z((&o) Z(&)&}( 0 F ) Z ) Z&~)e . 0~
~
1

I ~ I z
~

z ~ z ~ z ~ z ~ t z i t z i t z i t s f j z
~

tI

&jd( z) &
—

(1 wo )Pz( II 5( (-( & )F &(( ( &) ( ( & ). 0)S
f~1

=(ai(0) a&(0)) —(1/N) (1 —e "o'")p (a, (0) a&(0)&

or

I', &(t; 0) = I', , &(0; 0) —(1/N) (1 —e "o™)Z I',
, &(0; 0) . (3. 6)

Similarly, the correlation function (a, (t) a&(t) a, (0) a, (0)) is given by

F,&,&, &(t, t; 0, 0) =( a, (t) ay(t) a~(0) a, (0))

N N

c (*y & ((/o(& (( —c "' '& Z * *I —((/(c& (( —c ' '&r *„)c,*,o '"' ((*,&, (c', &; o&
fft= 1 n=1

N

= Fig ~ &(&(0( 0( 0( 0) (1/N) (1 e 0 )Z Fi &(&(Oc 0I 0c 0)

—(1/N) (1 —e ""0')Z F &.»(0, 0; 0, 0)+(I/Nz) (1 —e ""o') QZ I' „,»(0, 0; 0, 0) .
m»- 1 fS tg

(3.7)

Equations (3. 6) and (3. 7) give the time dependence
of the correlation functions F, , &(t; 0} and

F,&,»(t, t; 0, 0). We shall now exhibit explicitly
this time dependence for two different modes of
excitation.

A. Excitation Given by (2.9)

For the excitation described by Eq. (2. 9), with
F&~ representing the phase-space distribution func-
tion corresponding to Fock state In&), we have
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I'(,.&(0; 0) =n(5(z, n(-=I', ((0; 0),

I'((,.»(0, 0; 0, 0)=n, (n( —1)5((5»5q(

(3.8)
+n(ny5((5tr(l 5»)+n(n, 5((5(a(1 —5I(} ~ (3 9)

On substituting (3.8} and (3.9) in (3. 6}and (3. 7),
we find that

I'(,((t; 0) =(((5(( —(1/N} (1 —e ""0')n(, (s. io)

I'„,»(t, t; 0, 0) =n({n( —1)5„5»5»+n(n, 5(p„(l —5„)+n(np„5»(1 -5„)—(1/N) (1 —e-" ")[n, (n, —1)5„5»

+n(n(5(2(1-5»)+n(n, 5«(I —5») +terms obtained by the replacement i-j]
+ (1/N ) (1 —e "0(")~[n~(n„—1)5» + 2n(n((1 —5»)] . (3. ii)

Equations (3. 10) and (3. 11), in particular, lead
to the following interesting results:

(a', (t) a, (0)& -& a', (t)) (a, (0))

In the special case when n, = n, (3. 14) reduces to

( a', (t) a, (t)) —( a', (t)& & a, (t)&

= —(i/N) {1—e "o'")n, (t~q) (3. i2)
= —(2n/N) sinh{Nyot) e ""0' . (3. iS)

(a", (t) a,'(O)& —(a('(t)&& a,'(0))

= (1/N') (1 —e "o'"}'n, (n, —1) . (3.13)

These results show explicitly that because of
spontaneous emission a finite correlation is pro-
duced between the ith and jth oscillator. It is also
found that

(3. i6)

I(t) = syo(d()&D~(t) D(t)) . (3. i7)

The fact that the correlation (3. 15) is negative
should be noted.

We now introduce the operator D{t) defined by

D(t)=Z a, (t) .
fs$

In terms of D(t), the radiation rate may be shown
to be

( a', (t) a, (t)& ( a'((t))—( a, (t)&

=- (i/N) (i —e-"~")(n, +n, )

~ (1/N')(1 —e V )' Z n,) .
Cn1

(3. 14}

In Sec. IV, we will also show that the correlation
function for the electric field associated with the
radiated field is related to the correlation functions
for D(t). Using (3.10), (3.11), and (3.16) it can be
shown that the normally ordered correlation func-
tions involving the operator D(t) are given by

(N'(()N(O)) =Z 2, ,((;O)={Znj)e

(D'(t)d(t)D(o)D(o)) = Z „1,.„(t,t; , 0)0
ffAl

Zn, (n, —1)~ 2 rene —(2/N)(1 —e e' ) NZn, (n, —1) ~ 2NZ, ,)i ilHf Hl

(3. 18a)

~ (1/N )(1—e "e' 2(NeZn (n —1)~ 2NeZEn n)&l

= Zn, (n, —1)~ 2Lngn, )e ~"e',
if
f4f

(3.18b}

& D~(t) D~{t)D(t) D(t )) = P n, (n, —1)+ 2 E n(n( e ~"0( . (3. isc)
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B. Coherent State Excitation

For the excitation described by Eq. (2. 11), we
have

r...(o;o)= Iz, I',

r„,„(o,o;o, o)= IZ, I'.
(3.19a)

(3.19b)

On substituting (3.19) in (3. 6) and (3.7), it is
found that

The important point to notice is that the correlation
functions decay exponentially with time. The de-
cay rates are N times larger than the ones which
would be obtained from a single oscillator.

We have so far considered the correlation func-
tions only for small systems. For large systems,
the correlation functions can be calculated by the
use of (2. 5) and the quantum regression theorem.
For example, (at (t) a&(0)) would be given by

(a', (t) a, (o)) =Z', (e "')„(a'„(0)a, (o)& . (3.aS)

In particular, for the case of two oscillators, we
find that

& a', (t) a, (0)) = cosh(y»t) e "p' ( a', (0) a, (0))

—sinh(y„t) e "p'( a', (0)a, (0)) (i +h),

(3.26a)

r, ,~(t; 0)= IzpI e (3. 20a) ( a~(t) a&(0)) = cosh(y»t) e "o'( a, (0) a&(0)&

—sinh(y»t) e "P'
& a~p(0) a&(0)& (k &i) .

1 (~,pg (t, t; 0, 0) =
I zp I

—(2/N) (1 —e "p )N I zp I

+ (1/N ) (1 e- Nrpt)ZN
I
z

Z
4 2Nyot

It may be also readily shown that

(3. 20b)

(a', (t) a, (t)) -(a', (t)) (a,(t)) =0 . (3.21)

Equation (3. 21) shows that no correlation is in-
duced between the ith and jth oscillator. In fact,
for this case, we found the following solution for
the phase-space distribution function:

N
F(A) Q [ 6(2) (- )] 2zvpt

jw 1

which by change of variables reduces to

N
E(A) =Q [Z5(2) (z —z Hype)]

ga 1

The result (3. 22) shows that the density operator
for a system of N oscillators at time t simply
factorizes or, in other words, ith and jth oscilla-
tor are uncorrelated. The lowest-order correla-
tion functions for the operator D(t) are given by

(3.22)

& D (t) D(0)) = Np
I zp I

' e ""p' (3.23a)

&D'(t) D'(t) D(0) D(o)) =N'IzpI e

&D'(t)D'(t)D(t)D(t)) =N'Izpl'e ""~ (3 ~ 23c)

On comparison of (3. 23) with (3. 18), it is found
that

&D'(t)D(o)&... „&D'(t) D(0)&,
(3. 24a)

(D (t) D'(t) D(0) D(0)),. 0 p

& D'(t) D'(t) D(0) D(0)),
(3. 24b)

Equations (3. 24) are obviously characteristic of the
superradiant phenomenon.

(3. 26b)

For the case of excitation described by (2. 9},
(3. 26) reduces to

(a&(t) a, (0)) =cosh(y»t) e "p~n&,

&at(t)ap(0)& = —sinh(y»t) e "p'np,

(ap(t) a, (0)) = —sinh(y»t) e "o'n, .

(3. 27a)

(3. 27b)

(3. 27c)

For the case of excitation described by (2. 11),
(3. 26) reduces to

&a', (t)a, (0)) = IzpI'e "o' "»' . (3.28)

Equation (3. 28) shows that the correlation function
decays exponentially with the enhancement of decay
rate, which is again a characteristic of superradi-
ance.

The Heisenberg equations of motion for the opera-
tors a& and ak, are given by

~ksaks ~ gksag ~

i
(4. 2)

.day
p a( +Kg» a

ks

From (4. 2) and (4. 3), it follows that

(4. 3)

IV. NORMALLY ORDERED CORRELATION FUNCTIONS
FOR RADIATION FIELD OPERATORS

So far we have been calculating the correlation
functions for the oscillator system. In this sec-
tion, we will show how the knowledge of the correla-
tion functions for the oscillator system may be
used to obtain the correlation functions for the
spontaneously emitted radiation field. The Hamil-
tonian for this problem is

N

H = ~~p E a, a, +Z v„ap, a»+ Z (g ~, a~, a& + H. c. ) .
j= 1 ks ksJ

(4. 1)
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&ks
2 =&a '"a ~k +~ As~'

dt

~Z r,'. (te. , r r, . e, ,) (4. 4)

which in the limit L-~ becomes

A" (r, t) = —,', [8 k-Q k)]c' (2v)' J k

3 t

xZ - -, a, (t —ir-r'i/c)e"'"
Ir —r'I

The field operators are given by

A"(,e(=(, 2
&
—e"'e (i), (4. ee)

ks

1/2E"(', i)=i(; Z(W ) e"'e,ee. (1..&.
ks

(4. 5b)

From (4. 5a) and (4. 4), one obtains the following
equation of motion for the vector potential operator
A" (r, t):

() 1 dA

(4. 11)

We now make the approximation

a;(t —ir —r'i/c) = a, (t — ir I/c) e '"o"

(4. 12)

where the operator a, on the right-hand side refers
to the Heisenberg operator from which the time
dependence due to free Hamiltonian has been sepa-
rated out. This approximation is valid because
we have assumed that the osciBator system is con-
fined to a region smaller than a wavelength. We
calculate A" (r, t) only in the radiation zone, for
which we have

k2 Ir-r'I = Irl-("(-'( ) . (4. 13)

2+0 (As ~i + gasgk's' ~k's' ' 4' 6
ik s'

On substituting (4. 13) and (4. 12) in (4. 11), we ob-
tain the following result for the asymptotic form of
A" Cr, t):

A" (r, t)- —(i&a(')/c') Z a((t —
i
r i/c) (e"()" '"0'/) )

We rewrite (4. 6) in the form

2 A(e) = —(4&/c) j(e) (4. V)
1 dkx — g —k(d ~ k)]

2& k
where j"is the positive-frequency part of the
current operator. It is obvious from (4. 6) that
in the lowest order of the coupling constant j" is
given by

(e)( t)

1 2&c 1/2
Z ~ ~„g„e '

(2&~0)a, (t) .
4&c L k i k

(4. 8)

The solution to Eq. (4. 7) is

A" (r, t)

d'r' ir —r'i 'j"(r', t —jr -r'i/c) . (4. 9)cJ
On substituting (4. 8) in (4. 9), we obtain

2mcA" (r, t)=—, 3 P ~ e„g~(2~(&)4&c L k, k

3 ] ik ~ p r ~ rx dr e exp —ik~ Irl

2=-'",' Za((t- vari/c)(e"o" '"0'/r)
C

A" (r, t)- ( —i(()()/c) [8—n(3 n)] (e' o" '"o'/r)

)'Z', , (t —
i ri/c) . (4. 15)

Similarly, one can show that the asymptotic form
of the electric field operator is given by

[~-k(& k)]5("(k-k,n),
(4. 14)

where n is the unit vector in the direction of the
vector r and ko =&age. On simplification, we ob-
tain
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On rewriting (4. 16) in terms of the operator D(t)
defined by Eq. (3. 16), we have

E ' (r, t)- (+ o(o/c') [d —n Q. n)] (e"& '"o'/r)

»(t - lr I/c) . (4. »)
We have thus shown that the positive-frequency part
of the electric field operator in the radiation zone
is, apart from other factors, equal to the operator
D(t —Ir I/c). Hence the correlation functions for
the electric field are given by the correlation func-
tions for the oscillator system. For example, one
has

x i(t
I zo I exp[2ttro

I
r I/c —tokyo(t+ t')] . (4. 19)

In particular, we find from (4. 19) that

(E' '(r, t+ lrl/c) E"(r, Irl/c)&

= ('"o/c }( I
d x "

I /r ) N'
I zo I

' e'"o' ""o' . (4. 20)

It is worth noting that the correlation function (4.20)
is of the same form as for a damped Hertzian di-
pole. Again the N dependence of the correlation
function should be noted. Similarly, the fourth-
order correlation function is given by

(E'-'(r, t) E" (.r, t')) =((d('(/c') (lgxnl'/y') e(~o& i'(-

x(D «-
I
r

I le) D (t —lr I/c) & . (4. 15)

For the case of coherent field excitation, (4. 18) re-
duces to

(E' '(r, t)E' ' (r, t):E" (r, t')E' (r, t'))

((~JBco)(
I
dxn

I

4/y4)2(uo( i-i')

&e-2Nyp(t+t') &4Nyplt'I /c xr4 14lv Zp] ~ (4. 21)

( E' ' (r, t) ~ E"( r, t')& = ((((o/c ) (I Bx n I /r }e "o
From (4. 20) and (4. 21), we find the following re-
sults, if we integrate over all directions n:

(c/2((} fdQ(r')(E' '(r, t+ Ir I/'c)' E" (r lrI/c+t'}& =ti lzol (2&ooyo) e'"o" """o""",

(c /((} fdII(r )(E' ' (r, t+ Ir I/c) E' (r, t+ Irl/c): E"(r, t'+ Irl/c) E"(r, t'+ Irl/c)&

(4. 22)

~2 2 2 XT4 I I 2 2iolp(t t ) NHyp(t+t' ) (4. 23)

The double dot in (4. 21) denotes the dot product be-
tween the 1st and 3rd member and the 2nd and 4th
member. Equation (4. 22) also leads to the expres-
sion (I5. 14) for the power radiated. It is also clear
that 2nth-order correlation function of the form
(4. 20) and (4. 21) will depend on 2nth power of the
number of oscillators which is again characteristic
of the superradiant phenomenon (c.f. , also
the results of Sec. VI). In fact, it can be shown
that the probability p(n, T; I r I/c} that a detector
placed at a distance 1 r I from the oscillator system
will detect n photoelectrons in the time interval be-
tween Irl/c and Irl/c+T is given by

V. SOME EXACT RESULTS AND NON-MARKOFFIAN
BEHAVIOR

The master equation (2. 1) was derived under two
assumptions, namely, a Born approximation was
made and the memory effects were ignored. In
this section, we will first obtain the radiation rate
by solving the Heisenberg equations of motion and
later establish the connection of the results so de-
rived with those obtained from non-Markoffian mas-
ter equation. The Heisenberg equations of motion
for the operators g~ and az were obtained in Sec.
IV. These are

p(n T
I
r I/c) = [(((.Io)"/n! ] e

where
T

fo =fi'
I zol (2(doyo) f e ""o'dt

(4. 24) ~ dghs = » ~»+~~ g~ ~~,dt

. dQq' =~oa, +Kg„,a„.dt as

(s. 1)

(s.2)

=iV'I zol'(»oyo) e ""o [smh(NroT-)/i((ro] .
(4. 2s)

Thus we obtain the Poisson distribution for the pho-
toelectron counting distribution with the parameter
Io given by (4. 25), which is characteristic of a co-
herent field.

On taking the Laplace transform (indicated by tilde),
we obtain the equations

[p a„(p)—a„(0)]= i (o„a„(p—) 'i 2 (g,*,ai—(p),
(s. 3)

[pai(p) —ai(0) ] = —i(doai(p) —i Z go, a„(p) . (5.4)
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From (5. 3) we find that a»(p) is given by

a„(p}=(io)„+p)'a„(O) i(p+io)„) 'Z, g,*,a, (p) .
(s. s)

On eliminating aa, (P) from (5.4), we find that

az(P) is given by

(P+ iso) a, (P) = a, (0) —iE g»(P+ i(o„) 'a„(0)

~ Iga I (p+io)a ) ~ay(p) ~

hs f

(s. 6)

On summing both sides of (5. 6) over all values of

j, we find that

f(I) i ) dP e(a+ (uo) f1
2 flan

+SMO +N gk +Stdks~ . 5. 13
ks

The results derived so far are exact, i.e. , we have
made no approximation on the strength of the
coupling constants. If we now make the usual ap-
proximation, 9 i.e. , replace

)' by &Ig..l'(-i . i,.)'
ks ks

and ignore the frequency shifts, then (5. 12) reduces
to

(P+i(oo)D(P)=D(0) —iNZ g»(P i+(o») a»(0)
{D(&))= (D(0)) e '"o' ""o' . (5. 14)

—NZ lg, l'(P+i(o. ) 'D(P), (5 7)

where D(p) is the Laplace transform of the opera-
tor D(f), defined by (3.16). Equation (5. 7) is
easily solved for D(p). We find that

This shows the simple decay behavior for the aver-
age value of the operator D(f). It is worth noting
that this result is the analog of the result (I 2. 23) of
Paper I which was found for two-level atoms.
From (5. 10), we also deduce that

az(t) = a&(0) e '"o'+ (1/N) D(f) —(1/N) D(0) e '"o',

D(()=((( +i a)')(Z I((„I'tP ~ (~,.) ')-'B(o)

—(l(I(p (va) NZI(( I (p+iu ) 'j '

and in particular

( a&(f)& = e '"o'(a&(0)& —(1/N) e '"o'

&&(I —e ""o')(D(0)) .

(5. 15)

(5. 16)

"Zg»(P+i(da, ) 'aa, (0) .

It is clear from (5. 8) that

(p+ iso) p lga. I {p+i(da.) D(p)

D(p)/N+ (I/—N) (p+ I e,)-' D(O)

-fag„(p+ie„) '(p+io)o) 'a„(0) .

(s. 8)

(s. 9)

It should be noted that the approximate results
(5. 14) and (5. 16) are identical to the results found
from the master equation (2. 1). An alternate ex-
presssion for a&(t) can also be obtained by noting
that

(p+i(do) 'Z Iga*l (p+i(oa, ) 'D(p)

On combining (5. 6) and (5. 9), we find that

a, (P) = a, (0) (P+ivo) '+D(P}/N

—(1/N) (p+i(do) 'D(0) . (5. 10)

We now consider spontaneous emission. The
initial state of the radiation field is the vacuum
state and hence (a»(0)) =0. We obtain from (5. 8),
on taking the average values,

-1
(D(p)) =((p ~ ', ) ~)(Zl I'( ) ~ „))-' &D(o)) .

(5. 11)

On inverting the Laplace transform we find that

—iZ'g„(P+i(d„) a„,(O)
D 0)

(D(p))

We rewrite (5. 18) as

(5. 18)

a~(p)=a~(0)(p+i(oo) ' — (p+i(oo) '—D(o) . (D(p))

-iZg (p+io)») a„(0) ( p+ io))
&D(p) &

%s (D(o)&

(s. 17)

Then a&(p) is given by

a, (p) = a, (O) (p+i(oo) ' —
N (p i&u +)' —o

D(o) . , (D(p) &

( D(&)&
= (D(0)) f(&) e '"",

where

(s. 12) +Ra (0) P„(P) (5. 19)
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a~(t) = at(0) e '"o' —(1/N)e '"o'D(0)+ — D(0)

+Z a~ (g0) P„g(t) . (5.20)

Since the radiation field is initially in the vacuum
state, the operator a&(t) is effectively equivalent to
the following operator:

-1
( D( g ) ) = (D(0) ) (g N &

l g„(l
C ( (1.( „) '

(

ks i
(5.26)

On using (5. 25) and (5.26), it may be shown that

f ks

N I
~ (D(0))

(s.27)

as far as the calculation of the normally ordered
correlations is concerned. The result (5. 21) is also
an exact result with (D(t)) given by (5.12). The
radiation rate, in situations when each of the oscil-
lators was excited initially to a coherent state I zo),
is given by

On combining (5.24) and (5.27), we finally find that

* (g) )' * (C) —
)=C (g

—
DC) ) ci(C) . (5.2$)

On taking the Laplace transform of (5. 28), we obtain
the formula

f(t)= Nlzol (oodt lf«)l ', (s. 22)
z, (t)=z, (O) ——I — 2 z, (O) .(D(t)) (s. 29)

where f(t) is given by (5.13). This result then leads
to the result (15.14) of Paper I, if the approximate
result given by (5. 14) is used. We again stress the
fact that all the approximations have to be made in
the calculation of the function f(t).

We now derive these results from the master-
equation approach. We derive a non-Markoffian
equation describing spontaneous emission and we do
make the Born approximation. The master equation
so derived leads to the result (5. 21). Let F g(") ({z,),
{zf};P) be the Laplace transform of,F"(({)z,},
{zf); t) It ca.n be shown that F "(({)z,), {zg('); t)) sa-
tisfies the following equation:

The results (5. 28) and (5.29) are identical with
(5. 12) and (5.21), respectively. 'o

VI. SPONTANEOUS EMISSION INTO SINGLE MODE

0,= g a'f a+H. c.
t)si

(6. I}

In this section, we will consider the problem of
spontaneous emission by a system of oscillators inta
a single mode. The corresponding problem for the
case of two-level atoms has been investigated in
great detail ' recently. The interaction Hamil-
tonian in the interaction picture is given by

[tF("'({z,), {z ', ); p) -F,'"'({., ), {z*, ); 0)]

Zf Fs Z f c) Z $ p
tc)

"&
I g .I

'(g ~ J' ~").
ks

(s.23)

where g is the coupling constant. a and at are the
annihilation and the creation operators for the ra-
diation-field mode. The antinormally ordered
equivalent of the density operator satisfies the
following master equation':

It should be noted F~"' refers to the phase-space
distribution function in the interaction picture. The
master equation (5. 23} has been obtained in Born
approximation. In principle, we must retain all
the higher-order terms. We conjecture that when
this is done the equivalent Langevin equations of
motion will be given by

[t z(()o) —z((o)) = -& z,(t)~.
I g„l '(f +i( „)-' .

f ks

(s. 24)

gy (A)

g EZ .), CC.)f~l

8 a N a ax exp ——
~
—— &~ ~

F'"' —c.c.
~Z f l ~Zf ~Zf g

which on simplification reduces to

8+ 8 8
= 5~ igg'z~ +igz s

—+ c.c. F . (6. 2)
f Z Z f

The corresponding Langevin equations are

It is clear from Eq. (5.24) that

t» z, (p) =~ z, (o) -N&
I g„l'()o+i,.)-'& z, (t ) .

ks f

(s. as}
This equation may be rewritten in the form

Z = —ig+ Zf
f~l

Zf = —tgZ

From (6. 3) and (6. 4}, it is easily shown that

(6. 3}

(6.4}
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z(t) =z(0) cos[lg l(N)'i't]

N

sin[lgl(N)'"t] 8 z~(0), (6. 5)
(N) Ig (

'g i g((N' t
( ((N)' '

—(I/N) [1—cos lgl(N)'i t) 5~ z&(0) . (6. 6)

The solutions (6. 5) and (6. 6) may be used to calcu-
late the normally ordered correlation functions.
We first assume that the initial state is given by

From (6. 5), we also see that the normally or-
dered moments are given by

xs ""[)((o()"'t]((E,[(0)) (E»(o)) ),
which for the case of coherent state excitation re-
duces to

gm n ~g —&g~

o)&' lit' I (&)' ~'
I(.' I )

F'"'((z,},{zg}; z, z*; 0)

(6. 9)

It is then easily shown on using (6. 5)-(6.7), that

&a'(t) a(t)& =Nl zol
z sino[lgl (N)'~zt], (6. 8&

'-"i &aJ(t& a~(t)& =NI zol
o cos'[I gl(N)'"t] (.6. 9&

From (6. 8) and (6. 9), it is evident that the energy
oscillates between the oscillators and the field.
The radiation rate in this case is given by

I,(t) = ~o +& &—a-J(t) a, (t)&odt

=
l
zol'» lglN"'sin[2lgl (N)'"t]. (6. 10)

x sin ~ [(gl (N)'~ot] (z~o) (zo)"N

(6. 13)

In particular, we have from (6. 13) the following
result for even-ordered moments:

&a"(t)a (t)) =N
I
zol" »n" [lg 1(N)"'t]

= [&a'(t)a(t))] . (6 . 14)

A result of the form (6. 14) was also exhibited re-
cently by Birula" for the case of superradiant ex-
citation of two-level atoms, the odd-ordered mo-
ments vanished for this excitation, whereas for an
oscillator system they are finite. In fact, it is ob-
vious from (6. 13) that the reduced phase-space dis-
tribution function for the field mode, denoted by
Eo( '(z, z";t), is given by

One may similarly compute the radiation rate when
each of the oscillators was initially excited to a
state described by (2. 9) and it is found that

E'"'(z z*' t) =v5' ' [z —z']
where

z' =(-,&z sin[lgl(N)'~ t]Nzo.
lgl

(6. 15a)

(6. 15b )

Ir(t& =(oolgl sin[2lgl &N&' I] N () o ~ &aj(0&az(0&&.

(6. 11)
On comparing (6. 10) and (6. 11), we find that

Io(t) = NIz(t) . (6. 12)

We thus conclude that the radiation rate from Fock-
state excitation is N times smaller than that from
a coherent state excitation. This conclusion is
again reminiscent of the phenomenon of super-
radiance.

We thus conclude that the field is found in a coherent
state (z ') when all the oscillators were excited ini-
tially to a coherent state (zo). Similarly, it can
be shown that the reduced phase-space distribution
function for the oscillator system is given by

F( )(( }~'v}'t) = g(v5")[ — -slgl(N)'"t]].
(6. 16)

The striking similarity between the result (6. 16)
and (3.22) is worth noting.
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The scattering of 300-eV electrons from atomic Hg was used to study the validity of some
recently published analytical potentials. Comparison with experimental data showed rather
poor agreement with a potential derived on a nonrelativistic basis and good agreement with a
potential derived on a relativistic basis. The best agreement has been achieved by adding to
the scattering potential an exchange contribution due to exchange between the incoming electron
and the target electrons. Experiment and theory are found to deviate significantly at the min-
ima in the differential cross section.

There are several ways to study the validity of
a potential of an atom. In general, agreement be-
tween the experimentally determined bound states
of the system and the calculated ones is considered
as a very good indication of how close the calculated
potential comes to the true one. Recently, Green
et al .' have reversed this procedure. They have
chosen an analytic function which contains two free
parameters for the potential and which has a hy-
drogenlike behavior at large distances. Similar
approximations to achieve analytic potentials are

known in nuclear physics as optical potentials. The
parameters were determined so that the energy
levels of the bound states of the atoms were repro-
duced. The disadvantage of the parameters pub-
lished in Ref. 1 is that they are based on a non-
relativistic approach which cannot be considered
reliable for an atom like Hg. Using a relativistic
treatment, Darewych et al. ~ have repeated the ad-
justment of the same analytic potential to the en-
ergy levels measured by electron spectroscopy for
chemical analysis, again by fitting two parameters.


