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We introduce a straightforward quantum-electrodynamic approach to the problem of superradiant
spontaneous emission from a system of two-level atoms, and also discuss two classical superra-
diant systems. The same physical concepts underlie our treatment of both the quantum and
classical cases. Explicit expressions are found which describe the time evolution and direc-
tional character of the radiated power. Our approach applies to an arbitrary number of atoms
which are confined to a region with linear dimensions which may be large compared with the
mean wavelength of the emitted radiation. The radiative decay half-life of a large many-atom
system is found to be much shorter than the natural lifetime of a single atom, but not as short
as the half-life of a small atomic system with the same number of atoms. The far-field radia-
tion pattern appropriate to the case of a circular cylinder of emitters which have been excited
by a plane-wave pulse is considered in detail. Polar plots are presented of the radiation
patterns produced when the atoms are excited by a plane-wave pulse. Exciting pulses traveling
in directions both parallel and at an angle of 10° to the axis of the cylinder are considered. A
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discussion and generalization of Dicke’s “coherence-brightening” criterion is given.

I. INTRODUCTION

In a classic paper® in 1954, R. H. Dicke calcu-
lated the rate at which radiation is emitted spon-
taneously by an assembly of two-level atoms. By
considering the entire collection of atoms as a
single quantum-mechanical system, he found that
under certain conditions the individual atoms co-
operate to emit radiation at a rate which is much
greater than their incoherent emission rate. A
system which exhibits cooperative effects of this
nature is said to be “superradiant.”

A new interestin superradiant phenomenahas arisen
in the past few years. This is due to the recently
acquired experimental ability to manipulate co-
herently large collections of optically resonant
atoms. Testimony to this ability is provided by
experimental observations of such effects as photon
echoes, ? self-induced transparency, ® optical nuta-
tion, * and optical adiabatic inversion. 3

Many of these effects are familiar because their
analogs have been studied at microwave and longer
wavelengths. However, at the shorter wavelengths
typical of the infrared and optical regions, spon-
taneous emission begins to be a serious competitor
of such stimulated processes. This is all the more
true for cooperative, or superradiant, spontaneous
emission because it is most effective when the
atomic system is characterized by a large induced
electric-dipole moment. It is the presence of just
such a dipole moment which is typical of all the
effects mentioned above. It is also important to
realize that in the optical region of the spectrum it
is no longer practical to assume that all of the ac-
tive atoms are confined to a region which has linear
dimensions smaller than a wavelength. Because
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of this, propagation effects, notably self-induced
transparency® and optical amplification, ® become
newly important. Nevertheless, there is no dis-
cussion’ of any of these coherent effects in which
cooperative spontaneous emission is taken account
of consistently. Thus it seems desirable in the
context of geometrically large collections of emit-
ters and the optical region of the spectrum to re-
examine the notion of superradiance.

A. Previous Work

In his treatment, ! Dicke discussed separately the
time dependence and the directional character of
the emitted radiation. The three principal results
were a treatment of the correlations of successively
emitted photons; an approximate evaluation of the
radiated intensity, or power, as a function of time
for a geometrically small system; and the deriva-
tion of an expression for the initial radiation rate
of an excited geometrically large system.

Subsequently, similar problems have been studied
by a number of authors. These studies can be rec-
ognized to fall into one of three groups. The largest
of these groups® is comprised of investigations
in which the emitting atoms either are confined to
a region smaller than the wavelength of emitted
light or are able to couple with only one radiation
mode. This situation permits important mathe-
matical simplifications, and “exact” solutions for
the time evolution of the system may be obtained.
An important contribution® to this class of problems
has recently been made by Bonifacio and Preparata.

Another group of studies has been made of spon-
taneous emission from small numbers of atoms.
Early studies of this type were made by Jaynes and
Cummings'® and Stephen, ! who considered one
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and two atoms, respectively. Recently Dillard and
Robl*? have described results for as many as eight
atoms.

The third group of investigations allows many
atoms, spread over large regions, to interact with
all the modes of the radiation field. Not surpris-
ingly, the treatments which fall within this group
have been limited in number. Both Dicke’s deriva-
tion! of the initial radiation rate of a large excited
system and one by Fain'® leave open the impor-
tant question of the duration of the emission pro-
cess. In an impressive piece of work, Ernst and
Stehle!* have been able to give an implicit expres-
sion for the time evolution of the energy of a large
system of spontaneously emitting atoms. However,
because their method is a direct extension of the
Weisskopf-Wigner method for treating the decay of
a single excited atom, their conclusions are ap-
plicable only to the situation in which all of the
atoms are simultaneously in their upper states at
t=0. Three more recent treatments of spontaneous
emission from large systems have been published
by Agarwal, Lehmberg, and Dialetis. !°

B. Present Paper

The investigations reported in this paper also
fall within the third group. We are concerned with
an arbitrary number of atoms. The atoms couple
to all radiation modes. We assume them to be con-
tained in a volume which may be large or small
compared with the cube of the average emitted wave-
length. The results given here serve to extend the
conclusions of earlier work!® already reported by
us. Here we describe the directional as well as
temporal dependence of the emitted radiation,

In addition, we describe superradiance as it oc-
curs in two classical radiating systems. As in the
quantum two-level atom case, the principle of ra-
diation reaction provides the basic dynamical law.
We find explicit formulas for the time dependence
of the radiation rate and for the emitting-system
energy. The rate constants which characterize the
radiation process, as well as the angular distribu-
tion of the radiation, depend in a simple way on
the geometry of the emitting system and on the
initial phase coherence of the emitters.

In both the quantum and the classical situations
the rate of energy loss from a geometrically large
system of N radiators can be proportional to N2
and thus many orders of magnitude larger than the
purely incoherent rate. However, the rate is con-
siderably smaller than that calculated by Dicke for
a geometrically small N-atom system. To say this
another way: The radiative decay half-life of a
large many-atom system is much shorter than the
natural lifetime of a single atom, but longer than
the half -life of a small atomic system with the
same number of atoms.
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The relation between the radiation rate and energy
for each type of emitter determines whether the
radiated intensity can grow to a peak during the
emission process, or merely decays monotonically
from its initial value. In all the cases we have con-
sidered we have found that if a peak is present
the higher it is the sooner it occurs in time, and
following the peak the radiation rate falls off es-
sentially exponentially in time.

The angular dependence of the emitted radiation
itself may or may not be time dependent, but it is
always strongly dependent on the geometry of the
emitting system. A plane-wave-excited system
always shows an emission maximum in the same
direction as the exciting wave. In the latter case,
the peak forward radiation rate is very nearly LN?
time the single-emitter rate, showing the possi-
bility of maximal superradiance even from a geo-
metrically large system.

The remainder of the paper is organized in the
following way. Section II is devoted to two classical
radiating systems: a collection of N linear charged
harmonic oscillators, and a collection of N mag-
netic dipoles precessing in a strong homogeneous
magnetic field. Section III is concerned with a
quantum-electrodynamic derivation of the power
radiated from an extended system of N two-level
atoms. We introduce in Sec. IV an approximate
interaction picture N-atom state vector which is
used to find expectation values of quantum-me-
chanical operators. In this approximation the tem-
poral behavior of the atomic system is found to
be governed by a simple nonlinear differential equa-
tion for the expectation value of the atomic energy.
Similarities and differences between the quantum
and classical cases are pointed out.

In Secs. V and VI we concentrate on the quantum
case, and study the temporal development and
angular distribution of the emitted radiation in de-
tail. Explicit analytic solutions are given for the
time dependence of the atomic energy and the ra-
diated intensity. The spectral width of the emitted
radiation is estimated and the superradiant lifetime
of the emitting system is calculated. We consider
in detail the radiation patterns appropriate to the
case of a right circular cylinder of emitters which
are plane-wave excited. A contour plot is given
of the shape factor which governs both the rate of
radiation and its angular distribution. The radia-
tion patterns themselves are displayed for several
sizes of emitting cylinders and several densities of
active atoms, both when the exciting plane wave
travels along the cylinder axis and at an angle of
10° to the axis. Some remarks are made about the
“coherence-brightening” criterion of Dicke.!? Fi-
nally, we conclude with Sec. VII in which our re-
sults are briefly summarized. There are two Ap-
pendices devoted to restrictions on our work im-
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plied by the “area theorem” of McCall and Hahn, 3
and the colherent “ringing” discussed by Burnham
and Chiao. 8

II. TWO CLASSICAL MODELS'

Since mainy of the salient features of superradi-
ance are exhibited by a collection of classical ra-
diators, it 1nay be well to begin with a review of two
classical problems. The two problems which we
shall consider are (a) N identical charged harmonic
oscillators a:nd (b) N identical magnets precessing
in a strong homogeneous magnetic field.

In each of these examples we have a col .ection of
N point dipoles [electric dipoles in (a) and magnetic
dipoles in (b)] which are fixed at positions i,

T3, ...,Ty. The distances between the dipoles will
be assumed to be sufficiently large that direzt di-
pole-dipole :forces can be ignored. [See Note (a)
added in prcof. | These N dipoles will initially be
excited in some way, and then undergo free os cilla-
tion. Each dipole will thus radiate and gradually
lose energy to the radiation field. In each case we
will be able to find an equation of motion for the
energy of the dipoles by equating the total radiated
power to the dipole energy loss. All of the state-
ments of this paragraph apply equally well to our
treatment of two-level atoms in Secs. III and IV,

A. Harmuoonic Oscillators

The polarization densi'ty of the system may be
written as

ﬁ(?, t) = g’v) ﬁ,(t)és(f- F; ) ’

(2.1)

where D, (¢) is the dipole mo.ment associated with the
Ith oscillator. We shall take the form of D,(f) to be
given by

D, (t) =D () coss(wt - ¢,) , 2.2)
where D(f) is a slowly varying vector amplitude and
¢, is a constan t phase. Notice that although we have
assumed the o scillators have been excited in such

a way that the.ir amplitudes are identical, their
phases may f;till be cifferent.

Given Egs . (2.1) and (2.2) we can easily calculate
the real electric and magnetic fields in the radia-
tion zone  From the fields, the Poynting flux S
may be conaputed in the usua,' way to find I(, £)d;
the power i-adiated by the dipol es into an element
of solidﬁan;;le dQY; about the dire tion of the unit
vector 2. In particular,

Ik, )d ;=5 - hd(area) . 2.3)

The bar inn Eq. (2.3) indicates an avera, %€ OvVer a
small time interval to eliminate the rapic, | oscilla-
tions at twice the natural frequency. The , "esult
for I(k, £)dQ; is
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~ a 1 & = ..
I(E, £)dQ% = I,(R)N 2r2(t) ¥ ;Z{ etk n"%m; .
(2.4)

Here k= (w/c)k, I,(k) is the power radiated per unit
solid angle by a single dipole oscillator of constant
amplitude D(0), and 7(f) is the ratio of the dipole
amplitude D(f) = ID(#)! to its initial value D(0):

7(¢) = D(t)/D(0) . (2.5)

Since c is the velocity of light in vacuum we have
assumed (as we will throughout the rest of this
paper) that the index of refraction of the underly-
ing medium in which the dipoles are imbedded is
unity.

The energy of the N charged oscillators (averaged
over an oscillator period) may be written as

W(f) = NM@?[D(0)/QFr2(t) , (2.6)

where M and @ are the mass and charge of each
oscillator. In Eq. (2.6) we have neglected contri-
butions to the energy which are smaller than the
terms retained by the ratio (D/wD)?, invoking the
slowly varying assumption about the amplitude D(¢).
By integrating Eq. (2.4) over all directions %
and eliminating »(f) by means of Eq. (2.6), we find
the total power radiated per unittime I(¢) = [ I(%, £)d
is related to the total oscillator energy by the equa-
tion

I®)=Nuw@) /7, ,

where

w51 (olo) /40

2.7

1 f} JRICECSE R 2 405
N 5
(2.8)

and
. 1 Q Y -
5= MR D_(O)) / I,(k)d; ;

Ty is the radiative lifetime of a single isolated
oscillator.

Setting the total power radiated equal to the en-
ergy loss rate — W then yields a simple differential
equation for W(f). Its solution is

(2.9)

w(t)=w(0)e*'", (2.10)

where

T=Ty/Nu . (2.11)

Notice the two features of the above analysis
which are basic to the concept of superradiance:
(i) The radiated power is proportional to the square
of the number of participating dipoles [cf. Eq. (2.7)
at =0, and recall that W(0) is proportional to N],
and (ii) the effective lifetime of the system of N
dipoles is shortened by a factor proportional to 1/N
compared with the lifetime of a single isolated
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]
a,‘

oscillator [cf. Eq. (2.11)].

FIG. 1. The configuration
of a classicgl magnetic dipole
8 of moment M in a strong homo-

geneous magnetic field ﬁo.

B. Precessing Magnets

The configuration of a typical magnet of moment
M in the assumed strong homogeneous magnetic
field ﬁo is shown in Fig. 1. We assume that all N
magnets are precessing with the same polar angle
6(#) (although perhaps with different azimuthal
angles ¢,). This is strictly analogous to taking the
electric dipole moments in Sec. II A to have a com-
mon amplitude D(#) but arbitrary phases ¢,.

The power radiated from the system of magnets
may be calculated by the same method used in Sec.
IIA to calculate the power radiated from the sys-
tem of harmonic oscillators. The only difference
is that the electric dipoles are replaced by mag-
netic dipoles with corresponding changes in the

fields. The result for the power radiated into the
solid angle d?; is
N S
I(E, )dS%=1,(E)N? sing EVI—E et T2 40,
1]

=

] (2.12)

Here the ¢,’s are the constant azimuthal plane
angles of the precessing magnetic dipoles; I,(?) is
the power radiated per unit solid angle by a single
precessing magnetic dipole of moment M and polar
angle 6= 1m; and k= (w/c)%, where w is the Larmor
precession frequency.

The energy (in units of 2MB,) of the N identical
precessing magnets is

W({t)=— $N cosf . (2.13)

Upon integrating Eq. (2.12) over all directions
k, and eliminating the polar angle 6(¢) by means of
Eq. (2.13), we find

1(t)= @MByu/T) GN+ W) (N - W),  (2.14)

where
75'= (2/MBy) | I,() a9 , (2.15)
w= %1;‘8;, Io(ﬁ) % é el(@,-i';l) ZdQ; , (2. 16)

and I(¢) is defined as in Sec. I A.
Then, after equating the radiated power to the
energy loss, a nonlinear differential equation is

N. E. REHLER AND J. H. EBERLY 3

found of the form

-G (N WGN-W) .

ar 2.17)

This equation of motion may be easily integrated to
yield the totial dipole energy as an explicit function
of time

W(t) =~ iN tanh[(t-t,)/27] (2.18)
and the radiated power
I(t)= N2uMB,/27,) sech®[(t - t,) /7] . (2.19)

In Eqs. '2.18)and (2.19), 7 is defined by the relation
T=7o/Nu , (2. 20)

and £, ‘s the time of peak radiation rate. It is ob-
viously related to the initial condition:.

The.re are several i ecmarks which must be made
about. these results. In the first place, the two
marks of superradiance are evident in Eqs. (2.19)
and (2.20): The radiated power is proportional to
N2 and the effective lifetime T ig proportional to
1/N. Second, the results given here are far from
new. They have been obtained ‘before in a classical
context, apparently first by Ginzburg, *° and they
have been discussed within the framework of nu-
clear magnetic resonance mvach more recently.?
Finally, we see in Eq. (2. 1)) that the magnets pro-
vide an example of a classical emitting system with
a nonmonotonic behavior f or the radiated power.
We will find that the radirited power from a system
of two-level atoms is alf;o nonmonotonic; in gen-
eral it exhibits a delaye d peak.

The precession law f or magnets is the same as
for a massive pendulwm in a gravitational field.
Except for modifications due to true quantum spon-
taneous emission, the equation of motion we have
found above is also the same as tine equation of
motion which we shall find in Sec, IV for two-level
atoms with electric: dipole moments3. In all three
of these cases it i5 possible to make¢® use of language
appropriate to a pendulum. For exa mple, the angle
6 defined in Fig. 1 has an analog in tihe analysis of
two-level atomg; in Sec. IV the total .ztomic energy
W will again be given by Eqy, (2.13) wi th 6 having
the significance that sin? '{ ¢ gives the p.tobability
that an atom is excited,

One notable distinc.tjon between the classical and
quantum-electrody’ jamic treatments in jpendulum
language is that 2 clagsical pendulum es:actly in-
verted (i.e., 6-.7) will never fall. A quantum pen-
dulum exactly jpyerted does fall, and in a finite

amount of tir ye  (That is, an excited atom always
decays.)

’ {I. QUANTUM ELECTRODYNAMICS AIND
TWO-LEVEL ATOMS

In quantum electrodynamics the relation between
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the power radiated and the electric and magnetic
fields is a Heisenberg operator relation of the form

I(k, £)d%= (c/87) : (E xB-BxE) -k :d(area) .
3.1)

Here d; is the solid angle about the direction of
the unit vector % subtended by the differential sur-
face element d(area). As usual, the colons indicate
normal ordering, 2

To perform the normal ordering in Eq. (3.1), it
is necessary to separate the field operators into
their positive and negative frequency parts. For
a general operator X, let X*’ denote the positive
frequency part and X' the negative frequency part,
that is,

X=X +X . 3.2)
Explicitly normally ordered, |(7é, t) takes the form

Iz, 1dQ;= (c/am)(E xB“ - B XE"") - bd(area).
(3.3)
In writing | (2, ) as in Eq. (3.3), we imply having
averaged over a small time interval just as in the
classical case (cf. Sec. II).

A. Free Fields and Dipole Sources
The fields can be divided further into their free-
field parts and their source-dependent parts. Let
us denote the free-field solutions to the homoge-

neous Maxwell equations by E, and B,. Then one
has

E@=EP+VxUxT® ,

E‘*’=§}*’+(1/C)VX-ZL(*) ) (3.4)

Here z is the Hertz dipole operator in the Heisen-
berg picture, which satisfies the same dynamical
equation as its usual classical counterpart. 22

After substituting Eqs. (3.4) into Eq. (3. 3) we
have

V&, H)a;= 1/4m)[E & xB L -BS xE )¢
B XX 7Y B x@xvx T4
+(@XTX T XBE = (v x f."’) xE &
L (VXY X T (VX T

-(Vx i"’) x(V xV x 7). kd(area) .
(3.5)

Next we compute the expectation value of Eq.
(3.5) in the Heisenberg state |4,)= [{0})®@1 ¥, a
product of the free-field vacuum state and anarbitrary
N-atom atomic state. Thus we consider the prob-
lem of an excited system of N atoms interacting
with the quantized electromagnetic field.
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To attack this problem we make a fundamental
physical assumption: The reaction of the field
back on the source is a small effect. More pre-
cisely, we suppose that the source operators change
with time only in the Hilbert space of the source.
The free-field operators change with time, but al-
ways have zero expectation value in the state |y).
This means that only the last two terms inside the
square brackets of Eq. (3.5) will give a nonzero
contribution to the expectation value. In particular,
we have

(R, 0)dRs= (1 /am) | [ XV x TO) XV x F)

- (X ?‘-’) X(V XV x T, k| vy)d(area) .
(3.6)

As in the classical examples, we assume that the
fields are generated by a collection of N elementary
dipole sources. If D,(f) is the atomic dipole op-
erator of the atom at position r;(I=1,2,...,N), then

D= IT=F 1/

o) (=
r,t)= ==
Z (’ ) 1=1 Ir—r;]

) (3.7

By taking the origin of the coordinate system to be
near the center of the atomic system, we can re-
write Eq. (3.7) in the approximate form

ey 1 L &) E’Fl
79 t)= =2 D <T+—
w

y & (3.8)
for all f such that »=|F| > |F,|. HereK =(w/c)k
=(w/c)7 and T=t-7r/c. We shall suppose that our
detector is in the far field of the sourc.,e so that

Eq. (3.8) applies.

While all of the above equations hax e been written
in the Heisenberg picture, some of. the equations
which follow are in the Schrédinger picture and
others are interpreted in the inter action pictu'pe,
Throughout this section, our cor yention for

| a gen-
eral operator X is demonstratec by the f0’;lowing
relations:
X(#)=U-'(¢,0xU(t, 0) (3. 92)
Xl(t) = Uo'l (t, O)XUo(t , 0) , (3 Qb)
X=X0=x"0 (3. 9¢)

As usual Uy(¢, 0) and / J(t, Q)

are the unitary evolution
operators which sat’ Y '

1sfy the differential equations

dU
i @Yo _

ih dt HOUO (310)
_dU

"a =¥ v, 3.11)

respective’ |

b ¥, H being the total Hamiltonian and H,

ej&nlg the  sum of all the noninteracting parts of H.
lst(")/ , it is customary to define the interaction
€VOluY" Jon operator u(t, ¢’) by the relation U(t,t')
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=Uy(t,t")ult,t’), so that Eqs. (3.9a) and (3. 9b) can
be combined in the form

X =u¢, 00X (#)ult,0) . (3.12)

Consider the Ith atomic dipole operator. Making
use of Eq. (3.12) we have the relation
DE(T+K-F/w)=u(T+K - F,/w, 0)

X DI(T+ K- F/0)u(T+K - F/w,0) . (3.13)

The group property of the interaction evolution op-
erator allows us to rewrite Eq. (3.13) in the form

b (7+k-F/0) =0 (T, 00 (T+K- T, /0, T)
x DINT 4K - F, /@) u(T +K - F,/w, T)u(T, 0) . (3.14)

Next we suppose that the linear dimensions of
our atomic system are sufficiently small that a light
signal can pass between any two atoms in a time
short compared with the time required for any
secular change in the atomic state. (This condition
is examined in detail in Appendix B.) Then
u(T+K-F,/w, T)=1 and Eq. (3.14) becomes

DENT+K- £y /@) Zu (T, DI (T + K - Fy /w)u(T, 0) .
(3.15)

Finally, in this approximation, the Hertz dipole op-
erator hecomes simply

-1 o i
io@, =00 [2 G (—T—~—l+kw ”)]u(r, 0.
1=1

(3.16)
To go further requires an explicit atomic model.
We will work wv.ith the same model introduced by
Dicke. !

B. 1"\wo-Level Atomic Dipoles

In th.'s model, the* N dipole sources are simply N
identical .atoms whic).\ have only one transition of.
interest (th.® same one for every atom) between two
nondegenerate states. [see Note (b) added in proof. ]
We denote the upver state of the /th at'om in the
Schrédinger picture by |+, + and take its energy tc
be +3#w, the lower state by | =); and take its en-
ergy to be -3hw.

Also we define the Schridinge. T Picture operators
R,,, R,_, and R,;; which operate o “lxy on the Ith-
atom state and have the properties

th‘i>l:0 3

Rul%)=]%), (3.17)

R,3|:h>,=i: %‘*>x .

It is straightforward to verify that these oper:. ‘tors
satisfy the commutation relations
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[Rig, Ryi]=+R,, . (3.18)

With our atomic model thus specified, we finish
the evaluation of the radiated power for the allowed
electric dipole transitions Am=0 and Am=+1.

First, suppose the transition is characterized by
Am=0. The electric dipole moment operator for
the /th atom P, and the unperturbed energy oper-
ator H, can then be written in the Schrddinger pic-
ture as

D;=1%,(R;,+R;.) , (3.19)
N

Hy=hw 2, Ryy+Hp . (3.20)
I=1

Here z, is a unit vector in the direction of the ma-

trix element (D,),, p=1MD,),.|, and H is the energy

operator for the noninteracting part of the field.

We have assumed that the phases of the atomic

states have been chosen such that (2, -D;),_is real.
Using Eq. (3. 20) it is easily verified that the

solution to Eq. (3.10) is given by

N
Us(t, 0) = exp [z (a-Z (wt+ )R q — Erﬁ_’ﬂ ,
1=1

(3.21)
where a and the ¢,(I=1,2,...,N) are N+1 arbitrary
real constants. All physical results will, of course,
be independent of @, but the ¢, are determined by
the initial conditions (which have not yet been spec-
ifi ad).

The positive and negative frequency parts of 5,
are identified most easily in the interaction picture.
Using Eqgs. (3.19), (3.21), and the commutation
velations of Eq. (3.18) we find

DI(t) =p2,(Ry.e 00 + R, e @00y (3.22)

thus the positive and negative frequency parts of
D! are given by

DI“)(t) = p2,Ryse™“t*oy) 3. 23)

At this point we drop the subscripts on the unit
vectors z,;, thus specializing to the case where the
N atomic dipoles have a common initial direction.
This would be the case, for example, if the ex-
citation mechanism were a linearly polarized plane-
wave pulse,

By substituting Eq. (3. 23) into Eq. (3.16), we
find

I, 0)=u(T,0)(p2Sg.e™ T /u(T, 0), (3.24)
where we define

N
S;*=E Ry et o)

24 (3. 25)

To find the radiated power as given by Eq. (3.6),
we must take space and time derivatives of

-

2“’(%,t). Since it is assumed that the detector is



3 SUPERRADIANCE

in the far field of the source, we ignore all deriva-
tives of 1/7. Thus, a first derivative of 2 *'(F, #)
w111 have two terms involving derivatives of « and
! and one term involving the derivative of &*!“7.

In the spirit of a slowly varying envelope approxi-
mation, we suppose that |#| << w|«| so that deriva-
tives of # and #™! can be ignored. This approxima-
tion is clearly consistent with other approximations
we have made in this section and will be reexamined
in Appendix B.

With these approximations, the relevant deriva-
tives of 7 *'(¥, #) are found from Eq. (3.24) to be

V XV X Z(*)_u-l(T 0)[k><(z Xk)( )SE e:mr]

xu(T,0), (3. 26)

szu)_u-l(T 0) [(sz)< )S. 7¢w1]u(T’ 0).
(3.27)

Substituting Eqs. (3. 26) and (3. 27) into Eq. (3.6)
and using the relation d(area) = »2dQ;, we find

(1, 1)) = PPt /21%)1 = (R - 2)?]
X (| w™(T, 0)Sg .Sz u(T,0)| ¥y . (3.28)

For Am=z1 transitions, Eq. (3.19) is replaced
by the equation

D, = (p/V2)GFiH)R,,+ G+iDR, ],

where % and § are orthogonal unit vectors in the
same plane as the vector (D;).,. Equations (3. 20)
and (3. 21) remain the same. The same procedure
which led to (3. 28) then leads to a similar expres-
sion with [1 - ( * z)?) replaced by & [2 - (& - k)2

- (k- 9)?. Thus if we define

(Pwt/21c%)(1 = (k- 2)°]
L) = .
(PPw*/anc) (2~ (k- 3) - (k- 5)]

for Am=+1 (3.29)

for Am=0

we may write, for the expectation of the intensity
radiated by the N atoms, the following expression:
(NG, £)) = I (R) e | u™(T, 0)Sz, S u(T, 0)| ) . (3.30)
The relation given in Eq. (3. 30) is the principal
result of this section. Its chief importance for our
work is that it was derived without recourse to
perturbation theory, and thus is free from restric-
tions to the short time scales associated with or-
dinary transition rates. Note also the fact that the
time dependence of the radiated power in (3. 30) is
shown to be due solely to the interaction evolution
operator «(7T, 0) and its adjoint. Since we have re-
quired that « be slowly varying, in the sense that
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lul << w|ul, we obtain an added degree of confidence
in our fundamental assumption introduced above
Eq. (3.6) which implies that {|(%, )) is slowly vary-
ing in the same sense. Finally, we must point out
again that although (3. 30) was derived within a
quantum-electrodynamic framework, the physical
ideas are very ordinary ones. We have rederived
(as we show below) and generalized Dicke’s central
result for a large superradiant system, using only
the common picture of a dipole and its radiation
field. Nowhere is it necessary to resort to “co-
operation operators, ” or to be concerned with their
commutation properties or their eigenvalues.
Before proceeding further, it is appropriate to
show the connection between (3. 30) and the corre-
sponding result of Dicke.! In order to do this, it
suffices to rewrite (3. 30) in the Schrédinger picture,
which yields the formula

((, ) = I, (B)(ys (T)| Rz Rz | 95 (D)) . (3.31)

Here |y,(T)) is the Schrédinger picture state given
by |19(T))=U(T, 0)yy) and Rg, are the Schrédinger
picture operators denoted by the same symbols by
Dicke, and are obtained from our expressions for
Sg. simply by setting ¢,=0 for all I [see Eq.
(3. 25)].

In the absence of retardation (3. 31) is identical
to Dicke’s perturbation-theory result. Note that
in this form the expression for the intensity is con-
siderably less useful to us, and may be misleading,
due to the appearance of the Schriédinger state
|$s(T)). It is a rapidly varying quantity and intro-
duces terms oscillating at the transition frequency
w, in general. Equation (3. 30) shows explicitly
that such terms actually do not appear in the ex-
pectation value.

IV. ATOMIC EQUATION OF MOTION

In this section we apply the results of Sec. III to
the situation of greatest interest: a collection of
two-level atoms with nonoverlapping wave functions
excited by an intense plane-wave pulse characterized
by frequency w and wave vector K.

We assume that this exciting pulse may be de-
scribed classically, and that it acts on each atom
in the same way except for the time delays due to
the finite separations of the atoms from each other.
It is well known''323 that such a pulse leaves each
atom in a coherent superposition of its upper and
lower states. For the I/th atom, after the passage
of the pulse, we can write

|9y =e*1/2sint6| +), +e™*1/2cos 6| =), =|6), .
@4.1)
Here the parameter 6 has both the significance

ascribed to it by Dicke (that is, sin®16 is the prob-
ability that the atom has been left in its upper
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state), and the familiar®:?® geometrical interpreta-
tion as well. The phase X; will be determined
shortly.

Our interest is in the evolution of the atomic
system after the plane-wave pulse has passed. In
order to study this evolution we make the natural
assumption that the only important phenomenon oc-
curring is the radiation of energy into the field.
Since the atoms are not directly coupled to each
other, and since this radiation process is in any
event a rather slow process [recall the discussion
of Eq. (3.30)], we take the form of each atom’s
state to be unchanged and simply allow the param-
eter 6 to become a slowly varying function of time
with an initial value 6(f)=6,. We define ¢ to be the
time at which the last two-level atom is excited.

In other words, we make the assumption that the
slowly varying state vector (7, 0) ) which gov-
erns the time evolution of {|(, ¢)) in (3. 30) is given
by

u(T, 0)| ¢>=ﬁ [6(T)), =] 6(T)) . (4.2)

1=1
The atomic states |6(T)) might reasonably be called
“radiation reaction” states since their dynamical
evolution will be determined by the requirements
of radiation reaction. The physical conditions
implicit in Eq. (4. 2) are discussed in Appendix A.
The different time origins for the action of the
pulse at the different atomic locations can now be
used to fix the unspecified phases ¢, and x, in Eqs.
(3.21) and (4.1). In order to demonstrate this, let
us evaluate the expectation of the /th dipole operator
D, defined in Eq. (3.19). We find

|

I(k, £) = I,(R) A N{1 - cos6(t) +5 Nsin®6(¢) [T'(%, &) -1/N ]},

where we have adopted for convenience the notation
I(e, t)={I(k, t +7/c)), and have defined

Tk, k)= | (!5, |2 (4.6)

in which the average is to be taken over the posi-
tions ¥, of the atoms. Again, in the absence of
retardation and at ¢=¢, this is a result of Dicke,
although derived quite differently.

In order to complete our program for this section
and obtain the dynamical law implied by radiation
reaction, we need expressions for the time-depen-
dent intensity integrated over all directions %, and
for the time-dependent energy of the atomic system.
In analogy to the classical cases [recall Eqs. (2.8)
and (2.16)], let us define the quantities

1) = | Ik, 1) d%% , @

Iy= [ I,(R)asy . 4.8)
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(0,0 =(6(t)| Us'D, Uy 62))

=Zzpsinb cos(wt+ ¢, - x;) . (4.3)

Note that if sinf #0 and the relative time phases of

the dipoles are to be determined only by the arrival
time of the plane-wave pulse at the dipole sites

¥,, then for all / we must have

¢(‘X1:¢0‘E1'Fx s (4.4)

where ¢, is an irrelevant common phase. Treat-
ments of superradiance given to date have ignored
possible time -dependent phase effects. We remain
within this restriction by regarding ¢, and x; as
constant. All subsequent results depend upon the
validity of (4.4). We thus focus our attention upon
cases where the time scales of interest are short
compared with, for example, the times associated
with collisions or other effects which disrupt the
dipole phase coherence. [See S. Bloom (Ref. 20)
for a classical treatment which includes a phe-
nomenological collision time T'. ]

The singular cases in which 6 is initially an even
multiple of 7 are trivial; they correspond to the
situation in which each of the two-level atoms is
left in its ground state and does not radiate. The
nontrival cases in which siné =0 correspond to
complete initial inversion. We will not consider
this possibility here; it has been treated in detail
by Ernst and Stehle. !*

The basic expression given in (3. 30) is now
readily evaluated. One finds for the radiated in-
tensity, as an implicit function of time, the expres-
sion

(4.5)

r
Also we define p by the relation

(1/N+ p)ly= J Io(’})r(’;, E1)dﬂi . 4.9)
In addition, the total atomic energy (in units of 7w)
is given by

W) = 9(t), 1%1 R,3’ 0(t)> =~ Teoso . .10

By integrating Eq. (4.5) over all directions % and
eliminating 8 by means of Eq. (4.10), one then finds
that I(f) has the compact form

1) = (urw /1) 3N+ W[ 3N = W) +1/u] ,
(4.11)

where 7,=7w/I, is the single-atom lifetime.

Finally, we may write the radiation-reaction dy-
namical law of evolution for the emitting system
as a nonlinear first-order differential equation:



|

‘%=%<%+“’><2E‘W*lz) . 4.12)
(N.B. There is no singularity at ©=0.)

In concluding this section we must point out the
close similarity between (4. 12) and the correspond-
ing classical expression (2.17). In many treat-
ments of the radiative damping problem (cf.
Bloom, 2° Ponte Gongalves et al.,® Bloembergen and
Pound®), the classical-quantum correspondence is
taken to be complete by neglecting the 1/u term on
the right-hand sideof (4.12). However, as Bonifacio
has emphasized® in treating the small-system case
(many atoms, but all within a wavelength of each
other), where n =1, this term is essential for
spontaneous emission to occur at all in the usual
sense. As we will show in Sec. V, for a given
number of atoms N, 1/u is an even more important
term in the large-system case because u is usually
a very small number.

V. EVOLUTION IN TIME

We have seen in Sec. IV that a very few assump-
tions can lead to an approximate dynamical law for
cooperative spontaneous emission by a system of
N two-level atoms. It should be clear that, just
as the Weisskopf-Wigner single-atom-approxima-
tion method can be regarded as a scheme for ensur-
ing in a self-consistent way that the initial-state
probability decreases as the probability associated
with all other states increases, our rate equation
(4.12) can be thought of as ensuring the same self-
consistent balance for the N-atom energy. We ex-
pect from our approximate dynamics the same kind
of advantages as accrue to the Weisskopf-Wigner
method in the one-atom problem. In particular, the
solutions will be valid over times much longer than
those for which first-order perturbation theory is
appropriate.

It is also worth pointing out that the nontrivial
difference between the one-atom and N-atom situa-
tions is embodied here in the single constant .

It is the presence of u that makes the basic equa-
tion nonlinear. It is easy to establish that u=0
when N=1; and that Eq. (4.12) then has the ordinary
exponentially decaying solution. The abstraction

of all of the complications due to N cooperating
emitters into a single constant is, needless to say,
one of the principal attractions of the method we are
following. It is significant that the much more elab-
orate analysis of Ernst and Stehle!* leads in a very
complicated way to a similar constant. The rela-
tion between the two results will be mentioned later
in this section.

A. Time Dependences

The basic rate equation (4.12) is nonlinear but
easily integrable. The solution, subject to the in-
itial condition W(0)= 3N, is
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W(t)=- iN[e'/" = Wp+2)]/(e'"+Np) ,  (5.1)
where

T=7o/(Nu+1) . (5. 2)

The total radiated intensity I(f) is therefore found
from Eq. (4.11) to be

I(t)=NI,(Nu+1)%et /" /[Nu+et /% . (5.3)

Although 7 is undefined when Nu=-1, the solu-
tion to Eq. (4.12) in this case is the same as that
found by simply taking the limit Ny - -1 in Eq.
(5.1). When p >0, which is certainly the usual sit-
uation, the relations given in (5.1) and (5. 3) can
also be written in the form

W(t) = - $N{(1+1/Nu) tanh[( - ¢,)/27] = 1/Nu}

(5.4)
and
I() = 1/4p), (N + 1)? sech?[ (¢t - ¢;) /21] , (5.5)
where ¢, is given by
by=ToInWp)/Wp+1)=7In(Vp) . (5.6)

The functional forms given in Egs. (5.4) and (5. 5)
are superficially similar to those found in a number
of other investigations. There are important dif-
ferences which should be pointed out.

The appearance of a field amplitude € ~I!/2 which
has a hyperbolic-secant time dependence does not
imply any relation with the radiation fields of self-
induced transparency.® Obviously, here the atoms
are not returned to their initial states after the
emission process. It is interesting, however, that
the solution given in (5. 4) for W(t) in the limit Nu
> 1 is also the solution to the McCall-Hahn “area-
theorem” equation® df/dz=-1asing ift-2, 7~ 1/,
and W=-%N cosf.

The dependence on time of I(f) changes qualita-

| ] 1
4

FIG. 2. The radiation rate I(t) for small values of Nu.
The decay time constant is on the order of 7, the lifetime
of a single excited atom.
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FIG. 3. The total radiation rate I(f) for large values
of Nu.

tively as well as quantitatively when Npu is varied.
In Figs. 2 and 3 we have plotted the ratio of the ra-
diation rate I(f) to the incoherent emission rate
from N excited atoms as a function of time for max-
imum initial inversion and six values of Nu. Notice
that at £=0 the ratio is always unity, i.e., the N
atoms emit incoherently in the limit in which each
atom is excited into its upper state by the incident
pulse. When Nu is large, the ratio quickly attains
a value much greater than unity and the system is
said to be “superradiant.” The dependence on time
shown here is strikingly similar to that displayed
by Ernst and Stehle.*

In general, if the initial excitation energy is
W(@)=W (where W is the initial energy), Egs.
(5.1) and (5. 3) apply only for times ¢ >, where

. _
Z:rln(h%/N—“?%&‘i)zo. (5.7)

Thus Figs. 1 and 2 give I(f) correctly in the case
of partial initial inversion with W<iN only if the
¢ <? parts of the curves are ignored.

We define the radiative-decay half-life T, to be
the time during which the energy decreases from
its initial value W to 3(W- iN). Inverting Eq. (5.1)
and using Eq. (5.7), we find

s o
T1=71n<2_+(_zN_W)H_> .

1+ EN-W)p (5.8)
In the limit that W~ 4N and Nu> 1,
T,= (1o/Np) In(Np) ¢, . (5.9)

As in Ernst and Stehle’s treatment! the time at
which one-half of the atoms are in their ground
states closely coincides with the time at which the
radiation rate is maximum. 2

One can associate an amplitude €(¢) with the in-
tensity I(¢) by defining
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(1)) /2!, 122

E(t)=?0 i<t .

The spectral width Aw can then be defined in the
usual way:

(W)= [ (0 - 0P| Ew")|?dw’/ [|E@")]2de’,

(5.10)
where €(w’) is the Fourier transform of €(¢), and

w= [w/|e’)|2do’/[|E")|?dw’ .
If this is done one finds that, for an initial energy
W=0and Nu>1,

Aw>1/2.347=Np/2.347, , (5.11)

using the well-known relation between the mean
spectral extent of a Fourier integral and the mean
extent of its Fourier transform.®

B. Shape Factor ¢

It is clear that the radiated intensity can be orders
of magnitude greater than the incoherent inten-
sity. Let f be the enhancement factor defined by
the ratio of the peak intensity I(¢,) to the incoherent
intensity radiated by the number of atoms which
are excited at ¢ =#. We find from Eqgs. (5.4) and
(5. 5) for the energy and radiation rate

fENu/2

when Nu> 1. This is generally much smaller than
the enhancement factor for a system of N atoms
confined to a region with dimensions much smaller
than A, where A= 27c/w. However, when N is
large and the system does have dimensions which
are small compared with A, then p=1 and Eqgs.
(5.11) and (5. 12) agree with results already found
by Dicke! while Eq. (5.9) reduces to a result found
by Fain, !

For these reasons the product Ny may be con-
sidered to be the parameter of large-system dy-
namics which plays the same role that the total
number N plays in small-system dynamics. Itis
interesting that Ernst and Stehle!* have also found
such a parameter which they call s, and that Nu is
identical to s if IE, | =0 [i. e., simultaneous excitation
of all the atoms, recall Eq. (4.4)].

u is a complicated function of the size and shape
of the volume in which the two-level atoms are con-
tained. However, it is often possible to estimate
1 for the case of practical interest in which the
number of atoms per A3 is large and they are dis-
tributed at random throughout the volume.

Consider, for example, the case in which the
confining volume is a circular cylinder. I‘(IE, E,),
originally defined by Eq. (2.14), can be written

(5.12)
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FIG. 4. Definition of
A, H, and ¥. Et,thedirec-
tion of the excitation pulse,
is parallel to the cylinder
axis, as is assumed in
Figs 5-9.

explicitly as

o N - - ..l
Tk, k)= i % 421 exp[i(k - k) - ;]

li exp[i(lz—l?l) -(F,-1)]. (5.13)

M=

_ 1
_F

-
-
"
-

Taking the ensemble average of both sides of Eq.
(5.13) and, for convenience, denoting the ensemble
average of I'(£, %,) again by T'(%, 2,) leads to the
result

Tk, k)=1/N+[(N-1)/NV?]
X[ d*x | d*x explilk~k,) - ®-%")], (5.14)

where V is the cylinder volume. The 1/N arises
from the diagonal terms in the double sum of Eq.
(5. 13) which must be treated separately from the
off-diagonal terms when taking the ensemble aver-
age. 26

Performing the integrations in Eq. (5. 14), and
taking 1k! = Ik,! =27/2, yields

G, 51)";7 . 4N -1) <sin[%H(1 - coszp)])z

N 1H(1 - cosy)

NECE) 6.19
and
_B6WN=-1) [ dx(1+x?
H=NaE? ), -2 -9
xsin®[ $H(1 - x)]JYAQ - x?)1/2], (5.16)

Here J, is the Bessel function of the first kind,
order one, and A, H, and y are defined in Fig. 4.
We have assumed the atoms to undergo Am=+1
transitions so that the emitted wave is circularly
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polarized. The exciting-pulse propagation vector
Kk, is along the cylinder axis.

From computer evaluations of the integral in Eq.
(5. 16) we have made a contour map showing con-
stant values of u. This is displayed in Fig. 5.
Clearly, for macroscopic collections of atoms, p
is very small. The enhancement factor f =3Nu is
usually orders of magnitude smaller than N.

The same integral can be estimated asymptoti-
cally for the two limits of a large disk and a long
needle. The results for these two limits are

. zH
3 <1+s%2— , A>1 and H < (% A)?(disk)

24%
H= 3m 1
o H>1 and A< VH (needle),

(5.17)

All integrations may be performed analytically
in the case of a sphere. For both the cylinder and
the sphere p approaches 1 - 1/N when the linear
dimensions are small compared with A, This must
be true for any shape.

In concluding this section we must emphasize that
we have found what we might call a serious im-
pedance mismatch between free space and a geo-
metrically large system of spontaneously emitting
atoms. That is, we have found the shape factor u
to be so small that the effectiveness of many-atom
cooperation is reduced much below that found in
geometrically small systems. I(¢) is so much
smaller than N2], that at this point it is doubtful
whether the term superradiance sensibly applies.
In Sec. VI an investigation of the angular depen-
dence of the emission will resolve these doubts.

VI. ANGULAR DISTRIBUTION OF
SPONTANEOUS RADIATION

The matter of the time dependence of the radiated
intensity, which was studied in Sec. III, is not
fully settled without an examination of angular de-

1
0%

FIG. 5. A contour map showing constant values of p
for right circular cylinders of various heights and radii.
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pendence as well. That this is not an entirely tri-
vial question is suggested by Eq. (4.5). It is clear
that I(%, ) cannot be broken into separate temporal
and directional factors. The angular variation of
the emitted radiation changes in the course of the
emission process.

The discussions by Dicke of “coherence brighten-
ing, ”'7 and by Ernst and Stehle of “ray” formation, !*
already make it clear that pronounced peaks in the
angular distribution of emitted intensity should be
expected. However, at the beginning of the emis-
sion process (if W is near 1N) radiation is given
off almost isotropically. In this section, we study
the time development of the angular distribution.

The combination of Eqs. (4.5) and (4. 10) gives

I, ) = I,B){3N + W(t) + [N+ W(O)][ 2N - W(?)]

X[T(k, k) - 1/N]} . (6.1)

By substituting for W(¢) from Eq. (5.1) we obtain
an explicit solution for the temporal and directional
dependence of the emitted intensity which has the
form

I(k, t)= NI, B[ W +1)/WNp + et/ )]
x{1 +[N(et/"=1)/(Nu+ et/ M])[T (&, k) - 1/N]}.

6.2)
Equation (6. 2) shows that in the limit that -0,
the angular distribution of the emitted intensity is
given by

I(k,0)= NI, (%) . (6.3)

Thus the far-field radiation pattern of a nearly in-
verted system of two-level atoms is initially the
same as the radiation pattern of a single excited
atom.

However, consider the time {=¢, when the total
radiation rate I(f) is maximum. Using the definitions
of {; and 7, Eq. (6.2) yields

9= (57 [ (4552 (r 8- )

(6.4)

For the case

for the radiation pattern at that time.
that Nu>>1, Eq. (6.4) reduces to

I(k, to) = $ NIy(R)[1 + NT (&, y)] . ®.5)

In other words the system is emitting, at time ¢=#,,
at a rate approximately N2 times the single-atom
rate in any direction 2 for which the function

T(k, %) is of order unity.

Thus we see that the principal effect of the typi-
cally very small values of u encountered with large
systems is to delay the time of maximum emission.
However, when that time is reached, the radiation
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is sensibly described as superradiance, at least in
certain directions. Let us now look in some detail
at the function I'(?, £,) which defines these directions.
First we note from Eq. (4.6) that T'(%, %,) is al-
ways maximum and equal to unity when I7e=}31.
Moreover, we see from Eq. (5.15) that for typical
macroscopic systems of atoms this function falls
off rapidly from unity as the direction %2 moves
away from the direction I}l, i.e., as Y increases
from zero. The larger the dimensions of the con-
fining volume, the more rapidly it falls off. It is
these considerations which lead to the most impor-
tant feature of the angular distribution of the emitted
intensity: For typical macroscopic systems of
two-level atoms which have been excited by a pulse
in the direction 131, most of the emitted radiation
is emitted into a small cone about the direction Z,.
The larger the dimensions of the confining volume,
the smaller the solid angle subtended by the cone.
To illustrate this feature consider again the prob-
lem of a right circular cylinder densely doped with
two-level atoms. For this case I,(k) is given by

I(&) =1,(3/167)(1 + cos?y) , (6.6)

where I,=7%w/7, (providing, as before, the two-level
atoms Acogple with circularly polarized radiation)
and I'(k, &,) is given by Eq. (5.15). After substitut-
ing these results into Eqs. (6.3) and (6. 4) we find
(¥, 0) = 3(1 + cos?y) 6.7)

and

l(d)} to) = z(l/), 0) {% +

)

» <sin(§H(1 - cosz/))))2<gL(A simb))a } ’

$H(1 - cosy) Asiny ,
6.8)
where we have defined
i(cos™ (k- k), )= 11k, t)/NI, . (6.9)

We shall refer to A%/H as the “Fresnel number”
of a particular right circular cylinder. When the
Fresnel number is large, the cylinder is disk
shaped; when the Fresnel number is small, the
cylinder is needle shaped.

Equations (6.7) and (6. 8) have been plotted in
Figs. 6-9 for eight right circular cylinders. Each
figure has plots for one Fresnel number (either
0.1 or 1000) and one density of active atoms
(either?” 61.2/2% or 61. 2 X10%/A%) but fwo volumes.
The continuous line in each figure represents the
radiation emitted from a right circular cylinder
with a volume such that A%2H =10°%, while the broken
line represents the radiation emitted from one with
A%H=10. In each case the distance of a particular
line from the origin in the direction ¥ is propor-
tional to log,,[10°(y,¢,)], the direction =0 being



FIG. 6. The radiation patterns from two circular cyl-
inders with Fresnel number =1000, and density of active
atoms =61.2/A%. As in Figs. 7-10 as well, the solid
line shows (¥, #;), the normalized intensity at the time
of maximum radiation rate I(#) for a cylinder with A’H
=10% the broken line shows i(¥, t;) for a smaller cylin-
der with A°2H=10. The dotted line is the incoherent ra-
diation pattern from either cylinder when all of the atoms
are excited. The arrow indicates the direction of the
excitation pulse, assumed to be parallel to the cylinder
axis. Note that the scale of the figures prevents ac-
curate reproduction of the relative minima [cf. Eq. (6.8)].

indicated by the arrow.

The dotted line (which is almost a semicircle) in
each figure represents the incoherent intensity at
t=0; for this line the distance from the origin is
proportional to log,,[10%(y, 0)]. Notice from Eq.
(6.7) that (¢, 0) is independent of the density of
active atoms and the size and shape of the confining
cylinder. Thus in each figure we need only one
dotted line to represent the incoherent radiation
from both of the two possible volumes. In actual
fact, of course, the incoherent-radiation intensity
is proportional to N [cf. Eq. (6.3), but for con-
venience we have divided out this dependence in
defining (4, t) via Eq. (6.9)].

Although we have not completed the bottom halves
of the patterns, in each case it can be obtained by
reflection of the top half about the horizontal axis.

In each of these figures it is possible to deter-
mine orders of magnitude by counting + signs along
the horizontal and vertical axes. Each + sign mov-
ing in a direction away from the origin indicates an
increase of a factor of 10 in the intensity. Thus
from Fig. 9, for example, one finds that for the
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FIG. 7. The radiation patterns from two circular
cylinders with Fresnel number =0.1 and a density of
61.2 active atoms per A3. For other details see Fig. 6.

cylinder with A%H =10° the coherent-radiation in-
tensity in the forward direction (y =0) at ¢ =¢; is
greater by a factor of 10° than the incoherent in-
tensity at £ =0.

To compare our result for the angular distribu-
tion of the emitted radiation with Ernst and Stehle’s'*
“ray,” it is convenient to integrate Eq. (6.2) over
time. Let J(%) be the total energy per unit solid
angle in the direction % which is emitted from an
inverted system of two-level atoms. That is, we
define

JB)= | "1k, 1) at .

The integration may be performed explicitly, and
leads to the relation

J(%) = [7oLo(R) /2] {u In(Np+1) + [Ny - In(Np +1)]

X [T(k, ky) - 1/N]} . 6. 10)

It is not difficult to verify that this expression sat-
isfies the requirement [ J(%) d;=Niw, as it must.

Now if Nu>1, and kis sufficiently close to the
forward direction %,, such that

Tk, k) > Q/N)[1+In(Np+1)],

then we find
J(B) = (To N/ W, (R)T (&, By) . ®.11)

This is the same as the most probable angular dis-
tribution of emitted photons found by Ernst and

FIG. 8. The radiation patterns
from two circular cylinders with Fres-
nel number =1000 and a density of
61.2x10% active atoms per ¥. For
other details see Fig. 6.
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FIG. 9.

The radiation patterns from two circular
cylinders with Fresnel number =0.1 and a density of
61.2%10% active atoms per A’. For other details see
Fig. 6.

Stehle if we identify &, with the direction of their
“ray.”

A further comparison is interesting to make.

One can see that Dicke’s criterion’”"?® for “coher-
ence brightening” is reflected in the shape of our
radiation patterns. Loosely speaking, coherence
brightening can be expected whenever the number
of emitters and the shape and size of the system
are such as to produce pronounced lobes in the
angular distribution of spontaneously emitted radia-
tion,

Quantitatively, expressed in our notation, Dicke’s
criterion is N>A2, Although it is not clearly stated
in Dicke’s paper, this criterion applies only when
the Fresnel number is of the order of unity or
larger. From our Figs. 6-9 one can verify that
in every case of large Fresnel number when Dicke’s
criterion is met, the radiation pattern has highly
pronounced lobes along the axis of the cylinder.
This is the effect of “coherence brightening.” If
the system is described by a very small Fresnel
number there is a corresponding criterion which is
N>>H. Again, when this criterion is satisfied, the
radiation patterns are seen to have a forward lobe
in which the vast majority of the emitted photons
are concentrated. Note that unless A®> 1 (for a
disk) or H>1 (for a needle), the opening angle of
the forward lobe need not be small (see, e.g., the
small volume curve in Fig. 9).

As one would expect, the direction of the incident
wave and the symmetry of the cylindrical volume
of emitters are both important in determining the
radiation rate. When the incident wave is not di-
rected along the axis of the cylinder the radiation
patterns are considerably changed. In Fig. 10 we
show the radiation pattern from a cylinder excited
by a wave traveling at an angle of 10° to the axis.
The two patterns shown are in the plane through the
cylinder axis which contains %, and the plane per-
pendicular to that one. Except for the mode of ex-
citation the situation is the same as for the large
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volume shown in Fig. 7.
VII. SUMMARY

Let us summarize the results which we have ob-
tained for typical macroscopic collections of two-
level atoms which have been excited by a short
plane-wave pulse.

First, we find that follo .g an excitation pulse
which transfers a maximum amount of energy to the
atomic system, the radiation rate is incoherent
(i.e., proportional to the total number of atoms
excited). However, as the atomic energy decays,
the radiation rate rises quickly to a peak value
which can be many orders of magnitude greater than
the incoherent rate. The atomic-system energy
decays monotonically to zero with a half-life which
closely coincides with the time interval during which
the radiation intensity rises to its peak. The half-
life of a geometrically large many-atom system is
much shorter than the natural lifetime of a single
atom, but not as short as the half-life of a small
atomic system with the same number of atoms.

FIG. 10. The radiation pattern from the larger of the
circular cylinders in Fig. 7 when the direction of the ex-
citation pulse is at an angle of 10° to the cylinder axis.
The top pattern (a) is i(¥, tg in a plane which inter-
sects the cylinder axis and contains the vector £, x2, 2
being along the cylinder axis. The arrow is the projec-
tion of £y on this plane. The lower pattern (b) is
i, ¢y in a plane which contains both %; and 2. Thearrow
indicates the direction %, and % is along the horizontal
axis. In each case the plotted points give the incoherent
intensity i(y, 0).



|

Regarding the directional character of the emitted
radiation, we find that when most of the atoms are
excited the far-field radiation pattern is the same
as that for a single excited atom. However, after
a short time interval the pattern becomes sharply
spiked in the forward direction; most of the radia-
tion is emitted into a small cone about the direction
of the plane-wave excitation pulse. The larger the
dimensions of the confining volume, the smaller
the solid angle subtended by the cone.

We emphasize that all of our results have been
derived by assuming that the plane-wave excitation
pulse leaves each atom with a finite nonzero dipole
moment (ﬁ,). It is the relative phases of these
dipole moments which fixes the direction of the
single prominent “spike” of the far-field radiation
pattern. If all of the dipole moments are zero, as
they would be following excitation by a perfect 7
pulse, there is no preferred direction which is im-
posed by the excitation pulse, and the direction of
the spike, if there is one, can only be determined
by the geometry of the atomic system. This is in-
deed verified by the work of Ernst and Stehle, 1

The principal advantages of our treatment are
that it allows an (almost) arbitrary degree of ini-
tial excitation of the atomic system; it incorporates
the complications of N cooperating emitters into
the single constant u; and it yields explicit for-
mulas for the radiated intensity as a function of
time and angle.

Note (a) added in proof [cf. Sec. II]. There are
implications of this assumption that, so far we
know, have not previously been stated. Two di-
poles, in each other’s near field, experience the
usual dipole-dipole antialigning force. The com-
mon assumption is that this force is unimportant
compared with the aligning force of the electric
field which is used to excite the dipoles. A com-
parison of the antialighment dipole-dipole inter-
action energy (roughly p?/7%, where p is the di-
pole’s moment and 7 is the dipole-dipole separa-
tion) with the aligning field-dipole interaction en-
ergy (roughly pE, where E is the exciting electric
field strength) is possible. One finds that in order
for the dipole-dipole interaction to be negligible in
an exciting plane-wave field of strength E~10° V/
cm, the dipoles (assumed to have moment p ~eay,
where g, is the Bohr radius) must be further apart
on the average than ), where X is the radiated
optical wavelength. Thus the idea that the dipole-
dipole force does not disrupt the radiation process,
a central feature of all studies of superradiance,
is not compatible with another common assumption
(which we have explicitly discarded) that the di-
poles are all within a wavelength of each other. At
least it is not compatible if the number of dipoles
exceeds a few thousand. If the exciting plane wave
field which aligns the dipoles is not as strong as
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10° V/cm, then they must be even further apart.
We are pleased to thank our colleagues, especially
Professor G. S. Sherman and Professor C. R.
Stroud, Jr., for provoking and participating in
discussions of this subject.

Note (b) added in proof [cf. Sec. I B]. A step
toward the inclusion of inhomogeneous broadening
(nonidentical resonant frequencies) into the theory
of superradiance has recently been taken. See
J. H. Eberly, Nuovo Cimento Letters (to be pub-
lished).
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APPENDIX A

We have implicitly and explicitly restricted our-
selves to a physical system in which the following
conditions are satisfied:

(i) There is negligible attenuation in the exciting
pulse so that every atom in the system is excited
to the same degree.

(ii) The spontaneous radiation from one part of
the system does not give rise to ordinary stimulated
emission in another part of the system.

(iii) The angle 8 characterizing the superposition
state of each atom evolves in time such that the
same function of time 6(¢) effectively describes
every atom in the system.

(iv) The decay process is slow on the time scale
of an optical period 27/w.

Condition (i) can be made more precise with the
help of the “area theorem” of McCall and Hahn.?3
The area theorem is relevant here because the ex-
citation process is imagined to be a coherent one,
in which the exciting field has been tuned so that its
center frequency corresponds to the resonant fre-
quency of the atoms. Immediately after an excita-
tion of this type, the state of the Ith atom may be
written as

| 6g);=e'*2/2 sing 6y +),+ e~*1/2 coso| =), , (A1)

where 6, depends upon the field seen by the /th atom.
The area theorem states that for a plane-wave ex-
citing pulse, the angle 6, is a function of z, the
distance into the sample along the path of the ex-
citing pulse, and satisfies

das
4,E) __ @ sindy(2) ,

dz 2 @a2)

where o is the reciprocal absorption length for the
atomic system.

We see that the degree of excitation cannot be
the same for every atom unless the difference A6,
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is very small even for atoms on opposite faces of
the confining volume. Thus, in order to ensure
that condition (i) is met, we must require
Aeoz% Az<<1, (A3)

where Az is the thickness of the sample as seen by
the exciting pulse. This is possible if the system
thickness is small, or if 6,(z=0) is close to 7.

Conditions (ii)-(iv) will be examined more care-
fully in Appendix B by making use of the analytical
results of Sec. V.

APPENDIX B

Given the analytical results of Sec. V we recon-
sider conditions (ii)-(iv) of Appendix A.

Condition (ii) requires that the superradiant spon-
taneous emission of the system as a whole occur
faster than the time required for the radiation from
one part of the system to cause significant stimu-
lated emission in another part of the system. It is
stimulated emission which gives rise to such effects
as the “ringing” recently predicted!® by Burnham
and Chiao.

Consider a right circular cylinder densely pop-
ulated with two-level atoms which has been excited
by a i 7 pulse (i.e., W=0) moving in a direction
parallel to its axfs. Then Eq. (5. 8) predicts a su-
perradiant half-life, when Nu >1, of

(B1)

Burnham and Chiao have calculated a character-
istic time 7, for ringing to occur which is given by

(B2)

Here 9 is the density of active atoms and z is the
distance into the medium at which an observer is
recording the ringing.

If we require that the system decay spontaneously
before significant ringing occurs within the cylinder
then we must have

T,=1oIn(3/Np) .

TR =877,/39U0%2

T1<TRIt=h s

(B3)

where % is the length of the cylinder. (This condi-
tion can be relaxed by replacing 7, by about 107y

if the excitation angle is close to 7. However, then
T, becomes larger also.) Equations (B1) and (B2)
and the inequality above lead to

31n(3/249) <y , (B4)

where A is 27/X times the radius of the cylinder.
Computer calculations indicate that, for a cylinder
of length X\H/27 and radius A/27,

u<(3/24%)[1 + sin(H) /H?) (B5)

and that the equal sign in Eq. (B5) applies only for
cases of large Fregnel number, i.e., A2/H>1.
Since the inequality (B3) is not well satisfied even
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for large Fresnel numbers, we must expect that
stimulated emission will always perturb the solu-
tions we have presented to a certain extent. Such
perturbation will be minimized for geometries with
large Fresnel numbers.

If conditions (i) and (ii) of Appendix A are sat-
isfied, the greatest change in 6(t) from one atom to
another is given by [6(¢+ Af) = 6(f) | ayy Where Af
is the time required for light to pass between the
two most widely separated atoms. This is because
At is the time delay which an exciting pulse would
suffer in going along the line between these two
atoms. Condition (iii) will then be satisfied pro-
viding

[0+ At) = 6(0)] pax =0 max AE<<1 . (B6)

Notice that since 6(¢) is the only time-dependent

parameter in the interaction evolution operator «,

this inequality is sufficient also to ensure that the

approximation leading to Eq. (3.15) is valid.
Since

. d .
= _<&; (cos@))/ sing ,

cosf = - 2W/N [cf. Eq. (4.10)], and W #0, then no
matter how small At is, Eq. (B6) will fail if 6 is in
a sufficiently small neighborhood of 7. For this
reason (and for the reason mentioned in Sec. IV)
our results are not valid for initially complete in-
version of the atomic system except in the trivial
case N=1. Speaking physically, this means that
our treatment is invalid when the exciting pulse leaves
the system without some finite dipole moment. It
is this preexisting dipole moment, however small,
which leads in all cases to maximum spontaneous
emission in the direction of the exciting pulse. In
this respect, our results are complementary to
those of Ernst and Stehle, * which are valid only in
the case of initially complete inversion. ?°

Realistic physical parameters may easily be
found which ensure that (B6) is satisfied. For ex-
ample, if At=Ax/c (Ax being the separation between
the two most widely separated atoms) and Ny > 1,
it may easily be shown that (B6) will be satisfied
given®

Ax <207y/Nu (B7a)

and the following condition on the initial excitation
angle:
< T—4/Npu . (B70)
Finally, we reconsider the approximation leading
up to Eqs. (3.26) and (3.27), i.e., condition (iv).
If lul <wlul, this implies

1/T<w. (B8)
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T, is always of order To/Nu or larger [cf. Eq.
(5.9)]. Thus the condition implied by (B8) will al-
ways be less restrictive than that implied by (B7a)
providing Ax> /7 (which is clearly true for most
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optical problems). If Ax<X/7, then u=~1 and (B8)
becomes

N<T1,w=10" (for ruby) . (B9)

*Research partially supported by the National Science
F oundation and the U. S. Army Research Office (Durham).
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