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The time evolution of the optical field produced by a Q-switched He:Ne laser has been in-
vestigated experimentally, in the neighborhood of the threshold of oscillation. The experiment
was based on a measurement of the variation of the photoelectric counting probability with time,
following the turn-on of the laser. Q switching was achieved with the help of an external mir-
ror to extinguish the laser, and a Pockels cell to switch out the mirror. The working point
of the laser could be held anywhere in the threshold region, by use of a feedback arrangement
which controlled the cavity length, and therefore the atomic gain. Results are presented
showing the evolution of the mean light intensity, the variance of the light intensity, and the
counting probability with time, for several different values of the laser pump parameter. The
results are found to be in very good agreement with the calculations of Risken and Vollmer,
based on a rotating-wave van der Pol oscillator model of the laser.

I. INTRODUCTION

Although many investigations have been concerned
with the operation of the laser under steady-state
conditions, much less effort seems to have been
devoted to the study of its transient characteristics.
These characteristics become particularly important
for a repetitively pulsed or Q -switched laser. There
appears to have been only one experiment directed
towards the measurement of the statistical properties
of the emitted light as a function of time' under
pulsed conditions, although a number of authors
have examined the growth of the mean light in-
tensity. The corresponding theoretical problem
has been tackled by several authors, 7 ' particular-
ly Risken and Vollmer, who have presented curves
showing the evolution of the statistical features after
the laser is turned on. But while most of the theo-
retical treatments have been applicable to the situa-
tion where the final steady state is not too far above
the threshold of oscillation, very few dynamical
measurements appear to have been carried out in
this region. As a result, some of the most sensi-
tive predictions of the theory have not so far been
tested.

Since most lasers operate far above threshold
in the saturation region, and tend towards this final
state when Q switched, this situation is perhaps not
altogether surprising. However, with a certain

amount of elaboration it is quite possible to control
a laser so that its steady state is in the threshold
region, and to examine its characteristics.

By using the same optical feedback control sys-
tem as described previously, ' together with an
optical shutter acting as Q switch, we have been
able to study the transient characteristics of a
Q-switched He:Ne laser near threshold. The in-
vestigation was based on photoelectric counting
measurements, and the evolution of the counting
probability with time after the laser is turned on.
The counting probability, and the corresponding
moments, are simply related to the probability
distribution and the moments of the laser light
intensity, whose time evolution was evaluated by
Risken and Vollmer on the basis of a rotating-wave
nonlinear oscillator model of the laser. e We are
therefore able to make a fairly direct test of the
theory. The results are found to be in very good
agreement with predictions based on Risken and
Vollmer's calculation.

We begin by outlining the theoretical background
and the principle of the method. We then describe
the apparatus, and the method used to determine
certain key parameters. A number of corrections
for dead time, background light, and finite counting
time are required, and these are described in some
detail. The results include the time evolution of
the first two moments of the light intensity and of
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the photon counting probability itself.

II. PRINCIPLE OF METHOD

Ksken and Vollmer have studied the transient
behavior of a laser which is not too far from thresh-
old, in terms of the rotating-wave van der Pol
oscillator model. By solving the associated Fokker-
Planck equation, they were able to calculate the
probability distribution of the instantaneous light
intensity at various times after the laser was turned
on. While their treatment is semiclassical, rather
similar equations are obtained from a fully quantum-
mechanical treatment in terms of the phase-space
representation of the optical field, '7 when the mean
number of photons in the cavity near threshold is
large. '

Let us denote the complex amplitude of the optical
field (assumed polarized) at time t by V(t), and
write

V(t) [ (i}e fraot~-fe ]&/&

where I(t) is the instantaneous light intensity,
is the midfrequency of the light, and P(t) is the
instantaneous phase. If Ie, P, t, a) is the joint
probability density of I and fIt at time t, the
Fokker-Planck equation for S' may be written

tion of W. From Eq. (6) the first two moments of
the stationary distribution are

2e '~'
(I(t ta)) a

(q }[I (I )] t

-a~/42ae(I (t =,a) }= 2+ a +
(~ )[1 (, )]

(7)

(8)

where 4 (x) is the Gaussian error integral. When

these expressions are evaluated at threshold,
a=0, we obtain

(I (t = ~, a = 0)) = 2/ps = l. 128, (8)

(I (t =~, a =0))/(I(t =~, a =0)}s=-'v=1.571. (10)

Equation (10) shows that the threshold of the laser
can be identified by the relative fluctuations of the
light intensity.

From the Green's function associated with the
Fokker-Planck equation (2), it is also possible
to derive the normalized intensity correlation func-
tion X(r, a), defined by

X(r, a) = ( a.I (I,a)nl(t + r, a))/([nI (t, a)] }, (ll)
for a laser described by Eq. (2) which is operating
in its steady state. &(7,a) can be expressed as a
sum of exponential terms in the form~ ~

88'
ep eg

= ——{W[2I(a -I)+4]j
X(r, a) = Q M„(a) e "~"",

r=i
(12)

8' 1&$'
+ g [4W? ]+=aI ~W

(2)

while the associated Langevin equation is given by

~I—= 2I (a -I) +4+N(t),
et

in which N(tg is a 5-correlated noise current, which
is more fully described below. Here a is a param-
eter, the so-called pump parameter, which is
characteristic of the excitation of the laser in the
steady state. It has the value zero at threshold.
I and 7 are the light intensity and time expressed
in dimensionless units, which can be defined via
the relations

I(t, a)=I(t, a)(I(t=~, a =0) )/(I(t=~, a=0) ) (4)

and the results of numerical calculations of Q„(a)
and M„(a) for various r values and various pump
parameters a have been published. 8' The intensity
correlation time T„(a) associated with the foregoing
correlation function &(r, a) can be defined by

T,(a) = JX(7', a) dr,-

and from Eq. (12)

T,(a) = g M„(a)/X (a).
a=i

From the published values for &0,(a) and M, (a),
T,(a) can be evaluated, and we find, at threshold,

T,(a = 0)= 0. 171. (14)

With the help of Eqs. (9) and (14), Eqs. (4) and (5)
become

t -=tT, (a =0)/T, (a =0), (5) I(t, a) = 1.128I(t, a)/(I(t= a&, a =0)), (15)

W(I, t =~, a)=Ce ~ 'a I, (6)

where C is a constant that ensures the normaliza-

in which T,(a) is the intensity correlation time.
The numerical values of?(t = ~, a = 0) and T,(a = 0)
are given below.

The stationary (t- ~), phase-independent solution
of Eq. (2) is easily found to be

t = 0. 171t/T, (a = 0). (16)

While the light intensity I(t, a) is not measured
directly, it is simply related to the output of aphoto-
electric detector which is illuminated by the laser
beam. For a time interval t to t+7, which is suf-
ficiently short that the instantaneous light intensity
I(t, a) does not change significantly, the probability
p(n, t, T, a) that n(t, T, a) photoelectric counts are
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registered during the interval t to t+ T, is relatedto
the probability density W(I, t, a) by the formula'~

p(n, t, T, a) = J [al(t, a)T]"/

+( }) m l(t, 2)) r W(i t a) dl (17)

Here & is a constant characteristic of the detector.
It follows immediately from this equation that the
moments of n(t, T, a) and I(t, a) are related by

(n(t, T, a)) = aT(I(t, a)) (18}

(n(t, T, a)[n(t, T, a) —1]) = (aT) (I (t, a)) . (19)

The normalized second factorial moment of the
counting distribution is therefore independent of the
intensity scaling, the counting time T, and the de-
tector efficiency &, and we can write

tions of a(= 0, 4, 8) and t. We have taken advantage
of these calculations and made measurements with
the laser set to operate at the same values of the

pump parameter a.
The results of these measurements give the

probabilities P(n, t, T, a} and the moments of n(t, T, a)
for various combinations of t and a. However,
Eq. (17) is not easily inverted to yield W(I, t, a)
from p(n, t, T, a). Although attempts have been
made to invert the equation, ' some features of
W(I, t, a) are extremely sensitive to small inaccu-
racies in the tail of P(n, t, T, a). We have therefore
chosen to derive only the first two moments of the
light intensity from the measurements, via Eqs.
(18) and (20), and to compare the measured forms
of P(n, t, T, a) with those derived from Eq. (17) with
the help of Risken and Vollmer's calculations.

(n(t, T, a)[n(t, T, a) —1]) (I (t, a))
(n(t, T, a))' (I(t, a))' (20)

III. EXPERIMENTAL ARRANGEMENT AND
PROCEDURE

In particular, it follows from Eq. (10) that the
threshold (a =0) of the laser can be readily identi-
fied from the steady- state ratio of the moments

(n (t = ~, T, a = 0)[n (t = ~, T, a = 0}—1])
(n (t = ~, T, a = 0))'

= p m=1. 571 (21)

which implies

a -aI
2)2"2—)) 2 2)2"2—))) ' (22)

(I (t, a })22) 4r (28)

for at «1. Risken and Vollmer have presented
computed forms of W(I, r, a) for certain combina-

We see, therefore, that the moments of the light
intensity I(t, a) are simply related to, and derivable
from, the moments of the photoelectric counts
registered by a photodetector. Since Risken and
Vollmer have presented curves showing the vari-
ation of ((I, t, a)), ([6I(t, a)] ), and W(T, 7, a) with
F for several values of a, we can test the theory by
carrying out photoelectric counting measurements.
The scaling parameters required in Eqs. (4) and

(5) are also readily derived. With the laser set to
operate at threshold, the steady-state mean light
intensity (I(t =~, a =0)) follows from the data with
the help of Eq. (18), while the intensity correlation
time T,(a = 0) can be determined from a separate
measurement, as described below.

The transient phase-independent solutions of
Eq. (2) for W(I, t, a), unlike the steady-state ones,
are rather complicated, but can be expressed in
terms of the eigensolution of a certain associated
Schrodinger equation. ' For short times t, the
solution can be approximated by

A block diagram of the experimental arrangement
is shown in Fig. 1. The light source for this ex-
periment was a single-mode He: Ne laser (Spectra
Physics model 119) operating at 8828 A. The out-

put intensity of this laser was stabilized with the
help of a feedback arrangement, consisting of a
monitor phototube, operational amplifier, and
piezoelectric mount for mirror M2, as described
previously. ' " We gained considerable experience
with this system during the course of a number of
measurements of the stationary laser character-
istics. These measurements demonstrated that
the working point of the laser could be stabilized
and held anywhere from well below to well above
threshold.

In order to measure the statistical properties
of the laser output intensity, the beam was allowed
to fall on a fast-counting phototube (cooled in order
to reduce dark current}. The output pulses of this
tube were amplified, shaped by a discriminator,
and counted by a sealer. The discriminator was
disabled except for the duration of a gate pulse.
At the end of the gate pulse, the number of counts
n stored in the sealer was used to select the cor-
responding channel number n in a 100-channel an-
alyzer, and the counting logic caused the analyzer
to add one unit to that channel. The sealer was
then reset and the counting system was prepared
for another counting interval. After a large number
N of counting intervals, the number accumulated
in channel n of the analyzer provided a measure
of NP(n) .

In order to examine the transient characteristics
of the laser, a third, external mirror M, was in-
troduced on the laser axis, as shown in Fig. 1,
and was aligned so as to form a stable Fabry-Perot
cavity with mirror Mz. M, was mounted on a mag-
netostrictive device which allowed its spacing rel-
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FIG. l. Block diagram of the apparatus.

Add "t"

ative to M2 to be varied. Movement of the external
mirror led to a modulation of the effective optical
cavity Q of the laser, and therefore of its light
output. Such an arrangement has previously been
used to modulate the output of a laser. ~3 A Pockels
cell and two polarizers were introduced into the
external cavity, and these, together with the as-
sociated high-voltage switch, acted as a high-speed
optical shutter, which allowed the external mirror
to be switched in or out, and thereby permitted
substantial and rapid changes of the laser cavity
Q. The spacing between M2 and M3 was adjusted
so as to minimize the light intensity with the shutter
open, when the laser was almost (but not com-
pletely) extinguished, while the laser was stabilized
in the threshold region with the shutter closed.
Because the extinction was not quite complete, a
small correction to the data was required, as de-
scribed in Sec. IV.

The sequence of events for one measurement
begins with the shutter closed, while the feedback
amplifier stabilizes the laser at the desired oper-
ating level. The optical shutter is then opened
and the laser is effectively extinguished. When
the intensity monitor determines that the laser
is extinguished, the shutter is suddenly closed,
and the laser output rises from far below thresh-
old to the steady-state operating level. The effec-
tive switching time (about 50 nsec) is negligible
compared with the characteristic rise time (-100
psec) of the laser. The laser is allowed to dwell
in its steady state for about 20 msec following the
turn-on, when it is again extinguished, and the
switching cycle is repeated about 30 times per
second. The feedback loop controlling the laser
operates only during the 20-msec dwell time in

the steady state.
A delay pulse of adjustable duration is initiated

by the laser switch-on pulse. The end of this
pulse triggers a standard-width gate pulse of
2-psec duration (short compared with the charac-
teristic 100-JLLsec rise time of the laser), which
allow s the phototube pulses to be counted and stored
as described above. By switching the laser many
times in this way, it is possible to explore the
variation of the photon counting probability with
time following the switch-on, and with the steady-
state operating level.

The same experimental arrangement could be
and was used to measure the steady-state photo-
electric counting statistics of the laser. In that
case the optical shutter was kept closed, the laser
was stabilized continuously via the feedback loop,
and the frequency and width of the gate pulse were
varied as desired.

The first step in the experiment was to identify
the threshold region of the laser, in order to de-
termine (n(t=~, T, a=0)) and T, (a=0), and
thereby make contact with the calculations of
Risken and Vollmer. This was done by adjusting
the cavity length, with the laser in the steady
state, until the first and second moments of the
photoelectric counts satisfied condition (21). In
practice, it was possible to set the laser at thresh-
old with an uncertainty in the threshold intensity
of about 1%.

With the laser set at threshold, the intensity
correlation time T, (a = 0), which is needed for the
time-scaling formula (16), was determined by the
method described previously. ' This involved
measuring the steady-state normalized second-
order factorial moment of n(t= ~, T, a=0) for var-
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ious values of T greater than T, (a = 0), and making
an extrapolation to T=O. For the purpose of this
auxiliary experiment, the light intensity was re-
duced by insertion of a neutral density filter, which
made dead-time correction (as described in Sec.
IV) unnecessary. In practice, T,(a = 0) could be
determined with a statistical uncertainty of about
2%%up, which represents the limit of the accuracy of

In order to adjust the laser for other values of
the pump parameter a, it was necessary only to
change the cavity length while the laser was oper-
ating in the steady state, until the mean counting
rate changed in the ratio required by Eqs. (7) and

(13).

IV. CORRECTIONS TO EXPERIMENTAL DATA

Three corrections to the data were necessary
in practice, before information about the light in-
tensity could be derived from the measured photo-
electric counts. These corrections allowed for
the effects of dead time in the counting circuits
(- 10 nsec), for background light from the laser
gas discharge, and for the finite counting time in-
terval. The measured moments were corrected
for these various effects in the order mentioned.

The need for a finite counting time correction
arises because the measurements were made with
a counting interval T= 2 &sec which is not com-
pletely negligible compared with the correlation
time T, of the laser, whereas Eqs. (17)-(19)are
strictly valid only for T«T, . The more general
formula for P(n, t, T, a) is "' '

p(n, t, T, a)=
OO

—, [ Ua(t, T, a)]"

x e ""'"'~(U, t, T, a)dU, (24)

in which U(t, T, a) is the time-integrated light in-
tensity defined by

U(t, T, a)-=f ' f(t', a)dt', (25)

=o" (U'(t, T, a)) . (26)

Equations (18) and (19) can be seen to be special
cases of this equation when T is sufficiently short.

The effect of finite counting time has previously
been discussed for stationary fields, whose inten-
sity correlation function is known. ' In particular,
if the steady-state normalized intensity correlation
function is of the multiple exponential form of
Eq. (12), the second moment of the counting distri-

and e (U, t, T, a) is its probability density. From
Eq. (24) we may readily show that the rth moments
of n(t, T, a) and U(t, T, a) are related by

(n(t, T, a) [n(t, T, a) —1]" [n(t, T, a) —r+1])

bution varies with the counting time T according
to the relation'

g(T)/g(0) = 2 p (M„/ X~~ T2) [X~ T+ e "0"r —1]
r=0

where

= 1 —Z (3 M„XO„T) [1——,
'

X0, T + "' ]
(27)

g(T) = [(n (t, T, a)) —(n (t, T, a))

—(n(t, T, a))]/(n(t, T, a))' . (29)

(f(T, + —,'T))' 3(i(t, + —,'T))

In this experiment the counting time T in nor-
malized units was less than 10, and the O[T ]
term in Eq. (29) could be neglected. In practice,
the correction term 4T/3(I(to+ —,

' T)) was calculated
from the experimentally derived value of i(to+ ~ T)).
It was added to the normalized second factorial
moment of n (which had previously been corrected
for dead time and background light), to yield
(i'(t, + ,'T))/(i(t, + —,

' T)—)'.
It is not obvious how to correct p(n, t, T, a) for

the finite counting time T, and we have not done so.
Since the finite counting time correction is effec-
tively zero for the first moment, and was found to
be always less than the statistical uncertainty for
the second moment, the correction for p(n, t, T, a)
should be small also, except possibly in the tail of
the distribution, where p(n, t, T, a) is very small.

The background light from the discharge in the
plasma tube is statistically independent of the laser
light of interest. Also, the bandwidth of the back-
ground intensity fluctuations is very large compared
with the reciprocal of the counting time, so that the
background light alone leads to stationary, Pois-
sonian counting statistics. For these reasons, if
we denote by Uz, (t, T, a) and Us(T) the integrated
light intensities due to the laser and the background
light, respectively, we can write"

U(t, T, a) = Ui. (t, T, a)+ Us(T), (30)

in which the fluctuations of U~ are negligible corn-
pared with those of UL. It therefore follows that

In order to examine the effects of finite counting
time on a measurement of the nonstationary system,
as for a Q-switched laser, it is convenient to go
back to the basic Langevin equation (3). We may
then show (see Appendix) that the second moments
of n(t, T, a), U(t, T, a), and I(t, a J are related via
the formula

(n(Fo, T, a)[n(F ,0T, a) —1]) (U (to, T, a))
(„(t, T a)P (U(FO, T, a))
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x 5'~(vt, , t, T, a) dvt, . (37)

0.6

0.5

~Q4
0

~Q3

Q2

(36)

(n(n —1)}= (n'(n' —1)}(1+26)

+ (n'(n' —1)(n —2))2& .

It follows from this that the numbers of counts n

and n before and after dead-time correction, re-
spectively, are related by

(n) = (n')+ (n'(n'-1)}6,

O. l

S (V, t, T, a) = &,[V(t, T, a) - V, (T)],
(n, (T)) = oV, (T),

(n (t, T, a)) = &(U (t, T, a)),

(31)

(32)

(33)

with an obvious extension of the notation. From
these relations and Eq. (24), we have

p(n, t, T, a)= —,[av +(n (T))]"
1

0

x e ' & '"& ' " &~ (U~, t, T, a) dU~, (34)
and

(n(t, T, a)) =(nz, (t, T, a))+(ns(T)),

00 .Ol .02 .05 .04 .05 .06 .07 .08 .09 .lo
t

FIG. 2. Variation of the mean light intensity with time,
in normalized units, for three different values of the
pump parameter a. Error bars represent statistical un-
certainties of the experimentally determined (T(t, a})
values. The full curves were computed by Risken and
Vollmer (Ref. 9}.

As was mentioned earlier, the extinction produced
by the external mirror and the Pockels cell was not
quite complete, so that, at the beginning of the
turn-on, (I(t=0, a)) was not strictly zero (although
it was always less than 0. 1 in normalized units).
We confirmed from the counting statistics that the
probability density of 1(t= 0, a) was exponential, as
predicted by the theory for short times following
the turn-on. In other words, the light intensity be-
haved as if it had started to rise from zero at some
short time preceding the turn-on. Since (I(t, a))
should equal 4t for t«1, according to Eq. (23), we
determined the mean normalized light intensity be-
fore the laser was turned on, and divided this by
4 to arrive at a small correction time I to I (-0.02)
to be added to the actual delay time. This ensured
that (I(t, a)) = 0 at t = 0.

V. RESULTS

The time development of (I(t, a)) for a Q-switched
laser derived from the experiment (for pump pa-
rameters a= 0, 4, 6), together with the curves cal-
culated by Risken and Vollmer, is shown in Figs.
2 and 3. Figure 2 describes the first 25 p.sec of
growth of the light intensity on an expanded time
scale, while Fig. 3 describes the entire develop-

([bn(t, T, a)] ) = ([dn~(t, T, a}])+(na(T}}, (36)

from which corrections for the effect of background
light can be made. (na(T)), the mean number of
photoelectric counts due to the background, is de-
termined from a separate measurement, with the
laser cavity detuned as far as possible. In practice,
the parameter o' is adjusted to make the mean of
the measured distribution p(n, t, T, a) coincide with
that given by Eq. (34).

The problem of correction for the dead time of
the counting circuits has been treated by several
authors. '~~ If 6 is the ratio of dead-time to the
counting time T, then, up to terms of the first order
in 6, Eq. (34} has to be modified to read

p(n, t, T, a) = —
~

[nv~+ (na(T))]"e "z, I"&'1

0

x [1+ns(avz +(na(T)}+ 1 —n)].
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FIG. 3. Variation of the mean light intensity with time,
in normalized units, for three different values of the
pump parameter c. Statistical uncertainties of the ex-
perimentally determined g(t, a}) values are too small
to show. The full curves were computed by Risken and
Vollmer (Ref. 9}.
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different values of the pump parameter
a. Error bars represent statistical
uncertainties of the experimentally
determined values. The full curves
were computed by Risken and Vollmer
(Ref. 9).

ment towards the steady state. It will be seen that
there is very good agreement between theory and

experiment, and, in particular, that the convergence
of all the curves for t«1, as predicted by E'I. (23),
is confirmed.

The laser was switched between 10000 and 25 000
times for each experimental point. In addition to
the indicated statistical uncertainties of the derived
(I(t, a)) values, there is a statistical uncertainty of

about 2% in the t values, due to the uncertainty of
the measured scaling parameter T,(a=0) [cf. Eq.
(5)]. In fact, T, (a=0) was redetermined for each
run, corresponding to different pump parameter
settings a, since we noticed a certain amount of
slow drift of the laser parameters over a period of
days, when the settings were changed. Thus, the
time scaling parameter for the a= 8 run may have
been in error by a few percent.
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pJG. 5. Evolution of the photoelectric counting probability with time in normalized units, at threshold (with pump
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tainties, which are inevitably rather greater for the
second moments than for the first.

In order to test the validity of the curves for
Wg, t, a) computed by Risken and Vollmer, 9 we did
not attempt an inversion of Eq. (17) [or Eq. (3'I)
after various corrections are incorporated]. In-
stead we compared the measured distributions
P(n, t, T, a) with those derived from Eq. (37), when

the Risken and Vollmer curves for W(I, t, a) are
used in place of Pz(Ui, t, T, a). Then oUi(t, T, a)
has, of course, to be replaced by arii(t, a)
=I&nl, (t= ~, a= 0))/l. 128 under the integral in Eq.
(37). The test for Wg, t, a) is therefore somewhat
indirect. Nevertheless, we felt that a comparison
of experiment with theory, for a large number of
combinations of a and ™t,would tend to reveal dis-
crepancies if they exist.

The results are indicated in Figs. 5-7. The
experimentally determined probabilities are shown
as dots, while the theoretically derived values are
displayed as continuous curves for clarity, although,
obviously, they are meaningful only for integral
n. The transition of the optical field from the ther-
mal state at t = 0, for all a values, towards the
almost coherent state for large t and large a values,
is clearly indicated. Once again there is good
agreement between the experimental and the the-
oretically derived values.

It should be emphasized that no scaling param-
eters were arbitrarily adjusted to produce agree-
ment in any of the figures, but that the scaling pa-
rameters were themselves determined by experi-
ment. The predictions of dynamical behavior in the
threshold region by the nonlinear oscillator theory
of the laser are therefore very well confirmed.

Note added in P~oof We note .from a recent pre-
print by F. T. Arecchi and V. Degiorgio [Phys.
Rev. (to be published)] that these authors have also
investigated the evolution of the photoelectric count-
ing probability, but for a laser operating much fur-
ther above threshold.

(N (t)& = 0, (Al)

&N(t|)N(t2)& = s(t| —t2)s&i(t|)&, (A2)

APPENDIX: FINITE COUNTING TIME CORRECTION
FOR SECOND AlOMENT

It is convenient to go back to the basic Langevin
equation (3) for the laser, in which we denote the
right-hand side by F(I, 7&+ N(t), where N(t ) is a
5-correlated noise current such that

times t, &t.
If I(to) is the intensity at time to, we may approxi-

mate the solution of Eq. (3) for some slightly later
time t by treating

Fg, t) = 2I(a--I)+4

as nearly constant, and writing

4)

1(t) =I(to)+ (t —to)F(i(to))+ f N„(t') dt'
jo

(As)

+ J' dt' J,
'

dt "&N(t')N(t ")&, (A7)

which, with the help of Eqs. (Al}-(A3}, simplifies
to

&i (t)&=(I (t,)&+2(t- t,)(i(t,)Fg(t, ))&

+ (t - t,)'&F'g(t, ))&

+s(t-t, )(i(t,)&+4(t-t,) (Fg(t, )}& . (As)

Let us now evaluate the moments of the time-in-
tegrated light intensity U(t, T, a),which are propor-
tional to the factorial moments of the photocount
distribution according to Eq. (26). From

U=- J,
' i(t) dt= ri(t, )+ (-,'r')F(r(t, ))

hr ht

+ j"'dt J.' dt'N(t')
p tp

and Eqs. (Al) and (As), we obtai. n

(U&= T[&i(t,)& (-,'T)&Fg(t, ))&]

(As)

= T&i(to+ ,' T)&. — (A10}

This confirms the intuitive notion that the mean
number of observed counts is proportional to the
mean light intensity at the middle of the counting
interval. The situation for the second moment is,
however, not quite so simple. From Eq. (AQ) we
obtain

On taking the average of this equation and using Eq.
(Al) we obtain

(i(t )) = &I(t,)&+ (t —t,)(Fg(t, ))) . (As)

Similarly, we can also find the second moment of
the intensity at time t from Eq. (A5),

&I'(t }&= &I'(t,}& 2(t —t,)&i(t.)Fg(t, ))&

+ (t —t ) (F g(to))&

+ 2( [i(t,) + (t —t,}F(r(t,))] j N(t '
) dt ')

fp

&N(t)Fg(t, )}&=0, (A3) U'= r'i'(t, )+ (-,'T'}F'(i(t,))+ r'I(t, )F(I(t,))
The last equation is a reflection of the fact that the
noise N(t) is statistically independent of the light
intensity at earlier times to & t, but not at later

~Iy Ay

+ f"' dt, J"'dt, J"dt' f."dt "N(t')N(t )1
0

2
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At Rv

+2[TI(ts)+(sT )I (I(ts))] J„dfJ dt N(t ),
'0

(A11)

and when we average this, the last term vanishes
as before. The fourfold integral can be rewritten
in terms of (I(t')) and a 5 function with the help of
Eq. (A2), and can then be evaluated. We obtain

(fI') = T '(I'(I,)) + (-,' T ')(I"'(I(fs)))

+ T (I(f,)I (r(i,))&

+ (+ T )(I(& ))+ (- T )(I"(I(f ))) (A12)

which reduces to Eq. (29) when we make use of
Eq. (A8) with t = to+ s T.
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