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We propose and demonstrate a method to directly measure with high accuracy the group
velocity of light. We make use of the natural fluctuations of light and determine in a correla-
tion experiment the coincidence of fluctuations of light passing through a sample path and a
reference path with known delay. It is shown that this coincidence can be detected by using
amplitude interferometers such as a Michelson interferometer, or intensity interferometers.
Accuracies of the order of 10~ are practically possible. That is orders of magnitude better
than previous methods allow. Using a Nd:glass laser as light source and an intensity inter-
ferometer for detecting coincidence, we demonstrate our method by measuring the group ve-
locity of light in water within 2 X10~4 using a sample length of only 15 cm. The limitations of
this new method caused by second-order dispersion are discussed quantitatively; higher-order

effects are discussed qualitatively.

I. INTRODUCTION

Phase and group velocity are well-known concepts
in the theory of wave propagation. The former is
related to the phenomenon of refraction, the latter
to the propagation of signals. For dispersive me-
dia, these velocities may differ substantially.

Direct and very accurate measurements of the
phase velocity (refractive index) by refraction or
reflection methods are now standard procedures
within large ranges of wavelength X. A convenient
way for determining the group index %, is to calcu-
late it indirectly from the refractive index #n, ac-
cording to

6n,

Ng=1y =X oY

(1)

In some cases, however, a direct measurement of
the group index might be advantageous. In particu-
lar, if the bulk value of 7, is not accessible, or if
n, does not give sufficient information as in wave-
guides, a direct measurement is the only alterna-
tive.

The classical approach for a direct measurement
of the group velocity is to modulate the light and to
detect the time delay of that modulation after the
light has traveled a given distance z through the
sample. The accuracy of such a measurement is
limited by practical distances and modulator-de-
tector responses.

The first experiments to measure the light veloc-
ity in transparent samples were carried out more
than a century ago.'~® Since at that time light could
only be modulated by mechanical means, the ac-
curacy was only a few percent. Towards the end
of the nineteenth century the velocity of light was
still being measured mechanically, but as a func-
tion of wavelength.* The first electronic modula-
tion with a Kerr cell did not result in greater ac-
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curacy,® but when acoustic modulation was intro-
duced, measurements with a relative error of 10~
became possible.® We propose and test in this pa-
per a method in which accuracies of 10 can, in
principle, be obtained.

This is possible by making use of the natural
fluctuations of ordinary light, and carrying out a
correlation measurement. In every light beam
with frequency v=c/X and frequency width Av, the
light intensity fluctuates with a characteristic time
1/Av. If we use a relative bandwidth of 1% in the
visible, for instance, the characteristic fluctuation
time is of the order of 10™'* sec which is far below
electronic resolution times. Whether fluctuations
of such short durations are coincident in time or
not can be determined with optical correlators.
Such a device splits the original beam into two
beams A and B, One of the beams, say B, con-
tains a variable delay

T=Al/c. (2)

By changing the distance Al, the relative delay be-
tween beams A and B can be varied. That enables
us to measure the mutual correlation function of the
two light beams. The correlation function has a
maximum when the fluctuations coincide. If the
correlator is linear, i.e., an amplitude correla-
tor, one measures the mutual coherence function;
if it has a quadratic characteristic, one measures
the intensity correlation function.” Nonlinear cor-
relators have recently become popular for mea-
suring the duration of ultrashort light pulses and
investigating the phase relations between spectral
components of light sources. The accuracy of such
correlation measurements is due to the magnitude
of the light velocity which transforms fluctuations
on a picosecond scale to distances on a tenth of mil-
limeter scale.

In this paper we want to show that amplitude or
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intensity correlators can also be used advanta-
geously to measure directly the group velocity in
transparent samples. If such a sample is inserted
into beam A, the fluctuations are retarded and
coincidence is found for a different distance Al in
beam B. We show that this difference corresponds
always to the group delay suffered in the sample
path A. This allows us to measure the group index
n, with high accuracy, since it will become evident
that the accuracy is only limited by higher-order
terms of the dispersion which alter the fluctuation
behavior in the sample path.

Our analysis is carried out for both types of cor-
relator units. In Sec. II we describe the use of an
amplitude interferometer. In Sec. III we describe
the use of an intensity interferometer employing
second-harmonic generation for measuring the cor-
relation function. The accuracy to be expected
from these devices is discussed in Sec. IV. Asa
test of the method, we report in Sec. V the direct
measurement of the group velocity in water using
a Nd : glass laser as light source and an intensity
interferometer as correlator.

II. AMPLITUDE INTERFEROMETERS

Without loss of generality we can assume a light
source with its analytic signal represented by the
spectrum

V= EOE e-2(n6v/Av)2 ezri(u-mb vIt+V (3)
n .

If the phases ¥, of the individual modes are sta-
tistically independent, (3) is within one repetition
period 1/6v a Gaussian fluctuating light beam with
center frequency v and full width Av between half-
peak intensity points. The mode index » is an in-
teger — <<n<+ o, and 6v is the mode spacing. We
will assume that 6y <Ay, so that we can replace
the sum by an integral in the following calculations,
If the relative phases ¥, are constant, (3) repre-
sents an ideal bandwidth-limited short pulse in
time ¢,

The light beam is split within the correlator into
two beams with the analytic signals V, and V. The
spectral components of V experience the time de-
lay (2). The spectral components of V, experience
in the sample of length z a phase change

®,=¢+ne’+nip’, @)
where according to Ref. 8
@=-2mm,z/2 (5)

is the phase angle at the center frequency,

an v\ 3 1%
'=—2g -a—=2 (=)L -_ -
@ 2 (n, A By )(v)x 2Tn,— 2 (6)

is the contribution from first-order dispersion, and
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is the contribution from second-order dispersion.
For amplitude interferometers, the superposition
of beams A and B yields an intensity

I=| VE-1,%)+ V(t, ¥+ 8)|%. (8)

The time average of I measured by any detector
with finite response time is simply obtained by cal-
culating the intensity profile of each spectral com-
ponent separately and then integrating over all in-
tensity profiles. After some algebra,® one obtains

T=Ungs Ee{ Lo [1+ (y2V

X exp [- (%K)z —‘—(Tlin(:z{f )2] cosx} ,» 9)

where
T. &n, [AVN
r=g ﬁ(;‘) (10)

and

z
X= 21T(VT —m3 )+ tarctan(yz)

7av 2 (1 —n.z2/c)?
'”(2 ) 1+ (2} 1)
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FIG. 1. Theoretical correlation functions for group-
velocity measurements using amplitude and intensity
interferometers. If the second-order dispersion is negli-
gible (vz=0, upper diagram), the width of the correlation
function is determined entirely by the spectral width of
the light source. The broadening of the correlation peak
due to second-order dispersion (lower diagram) was cal-
culated for a Gaussian fluctuating source in the case of
an intensity interferometer. The time T is a variable
delay, 7, is the group delay produced by insertion of the
sample into one arm of the interferometer, and Av is the
full width of the light source between 1/¢ intensity points.
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In (9), cosy describes the fine structure (or fringes)
as 7 is varied, and the exponential describes the
envelope of the fringes in a Michelson interferom-
eter loaded by dielectric. This is shown schemat-
ically in Fig. 1. The envelope has its maximum
for a delay

12)

The fringe contrast decreases to 1/e of its maxi-
mum within a delay 67=16l/2c. The width of that
fringe contrast is from (9)

51=2c[1+ (y2)?]* 2 /nav .

T,=ngz/c.

13)

Note that for z=0 or 8n,/8)%=0, (13) is the co-
herence length of the light.

We notice here that a Michelson interferometer
measures always the group velocity of light, since
the maximum fringe visibility occurs at the group
delay time 7,. We were unable to find this state-
ment in modern textbooks. Understandably there
was confusion in Michelson’s time about this
point. 1® We further notice that this result is com-
pletely independent of any phase relations among
the ¥,. Whether the light source is thermal, a
mode-locked laser, or an FM beam does not
matter. Only the bandwidth Av is important.

III. INTENSITY INTERFEROMETERS

If second-harmonic generation is used for de-
tecting the correlation function, !! the superposi-
tion of beams A and B yields an intensity

Ig=0l(t-7,¥)I(t,¥+®) , (14)

where the constant o includes conversion efficiency
and other factors. As a first case we consider
statistically independent phases ¥,, i.e., a Gaus-
sian fluctuating light beam. Inserting (3) and (4)
into (14) one obtains

2
Ig=0E} 23 exp [—2(Q> (nz+m2+kz+lz)]
nmk1 Ay,

X exp[2midvi(n —m+ k =1)]
x expli(@, - &, +8,- )]

x exp{i[2n0vT(m = n) + @' (B =1)+ "' (K? - 1?)]}.

(15)
Only those terms will contribute to a time average
Tgy which have n—m+%k -1=0. Since we have as-
sumed that the phases are statistically independent,
the contributions to the sum vanish in the ensemble
average, except for the two cases where n=m
and k=1 simultaneously, or n=1 and m=k. Re-
placing the sums by integrals, we obtain

- 2
Luln=m;k=1)=0" (ﬂ}) E§

4 \6v (16)
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(mav) (7 -n‘z/c)z
XexP[_ 2 1+ (r2P ] (17)

Both terms contain also all terms with n=m=k=1.
However, the number of those terms is small com-
pared to the number of terms contained in (16)

and (17), and the final result is

2
ng=or% (‘2—:) E} [1 +[1+ (22

x exp (- @32 e nzcF))

(18)

In contrast to the case of the amplitude interfer-
ometer (9), we see that the high-frequency factor
cosy is absent. The maximum of Igy, however,
occurs again at the group delay time (12). The
full width of the correlation peak at 1/e points is

olgn=V2c[l+ (v2)?]*/nav, (19)
and the contrast ratio is
R=Tgu(7,)/Isua(t)=1+[1+ (v2F] 2, (20)

where
|7 =7, »01/c.

Schematically, the correlation peak is shown in
Fig. 1.

As a second case we consider that of constant
relative phases ¥,, the emission of a perfectly
mode-locked laser with bandwidth-limited short
pulses. For ¥, =0, we obtain from (3) by inte-
gration of the analytic signals V(¢ -7, &) closed
forms for evaluating the intensities I(¢ -7, ®) of
Eq. 14. For the vacuum path we obtain

2
I(t -7, 0) =12_r (éﬂ) E%e-[m wt-n1 . (21)

ov

This corresponds to the intensity of just one dis-
played pulse from the laser’s pulse train. Like-
wise, we obtain from (3) and (4) for the sample path

_ 37(Av/6v)*ER TAv(t-n.z/c)]?
I, @)= [1+(2y2) exP(' 1+(2y2) )
(22)

Inserting (21) and (22) into (14) which gives the in-
tensity of the second-harmonic signal, and integrat-
ing over time - © <{ <+ yields the time-averaged
second-harmonic pulse intensity

— G mYav/o) B [ [nav(r —ngz/c)]’
Ty=o |21+2(~rZ)§|°E exp(- 2[1+2(r2)7]

(23)
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The maximum occurs again for the group delay
(12). The contrast ratio R is infinite, and the width
of the correlation function is

61, =V2 c[1+2(y2)?] V%/nav, (24)

1t is seen that the width for pulses is larger than
that for Gaussian fluctuating beams if yz # 0.

IV. IMPLICATIONS FOR MEASUREMENTS OF
GROUP VELOCITY

We have shown that a first-order dispersion
an,/dX shifts the correlation peak to a position
corresponding to the group delay (12) of the sample
[see Eqs. (9), (17), and (23)]. We have further
shown for the cases considered here that a second-
order dispersion broadens the correlation peak
without affecting its position.

Logically, a third-order term will distort any
waveform transmitted through the sample. This
distortion must be small or we must redefine the
group velocity.

If we evaluate the dispersions of transparent ma-
terials (quartz, sapphire, and LiF) around 1 p
wavelength,'? we obtain the following typical values:

0.01<x T

ox (25)
0.01 <22 Z—:”zﬁ , (26)
0.05<-2° i’gz (27)
. S

Since the third-order term (27) will always be mul-
tiplied with the factor (Av/v)® in real problems,
third- and higher-order terms can usually be ne-
glected for group-velocity measurements if Av/v
<1072,

The second-order term (26), however, is nor-
mally not negligible. It is just this term which lim-
its the accuracy of a group-velocity measurement.
In the case of a Gaussian fluctuating beam, for in-
stance, we find that the width (19) of the correlation
peak has a minimum

Glsﬂ min = 20/1TAU if Yz =1, (28)

Associated with this minimum is the relative band-
width

A 82 \1/2
Ay/y= urz)\# (29)

which is plotted in Fig. 2 as a function of z/x and
s=X%182n,/8)%|, Although the contrast ratio is
decreased to R=1. 707 for this bandwidth, we still
can expect to be able to determine the position of
the correlation peak with reasonable accuracy.
Beyond the bandwidth (29) the contrast ratio de-
creases further, whereas the width of the correla-
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FIG. 2. Diagram to evaluate the accuracy [Eq. (31)]
of a direct group-velocity measurement as a function of
bandwidth Av and sample length z. Valid are readings
below that dotted line [Eq. (29)] which corresponds to the
actual second-order derivative S=A?| 8%,/8A%| . A second
scale for actual sample lengths has been provided which
is valid for 1-p wavelength. The dot refers to the ex-
ample (Sec. V).

tion peak increases again. Therefore, we may de-
note (29) as the maximum bandwidth for accurate
group-velocity measurements,

Now we can calculate the expected accuracy of
direct group-index measurements. Since the cor-
relation peaks measured with and without the sam-
ple are a distance Al = (n, - 1)z apart, we obtain for
the error

on 6z 5l
Mg 02 O
ng z +n,z(N—l) ) (30)

We have assumed that both the distance Al and the
sample length z can be measured with an accuracy
6z. However, this error is not specifically con-
nected with our method. For the method-dependent
error we assumed that the accuracy of determining
the actual position of the correlation peak increases
with the number of measurements N which fall with-
in 6/. With (28) we obtain for this error

(). men () (2) e

For N=5 and n,=1.5, (31) is plotted for some
situations in Fig. 2. It shows which combinations
of relative bandwidth and sample length are required
to give a desired accuracy with only five correla-
tion points. Valid are all readings below the maxi-
mum bandwidth whose limit is set by the relevant
second-order dispersion A%s %n, /8%, according to
Eq. (29). For instance, if one expects 1232z, /ar2
=107, one obtains an accuracy of 105 with a sam-
ple length of 13 cm and a relative bandwidth of 10%,
or an accuracy of 3x10°® with a sample length of
1.5 m and a relative bandwidth of 3%. Thus, Fig.
2 shows that accuracies up to 107 are practically
possible. This is comparable to the accuracy of



1712
TEMgo
LASER Mg
Y w
G Slz =
I
P — P Mb
A
P |4
B2 Bl —>
al
KDP2 KDP1
Filter Filter
2w 2w
PM 2 PM1
Dual beam
Oscilloscope

FIG. 3. Arrangement used for measuring the group
velocity in the sample S. The Glan-Thompson prism G,
the beam splitters B, and the i\ plate provide the polari-
zations P. The light source is flash-lamp-pulsed Nd:glass
laser with a longitudinal-mode spacing of approximately
150 MHz. The KDP crystals generate the second-har-
monic signals which are separated from the fundamental
by filters F, and integrated over the laser flashes with
photomultipliers. The correlation function is determined
from the ratio of the second-harmonic signals by chang-
ing the position of mirror M,.

precision wave-index measurements in the visible
spectrum, !

Finally, one can find the absolute value of the
second-order dispersion directly by measuring the
width of the correlation peak. With a relative band-
width of 1%, for instance, one obtains an accuracy
of 10% with a sample length of 5 m if |A28%n, /or?|
~ 10-2.

V. EXAMPLE

In order to demonstrate one of our two methods
to measure the group velocity in a sample directly,
we have used an intensity interferometer!! with a
flash-lamp-pulsed Nd: glass laser, and measured
the group velocity in water. The arrangement is
shown in Fig. 3. The laser light is polarized by a
Glan-Thomson prism G and divided into two parts
by beam splitter B2. One of them generates a sec-
ond-harmonic signal in KDP2 (potassium dihydro-
gen phosphate) which is used as reference signal
for the laser power. The other part enters the cor-
relation unit, a modified Michelson interferometer.
The beam is split again into two parts. One of them
passes twice through the sample S, a cuvette filled
with water where z =15, 2814+ 0, 0002 cm. The
other part passes twice through a i) plate and ex-
periences a rotation of its polarization by 90°,
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Both parts exit the correlator orthogonally polarized
to each other and have a variable delay between
them. The orientation of KDP1 is chosen such that
the second-harmonic signal is only generated by the
product of the two beam intensities emerging from
the correlator,

The interferometer signal from photomultiplier
PM1 and the monitor signal from PM2 are inte-
grated over the duration of each flash. The ratio
of these signals yields the correlation function if
the position of mirror M, is varied. Since, in con-
trast to the case of the amplitude interferometer,
the measured ratios follow a smooth curve and do
not show oscillations (see Fig. 1), only a few shots
are needed to determine the position of the correla-
tion peak., This was done for the empty and the full
cuvette. It is advantageous to determine in advance
the approximate position of the correlation peaks
by taking into account the group velocity of the cu-
vette walls, the beam splitter, the quarter wave
plate, and a possible tilt of the cuvette. It is fur-
ther advantageous to use plane parallel beam split-
ters with one surface antireflection coated rather
than a wedge which we actually used. A plane par-
allel beam splitter makes the alignment of the cor-
relator unit independent of the wavelength., Antire-
flection coating decreases the interference between
the reflections from both surfaces of the beam
splitter. Interferences from the cuvette and the
i) plate surfaces should also be avoided, e.g., by
tilting these devices, because the absorption of a
30-cm path of water is so large (15 dB) at 1-p
wavelength that the residual transmission is com-
parable to a reflection from an uncoated glass sur-
face. Finally, the laser should not oscillate in too
many transverse modes since that would decrease
the contrast ratio because of spatial incoherence.'®
Fundamental transverse-mode operation was at-
tempted by using flat mirrors spaced 1 m apart and
an iris with 0. 25-cm diam.

We measured the group velocity for two different
temperatures. At 19,7 °C we found %, = 1. 34086,
and at 26.6 °C n, =1.3372. This yields by inter-
polation at 20 °C n, =1.3404. From (31) we obtain
for z=15cm, N=5, and a measured linewidth of
1.5 THz (or 50 A) for our laser, an error of on,
=2x10, The error of measurement 5z/z was
much smaller. Our experimental result is, there-
fore, n, =1.3404+0.0002. From the wave index'®
which is n, =1. 32405 at 20 °C for x =1, 0623 1, we
calculate with (1) n, =1, 3404+ 0. 0001. The two re-
sults agree perfectly.

VI. CONCLUSIONS

We have shown that amplitude and intensity inter-
ferometers can be used to measure the group veloc-
ity of light directly and with high accuracy. Our
technique makes use of the natural fluctuations of
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light, i.e., additional modulation or measurements
at different frequencies are not required. In the
case of amplitude interferometers, incoherent
lamps with suitable filters and slits can be used

as light sources. The correlation function appears
in the form of interferometer fringes which are
sensitive to adjustments within fractions of a wave-
length. In the case of intensity interferometers,

at least medium-powered pulsed lasers must be
used to provide sufficient bandwidth and second-
harmonic power. The correlation function is not
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sensitive to adjustments within fractions of a wave-
length, and is relatively insensitive to beam align-
ment if the laser oscillates in the fundamental
transverse mode.
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It is shown that average atomic kinetic energies in liquid helium can be deduced, as a function
of temperature, in an elementary fashion, using existing experimental data and an empirical
interatomic potential. The resulting kinetic energies are compared to the results of fitting re-
cent high-energy neutron scattering data with the simple model of Puff and Tenn.

In past years, many macroscopic thermodynamic
properties of *He have been measured in the lab-
oratory as a function of temperature, and informa-
tion on the structure and dynamics at the atomic
level has been obtained from x-ray and neutron
scattering experiments. The purpose of the present
paper is to point out that it is possible to deduce
average kinetic energies of atoms in liquid *He as
a function of temperature by using these existing
thermodynamic and scattering data. While only
elementary theoretical principles are involved,
these computations seem not to have been reported
previously. The resulting kinetic energies are not
only of interest in their own right but also provide

results which can be used to test future theoretical
computations for T'>0. As an independent check of
our results we also compare our kinetic energy
values with those deduced by fitting the model of
Puff and Tenn! to the high-energy neutron scat-
tering data of Harling. ?-°

A formal expression for the average kinetic
energy per atom can be deduced by considering
liquid *He in thermodynamic equilibrium under its
own vapor. In the vapor, the enthalpy per atom,
h,, is well represented by 3#T, while in the liquid
the enthalpy per atom, %,;, can be written as
KE +V+p/p, where KE is the kinetic energy per
atom, V the potential energy per atom, p the pres-



