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The phonon spectrum of hcp He4 has been measured along the three principal symmetry axes
by inelastic neutron scattering from a single crystal with a molar volume of 16.00 cm3 at 4. 2 K.
The results are in fair agreement with the theoretical calculations of Gillis, Koehler, and
Werthamer, the maximum discrepancy heing about 30%. Considerable phonon damping has
been observed for the +{LO) and Z&(TO&) branches. A modified axia1ly symmetric force-
constant model has been fitted to the dispersion curves and used as an interpolation scheme to
calculate the frequency distribution function and other thermodynamic functions.

I. INTRODUCTION

The properties of quantum crystals have been the
subject of considerable interest over the last few
years. Theoretical efforts in this field have led
recently to sophisticated theories predicting the dy-
namical properties of such systems. Until recently,
the lack of experimental data on oriented single
crystals of such solids has necessitated a compari-
son of the theoretical predictions with only the bulk
properties of such systems. The unique feature
associated with quantum crystals is the fact that
the zero-point energy accounts for a large fraction

of the total energy of the crystal. The solids which
exhibit quantum-crystal behavior most strongly are
the crystalline forms of He3 and He'. This is due
to the low masses of the helium atoms and the weak
binding forces between them, which give rise to
large-amplitude zero-point vibrations of the atoms
about their equilibrium positions. Since the ampli-
tudes become comparable to the interatomic spacings,
it is obvious that such a system is likely to be highly
anharmonic, and furthermore that the short-range
correlations between the atoms have to be con-
sidered carefully. In fact, as is well known, a
purely harmonic calculation predicts imaginary fre-
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quencies for such systems. The theory for treating
these systems has been extensively referenced in
a recent review paper by Werthamer. ' The most
recent formalism for calculating phonon frequencies
in helium is the self-consistent phonon theory of
Koehler2 as then c~' i~lated by Gillis, Koehler, and
Werthamer~ (GKW), whicn .ncludes the short-range
correlation functions introduced by Nosanow.
The self-consistent phonon theory is discussed in
more detail in Sec. IV.

In the last few years, several experiments on
single-crystal specimens of hcp He' have yielded
much more detailed information about this solid.
Measurements made on single crystals of hcp He~

include optical birefringence measurements, ' ther-
mal conductivity measurements, ' elastic constant
measurements, and determinations of the phonon
spectrum using inelastic neutron scattering. 9 "
The phonon spectrum has been measured at a mo-
lar volume of 21. 1 cm' by the Brookhaven groupg
and at 16.0 cm by us. Some preliminary results
of our own measurements were reported earlier. '0

Neutron scattering measurements on polycrystal-
line hcp He at a molar volume of 20. 9 cm' have
also been reported. We report here on a more
complete set of results for the phonon-dispersion
curves along the symmetry directions of hcp He
at the 16.00 cm' molar volume. The neutron scat-
tering measurements of thephonon spectrum in
solid helium are beset by considerable difficulties,
among which are the small coherent neutron cross
section (0. VS h) for the He' nucleus, the large am-
plitude of oscillation, resulting in a severe attenu-
ation of scattered intensity due to the Debye-Wailer
factor, and the consequent need for growing and
maintaining over long periods of time a large and
suitably oriented single crystal. Our choice of
molar volume was determined by the decision to
grow the crystal at a molar volume at which the
crystalline phase could be maintained at 4. 2 K. It
was decided to grow the crystal at a pressure of
230 bar corresponding to a melting temperature of
5. 4 K. Additional advantages of working at this mo-
lar volume are that the Debye temperature is about
50 K, so that the phonon frequencies are not incon-
veniently small, and the attenuation in the scattered
neutron intensities due to the Debye-Wailer factor,
although severe, still permits measurements to be
made over a reasonable range in reciprocal space.
It is perhaps fortunate that measurements in this
solid exist for such widely varying molar volumes
as 16.00 and 21. 1 cm, making helium the only
solid for which the phonon spectrum has been mea-
sured for such differing densities in the same crys-
talline phase. This also provides a direct test of
the theoretical predictions for the density depen-
dence of the phonon spectrum, which is particularly
difficult to calculate because of the need to know

accurately the short-range correlations between the
helium atoms. As will be discussed in Sec. IV,
the 16.0 and 21.1 cm molar-volume data to-
gether provide a rather complete picture of the
phonon-dispersion curves over a wide range of
molar volumes. This is also borne out by the good
agreement between the Gruneisen parameter ob-
tained from the neutron measurements with that
obtained from thermodynamic data.

Our measurements have also revealed some of
the inadequacies of the current theories by demon-
strating the existence of lifetime effects for a num-
ber of phonon branches.

II. EXPERIMENTAL TECHNIQUE

The helium crystal was grown in a stainless-
steel container which was pressurized through a
stainless-steel capillary to a pressure of 230 bar.
This pressure was generated by a thermal pump
consisting of two pressure vessels which were al-
ternately cooled and warmed between 77 and 300 K.
No contamination was thereby introduced. The
sample container was 50 mm long and had an o.d.
of 12. 7 mm and a wall thickness of 0. 25 mm.
Stainless steel was used instead of aluminum in
spite of its large neutron cross sect:ion because of
the need to have the container walls possess as low
a thermal conductivity as possible. Heater coils
and thermocouples were attached to the top and
bottom of the container so that a temperature gra-
dient could be maintained across it. The crystals
were grown by slowly cooling the bottom and the
top of the container, maintaining the bottom at a
temperature of about 0. 1K below the top. During
solidification, the pressure in the container was
maintained constant by keeping the capillary open
by means of heater coils, and when the whole con-
tainer was filled with solid, the capillary was al-
lowed to cool to 4. 2 K, thereby sealing off the con-
tainer and allowiag all processes after that to take
place at constant volume only. The container was
tapered at the bottom in the hope that a single grain
would grow through the constriction and fill the
container. In fact, the solidification process alone
was never observed to yield a single crystal, but
rather produced several large grains filling the
container. About 24 h after solidification, the
solid was annealed by bringing the top of the con-
tainer to within a few millidegrees of the melting
point, while maintaining a temperature differential
of 50 mdeg for a period of about 12 h. Occasionally
this procedure would yield a very large single
crystal which was then slowly cooled to 4. 2 K and
used for the measurements, The complete series
of measurements reported in this paper, which
span a time period of several months, were per-
formed on four such different crystals, the largest
having a volume of 5 cm and filling the whole con-



1690 RE ESE, SINHA, BRUN, AND TILFORD 3

FIG. 1. Photograph
of the helium crystal
used in most of the
measurements taken by
Bragg reflection of neu-
trons.

tainer. The cryostat containing the sample was
mounted on a two-circle goniometer which could
rock the crystal about two perpendicular axes by
+ 30' as well as rotate it about a vertical axis.

The crystal shapes and orientations were found

by neutron diffraction, i. e. , by setting the detec-
tor arm approximately for Bragg reflection from
a particular set of planes and rotating and rocking
the goniometer until a reflection had been found.
The Bragg-reflected neutron beam was photo-
graphed using a Polaroid neutron camera. Such
a photograph of the 5-cm crystal is shown in Fig.
1. It was found that the crystals generally tended
to grow with the c axis normal (within about 15')
to the long axis of the container, i. e. , normal to
the growth direction. Once a crystal had been
found, it was oriented so that the plane of scattering
was a symmetry plane (i.e. , a 5* c" or d"--c* plane)
and the rest of the container masked off with cad-
mium. The lattice constants of the crystal used
for most of the measurements were determined
to be a = 3. 3535 + 0. 002 A, c = 5. 4636 + 0. 002 A, and
hence the molar volume V = 16.02 + 0. 03 cm .
Some of the runs were made on a crystal with a
slightly differing molar volume (V„=16. 58). The
way these results are normalized to those for the
other crystal is discussed below.

The inelastic scattering measurements were
made using the triple-axis spectrometer at the
Ames Laboratory Research Reactor. The "con-
stant-Q" mode of scanning with fixed incident en-
ergy was used throughout. Two incident energies,
18.6 and 20. 4 MeV, were used for most of these
measurements.

At 4. 2 K, the only appreciable one-phonon cross
section corresponds to a process in which the neu-
tron excites a quantum of vibrational energy in the
crystal. The differential cross section for a one-
phonon neutron energy-loss process is given by

2.0—
002

IOO)

1.0

ture, and 8' is the Debye-%aller factor, which for a
hcp crystal is given by

2W= "G„(—) G, (
—), (2)

where %is the atomic mass, 80 is the Debye tem. -
perature at 0 K, Q„and Q, are, respectively, the
components of the neutron scattering vector Q
parallel and perpendicular to the basal plane, and

Gg and G, are dimensionless functions of T/80
which depend on the phonon spectrum.

Finally, g~ (Q) in Eq. (1) is the inelastic structure
factor defined by

(Q) g &Q e.. (q), 5.p„'
(8)gJ „[M~( g~) jl/2

where 5 is the coherent nuclear scattering length
for the He' nucleus, v~(q) and e„j(q)are, respec-
tively, the frequency and polarization vector as-
sociated with the jth branch and ~th atom in the
unit cell for phonon wave vector q, and r„is the
position of the vth atom in the unit cell.

Normally, the factor e varies very slowly in
reciprocal space and does not affect the intensities
of the scattered neutron groups seriously. How-
ever, for He, the large-amplitude zero-point os-
cillations cause the factor e '~ to die away suf-
ficiently rapidly with increasing Q so as to over-
come the Q factor ing&~(Q) at values of Q which
are comparable to the distances of the first few
reciprocal-lattice points. Figure 2 shows the func-
tion Q e together with the same function calcu-
lated for a Q of 25 K appropriate to the 21. 1-cm3
molar volume studied by the Brookhaven group.
Although it may be seen that a greater range in re-
ciprocal space is obtained at the 16.00-cm' molar
volume, nevertheless, one sees that only a few
reciprocal-lattice points are available from which
to pick up the phonon branches.

-aw p

dQdi k e""'" —1

l.O 2.0 3.0
atA ')

4.0 5.0

where co is the phonon frequency, T the tempera-
FIG. 2. Function Q e for hcpHe at molar volumes

of 16.00 and 21.1 cm3.
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III. RESULTS

Measurements were made of the dispersion
curves along the principal symmetry axes of the re-
ciprocal lattice. These are the I'A[0001],I'M[IOiO],
and I'KM[1120] axes. Neutron groups were studied
corresponding to the A1( LA), na( LO), a~( TA), and

&8(TO} branches in the I'A direction, the Z, (LA
and LO), Z, (TA, and TO, ) branches in the I' direc-
tion, and the T~(TA, ) branches in the I'KM direction.
Because the crystal could never be oriented so that
the c axis was normal to the scattering plane, it was
not possible to study the Z, (TA„and TO„)branches
in the l"M direction. Figure 3 shows a set of neutron
groups corresponding to some of the phonons along
the ~, and 42 branches. It may be observed that
the neutron groups are reasonably well defined for
the h, (LA) branch but show considerable broadening
for the n.,(LO) branch with increasing phonon fre-
quency. Along the I"M direction, well-defined neu-
tron groups were observed corresponding to the

Z3 (TA ) branches and to the Z, (LA and LO)
branches, but only very poorly defined neutron
groups could be observed for the Z, (TO, ) branch.
These latter neutron groups are not included in the
main body of the results but are discussed sepa-
rately in Sec. IV. For the I'KM direction, well-
defined groups were obtained for the T,(TA, } branch.
For the T2(TO, ) branch only the point at M wa.s
measured. The measured phonon frequencies are
tabulated in Table I.

Figure 4 shows the measured dispersion curves.
Also shown are the Z3 branches along I"M which
were obtained by scaling the Brookhaven data
(21. 1-cms molar volume). The justification for
such a scaling procedure is given below. It may be
seen that the dispersion curves for hcp He4 seem
to exhibit considerable acoustic isotropy, as wit-
nessed by the near equality of the initial slopes of
the longitudinal acoustic branches along I'A and I M
and the near equality of the initial slopes of the TA„
and TA, modes along I M. In this respect they are
similar to the dispersion curves for other hcp solids
with a near ideal c/a ratio. ' On the other hand, the

I.8—

I.6

s TA

1.4

I.2z

I.O
z
LIJ

0,8

0.6

FIG. 4. Phonon-dispersion cur-
ves for hcp He4 at V =16.00 cm3.
TA, and TO~) branches along I'M
were obtained by scaling the Brook-
haven data from V =21.1 cm .
Shaded areas along I M correspond
to the anomalous neutron groups
observed and referred to in the text.
The smooth curves are obtained
from the 18-parameter force-con-
stant model fitted to the data.

0.2

Ql Q2 0.3 0.4
K

0.4 Q3 0.2 Q.l O.l Q2 0.3 0.4
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a, (LA)

0.10
0.20
0.30
0.35
0.45
0.50

a, (TA)

0.10
0.20
0.25
0.30
0.40
0.50

v(THz)

0.18+0.01
0.36 j0.01
0.55 j0.02
0.64 j0.01
0.81 j0.02
0.93 j0.02

0.08 j0.01
0, 17j0.01
0.19j0.01
0.20 j0.03
0.30 j0.02
0.36 j0.04

a, (LO)

0.00
0.10
0.20
0.30
0.40
0.50

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50

v(THz)

1.70 j0.07
1.57 j0.07
1.49 j0.05
1.33 j0.04
1.10 j0.02
0.93 j0.02

0.48 j0.03
0.45 j0.03
0.43 j0.03
0.43 j0.02
0.42 j0.02
0.42+0.02
0.41 j0.02
0.36 j0.04

q= (&, 0, 0)4~//3a
z, (~)
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Z, (TAg

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.30 j0.03
0.42 j0.04
0.56 j0.03
0.69 j0.03
0.83+0.04
0.90 j0.05
0.97 j0.07

0.16+0.01
0.23+0.01
0.30 j0.02
0.39+0.01
0.43 j0.02
0.50 j0.02
0.54+ 0.02
0.57 j0.02
0.57 j0.02

0.10
0.20
0.25
0.30
0.35
0.40
0.50

Z 4(TA„)

0.076
0.126
0.177
0.227
0.278
0.354
0.404
0.455
0.494

Z4(TO„)

0.050
0.101
0.152
0.202
0.253
0.329
0.404
0.455
0.500

0.55 j0.03
0.74 j0.03
0.85 j0.03
0.96 j0.04
1.20 j0.10
1.30 j0.08
1.35 j0.08

0.09 j0.02
0.16 j0,015
0.23 j0.015
0.28 j0.02
0.33 j0.02
0.402 j 0.005
0.42 j0.015
0.45+ 0.01~
0.47 j0.015~

0.48 j0.01
0.43 j0.02
0.52+ 0.005~
0.57 j0.01
0.62 j0.04
0.70 j0.02
0.72 j0.015
0.78 j0.03~

0.75 j0.02

q= (0, N, o)4~/a
T3(TA )

0.10
0.15
0.20
0.25
0.30
0.333
0.40
0.45
0.50

'Brookhaven data scaled by 1.91.

0.26 j0.03
0.04 j0.02
0.50+ 0.02
0.58 j0.05
0.71 j0.01
0.77 j0.01
0.86 j0.03
0.88 j0.04
0.92 j0.03

TABLE I. Measured phonon frequencies in hcp He4 at
V~=16.00 cm3 and T=4.2K.

q= (0, 0, g)2m'/c

ratio of the two optic-mode frequencies at I' is quite
large (-4) compared to about 1.V for hcp metals
with similar c/a ratios

We have also studied phonon lifetime effects by
extracting the instrumental resolution from the ob-
served widths of the neutron groups. Using the for-
malism of Cooper and Nathans, '3 the resolution func-
tion was calculated by approximating the dispersion
surfaces in the vicinity of the observed points by
planes. The errors in such a procedure might be
expected to be large, owing to statistical uncertain-
ties in the observed linewidths and possible errors
in the calculated resolution function. Nevertheless,
we conclude from our results that within experi-
mental error no broadening was observed for the
TA, branches along I'M and 1 KM The natural pho-
non linewidths of the ~i branches could not be mea-
sured due to contamination of one branch by the
other, but we place an upper limit of 0. 40 THz on
the natural full width at half-maximum ( I',„)of the

phonons in these branches. As far as the I'A direction
is concerned, the TA branch exhibits no detectable
broadening, and we place an upper limit of I;„=0.2THz
on the TO branch. A more accurate determination
for these branches was precluded by contamination
due to elastic scattering and the small linewidths
involved. Natural broadening, however, is most
clearly demonstrated by the behavior of the LA and
LO branches along 1"A. These are in many cases
sufficiently broadened for the natural linewidths to
be determined with some confidence, and Fig. 5
shows the behavior of I',

„

for the LA and LO branch-
es plotted together in the double- zone representation.
These results show that for the highest frequqncies
the phonons corresponding to this branch are not
well-defined excitations, because the ratio v/1'»,
which is a rough measure of the number of oscil-
lations before the photon decays, is only about 2.

IV. DISCUSSION

The most striking feature about the comparison
between the two sets of data at molar volumes of
16.00 and 21. 1 cm' is that all the frequencies scale
by approximately the same factor. Table II lists a
ratio of the frequencies of selected modes for the
two molar volumes. Where the phonons were not
measured at precisely the same wave vector, we
have interpolated our data to obtain the above ratios.
It may be seen that this ratio is indeed approxi-
mately constant for all these modes to within a max-
imum discrepancy of 14/0. We have chosen the ratio
of the frequencies for &LA at q = 2m/c (0, 0, 0.475),
which is 1.91 as the scaling factor for the 21. 1-cm'
data relative to ours, since these particular fre-
quencies have the smallest percentage errors asso-
ciated with them. Using this scaling factor we have
obtained the presumed dispersion curves for the
&4 ( TA„and TO„)branches at our molar volume,



PHONON DISPERSION RELATIONS. . . 1693

I.2 Lo (o, o, g)

l I I

HCP HE PHONON LINEWIDTHS l6.0 em~/ MOLE
LINE WIDTHS

I A (O, O, C)

!,0

FIG. 5. Natural full width at half-
maximum of phonons for the longi-
tudinal branches along A.
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y=aV . (4)

If we assume Eq. (4) is true, then a simple integra-
tion yields the following relation between the fre-
quencies at molar volumes V' and Va:

In((u, /u&, ) = a ( V' —V' ). (5)

which we have then combined with our other data
and used for further analysis. One check of the
validity of this procedure is that at the point M, the
Z~(TA„)branch joins up with the longitudinal mode
propagating along the FKM direction. We have mea-
sured the frequency of this particular mode at the
point M and the ratio of this frequency to the
21. 1-cm' molar-volume frequency for Z~ (TA„)at
M is 1.76, implying that at the zone boundary, at
least, the scaling law is approximately obeyed for
this branch.

In view of the scaling of the frequencies, the
Griineisen parameter y, defined as (- d In&a, /dlnV)
for the i th normal mode is approximately the same
for all modes and must therefore be close to the
y for the bulk solid, without involving the trouble-
some averages over normal modes which have to
be carried out for most solids. Existing data re-
garding y from specific-heat and (BP/BT)» mea-
surements, '4 as well as thermodynamic arguments, "
suggest that the volume dependence of y may be ap-
proximately represented by a linear relationship of
the form

at a temperature of 4. 2 K (V„=16.00 cm')withthose
measured at 1.0 K(V =21.1 cm ). Nevertheless,
for comparison with the y 's obtainedfrom bulkmea-
surements, we may see that using Eq. (4) our data
interpolate to y ( V = 19.00 cm') = 2. 4, which is
to be compared with a y of 2. 6 + 0.05 at V = 19.00
cm' at a temperature of 1. 5 K obtained from bulk
measurements. ' A further check for the consis-
tency of our value for y at V =16.00 cm3 and 4.2 K
is the fact that, as mentioned in Sec.II, some mea-
surements were made on a crystal which grew at
V = 16. 58 cm'. The frequency of the longitudinal
mode at A was measured for both the 16.00- and

16.58-cm' molar volumes to an accuracy of 2%%uo.

The results are

[u&( V = 16.00 cm')]/[~(V =16. 58 cm~)]=1.08,
whereas using y = 2. 02, we calculate the ratio ex-
pected for these frequencies to be also 1.08.

To obtain a suitable interpolation scheme to be
used for calculating the frequencies for the off-
symmetry directions as well, we have used a mod-
ified axially symmetric (MAS) force-constant for-
rnalism. 6 A sixth-neighbor axially symmetric
model was also tried, but found to be unsatisfactory,

TABLE II. Ratio of selected mode frequencies at
V~=16.0 cm and V~= 21.1 cm .

Putting in the values for the 16.00- and 21. 1-cm'
molar volumes, we obtain a=0. 1262 cm ', from
which the values of y at the two molar volumes may
be obtained from Eq. (4) as y ( V = 16.00 cm') = 2.02,
and y ( V = 21. 1 cms) = 2. 66. The above values have
neglected a possible variation of y with temperature,
because we are comparing frequencies measured

Branch

~, (LA)
~,(TA)
&6(TO)
Z, (TA,)
Z, (LA)
Zg (LO)

0.95
0.76
0.28
1.0
0, 56
0.60

v (16.0)/v (21.1)

1.91+0.17
1.91+ 0.24
2.03 + 0.22
2.18+0.14
2.04+ 0.18
l.95 +0.18
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compared to a seventh-neighbor MAS model. We
conclude from this that it is necessary to include
anisotropy between the c axis and the basal-plane
constants. We do not imply, of course, that the
force-constant parameters obtained from such a
fit represent the actual interactions between atoms,
since the harmonic approximation is inapplicable to
this solid. In order to obtain a fit to the dispersion
curves, i'he quantities g, &o, (q)(wherej is summed
over allbranches belonging to the the same irre-
ducible representation) were Fourier-analyzed to
obtain interplanar force constants which are linear
combinations of the atomic force constants. The
procedure for doing this is described in detail in
Ref. 12. The results showed that the interplanar
force constants involving interactions parallel to
the basal plane were consistent with interactions
up to at least six nearest neighbors, whereas the
interplanar force constants between the hexagonal
layers required interactions parallel to the c axis
which extended up to at least the third layer. Thus
the MAS model used involved altogether 18 param-
eters which are the 17 MAS parameters referred
to in Ref. 12, together with the force constant G~

which refers to the sz interaction between the origin
atom and its seventh neighbor. The notation is that
of Czachor. ' These 18 parameters were determined
by performing a least-squares fit to the interplanar
force constants, the elastic constants, certain fre-
quencies at 1N,

' and the lowest branch at the point H
in the Brillouin zone. These relations consisted of
27 linear equations and one quadratic equation, the
latter resulting from the so-called "optical correc-
tion" to the expression for the elastic constant C«
in terms of the force constants. The elastic con-
stants C», C~, C44, and C33 were obtained from
the initial slopes of the measured dispersion curves.
The elastic constant C&3 cannot be determined from
dispersion curves for symmetry directions, and
accordingly we have taken C» from the elastic con-
stant measurements of Franck and Wanner at
V = 20. 9 cm, after suitably scaling their data to
our molar volume, using Eq. (5). The fit obtained
to the dispersion curves using this 18-parameter
model is shown together with the experimental
points in Fig. 4. It may be seen that a good fit is
obtained with this model; the maximum discrepancy
occurs at M for the Z, (TA, ) branch and is of the
order of 10/g. The force-constant parameters ob-
tained in this way are listed in Table III. It was
found that the parameters a„b„g„a~,b~, g~, a3,
b„g„G„G2,G„and G4 could not be varied ap-
preciably without adversely affecting the goodness
of the fit. However, the parameters A&, B» A&,

82, A3, and B„although very much interconnected,
could be obtained in several equivalent sets to fit
the data almost equally well.

It was necessary to include the frequency of the

TABLE III. Force constants for the seven-neighbor
MAS model. Units are dyn/cm.

Neighbor GTF notation

Ai =7.678
Bg ——7.136
G, =48. 50

a, =15.72

fg =44. 96

gg = —25. 52

A2= —7.283
B2———1.415
G2=8. 881

a2= 1.122
g2 = —35.24

A3= 0, 5894
BB——0.9302
G3= 2.169

a3 ———0.06737
b3 = —9.078
g3 = —1~ 713

G4= 1.831

MAS notation

5) =0.271
&(„=46.342

is= 46. 342

a2-—58.480
p2„=1.100
p2 = —25. 520

i53=0.367
e3„=—7.283
r3 ——5.961

P4„=1.122
a4+P4 = —35.240

&5 = 0.0852
&5„=—0.433
Egg ——1.4S1

o.6= —9.011
P6„=—0.067
Pg =-1.713

Egg = l.831

lowest branch at the point H in the Brillouin zone
because the model gave a negative frequency at this
point when the model was left unconstrained. Be-
cause a low frequency at the zone edge seemed un-
likely, in the absence of experimental data at this
po~nt, the branch was constrained to have a fre-
quency of 0. 2 THz here. This corresponds to a
temperature of 9. 6 K and is sufficiently high that
contributions to the specific heat from points near
H will be negligible. This anomalous behavior at
the point H was caused by a near cancellation of two
large terms involving the G's and g's. Constraining
the frequencies at H resulted in a slightly worse fit
to some of the phonons along the symmetry directions.

We have used the model involving the parameters
listed in Table III to calculate the frequency distri-
bution function g(v) using the technique of Rauben-
heimer and Gilat. " The resulting g(v) is shown

in Fig. 6. As indicated in the figure, most of the
conspicuous critical points can be identified with
the predictions of the model for the two optic modes
at I' and the zone-boundary modes at M. We have
used this g(v) to calculate the temperature depen-
dence of the Debye e. This is shown in Fig. 7.
80, which is the Debye e at 0 K, is obtained as
47. 2 K, which is to be compared with the recent ex-
perimental value of 52 K obtained by Ahlers. ' The
theoretical curve dips to a minimum at T= 3. 4 K,
resulting from dispersion of the acoustic branches.
The decrease in 8 with temperature is also ob-
served in the specific-heat data; however, the min-
imum at 3.4 K is not reproduced. This may result
from extra contributions to the specific heat as-
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FIG. 6. Frequency distribution function of hcp He at
V~= 16.00 cm calculated using the 18-parameter force-
constant model which was fitted to the dispersion curves.
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sociated with the onset of melting. We have also
used the force-constant model to calculate the basal
plane and the c-axis Debye-Wailer factors as de-
fined in Eq. (2). The functions G„(T/Bo) and
G, (r/8, ) are tabulated in Table IV. At T = 4K, we have
G„=6. 366 and G, =7.906, resulting in a rather
large anisotropy of 2(Pg.

The motivation for using the force-constant model
as an interpolation scheme to calculate thermody-
namic properties of hcp He' was that in view of the
scaling of the frequencies with molar volume, the
above calculations may in principle be used to pre-
dict such thermodynamic properties over a wide
range of molar volumes. For instance, both the
( Bp/80) vs ( T/8, ) curve and the G„(T/8,) and
G, ( T/Bp) are universal functions independent of
molar volume in this approximation. Nevertheless,
it is possible that the model may not correctly rep-
resent the off-symmetry-direction dispersion re-

lations, except insofar as they are consistent with

Cf3 and hence must have the correct initial slopes
for the acoustic modes.

As mentioned in the Introduction, perhaps the
most important aspect of these results together
with the Brookhaven data is that they provide the
first detailed check of the self-consistent phonon
theory and its density dependence. The lattice
dynamics of solid helium were treated by GKW on
the basis of essentially replacing the usual force
constants in the Born-von Karman theory, which
are evaluated in terms of the second derivatives
of the interatomic Lennard-Jones potential at the
equilibrium sites, by such derivatives averaged
over the ground-state harmonic-oscillator wave
function of the system. The hard core of the effec-
tive interatomic potential thus obtained is softened
by introducing a short-range pair-correlation func-
tion in the wave function, i. e. , by writing

x 4'(rg, ~ ~ ~, r)))),

where @ (r„.. . , r„)is the usual ground-state har-
monic- oscillator wave function, and the shor t- range
correlation function is written as

f ( r ) = exp[- —,
'

Cv(r) j .
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FIG. 7. Plot of re-
duced Debye tempera-
ture vs reduced tem-
perature as measured
by Ahlers (Ref. 19) and
as calculated from our
frequency spectrum.
Q(expt) = 52 K, while
BQ(calc) = 47. 2 K.

In Eq. (7), Cis a constant parameter, and v(r) is
the Lennard-Jones potential The ef.fect of f (r) in
Eq. (6) is to modify the effective interatomic
potential whose second derivative is being averaged,
as well as to modify the averaging procedure. Self-
consistency is introduced by solving for the eigen-
values of the dynamical matrix and using these
eigenvalues in the wave function C (r„.. . , r~) in
Eq. (6) and redoing the averaging, until the pro-
cedure converges. A further complication is intro-
duced by the fact that the scattered neutron groups
are peaked at the positions corresponding to the
poles of the displacement-displacement correlation
function ( in the one)-phonon approximation) rather
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than at the frequencies given by the eigenvalues of
the dynamical matrix obtained from these above
effective force constants. Full details may be
found in the paper by GK%' and references therein.

Figure 8 shows the comparison between the GK%
calculations for V = 16.00 cm~ and our experi-
mental data. As has been noted earlier for the
I'A direction, the calculated curves, although in
reasonable agreement with the data, are generally
too low compared to the measured frequencies.
For this direction, the theoretical curves are about
16% lower than the measured ones. For the I'M
direction, the Z'(TO„)branch (scaled from the
21.2-cm' data) is predictedverywellby the theory,
whereas the theoretical Z, (TA„)is about 15' too
low at the zone boundary. The Zs(TA~) branch is
also in reasonably good agreement, the maximum
discrepancy being about 8%. The worst disagree-
ment seems to be for the Z, (LA and LO) branches
which are, respectively, too high by 30 and 21%
halfway to the zone edge. This is interesting in
view of the fact that all the other theoretical curves
lie loseer than experiment. At the zone edge the
theoretical LO branch is in good agreement with
the data. For the T, (TA,}mode, the maximum
disagreement with experiment also appears to be
halfway to the zone edge and is about 307o. For the
Brookhaven data at V = 21. I cm', the GKW theory
predicted dispersion curves higher than the experi-
mental curves for all the measured modes. Thus
it appears that although the theory is in semiquan-
titative agreement with the data at both molar vol-
umes, its prediction of the volume dependence of
the frequencies is not correct.

The intensities associated with some of the Z&
branch neutron groups behave somewhat anoma-
lously. For instance, the groups corresponding to

I

Q = —((,0,0)

lpga

I———MAS MODEL

GKW THEORV

C4

2

l.5

FIG. 9. Plot of the inelastic neutron structure factor
squared f g&{@l for the longitudinal modes along Z as
calculated from the empirical force-constan™odel and
from the GKW theory. These are given in units of
b {q e)~/M('&{q), where e is a unit vector along q.

the Z, (LO) branch at & =0. 5 and 0. 4 [q=(4v/~ps)
(f 0&0)] have intensities whichare not in accordance
with the structure factor defined by Eg. (3) and are
calculated either from the force- constant model ob-
tained above, or from the eigenvectors obtained
from the GKW theory. ' Figure 9 shows g~ (Q) for
the Z, (LO and LA} branches as a function of Q as
calculated from both the above models. To explain
the observed intensities of some of the neutron
groups at f = 0. 5 and g = 0. 4, one would have to
postulate that the g& (Q) for the two branches actu-
ally crossed once more before Q=(4n/~3a)
(1.5, 0, —1.5, 0), ending up with LO dominating at
the zone boundary. However, it is possible that
the anomalous intensities arise because of a mul-
tiple (Bragg followed by a one-phonon) scattering
process.

Finally, we discuss the anomalous neutron groups
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be damped out within one or two oscillations. How-

ever, one cannot rule out the possibility that there
are other types of excitations in the high-frequency
region of the phonon spectrum, including possibly
a continuum of single-particle excitations. It
should be noted that it is precisely the n2(LO) and

Z~(TA, ) branches, which we find greatly damped,
that the Brookhaven group was unable to observe
at their molar volume.
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FIG. 10. Anomalously broadened neutron groups ob-
served while searching for TO~ branch phonons along Z.

which were observed while searching for the Z,
(TO, ) branch phonons. Figure 10 shows the neutron
groups observed in these scans. It may be seen
that they all suffer extreme broadening and in some
cases exhibit considerable asymmetry. Because of
this broadening, the positions of these phonons have
been indicated by cross-hatched bars in the dis-
persion curve diagram of Fig. 4. Their mean posi-
tions correspond to frequencies which are surpris-
ingly high compared to the expected dispersion for
the Z~(TO, ) branch, which we note by symmetry
must join up with &z ( LO) at 1 and with &,(TA, )
at M. If one is to believe these mean positions, it
would imply that the Z4 (TO, ) branch dips abruptly
down near the zone edge to join up with T, (TA, ) at
M. It is possible that the mean positions of these
groups are considerably shifted by damping effects
which are beyond the scope of the current theories,
and, in fact, it is likely that more refined theories
mould have to explain the actual neutron group pro-
file rather than simply characterize it by a mean
position and a midth. As is the case with some of
the higher-frequency am(LO) branch phonons, these
neutron groups do not seem to correspond to mell-
defined excitations. If they are phonons, they would

V. CONCLUSION

We find that for the lower frequencies at least
(below 0. 8 THz), well-defined phonon-type exci-
tations exist in solid He at a molar volume of
16 cm', with no observable natural broadening.
The higher-frequency branches of the dispersion
curve, including the hz(LO) branch snd especially
the Z, (TO, ) branch, are subject to considerable
damping. Although the intensities of the observed
neutron groups drop precipitously as one gets into
the higher-frequency modes, due to the 1/&u and

Debye-Wailer factors in the cross section, never-
theless, there seems to be no pronounced deviation
from the conventional one-phonon cross-section
formula for neutron scattering. Our intensity
measurements are not sufficiently accurate to ob-
serve theoretically predicted deviations from this
cross section, in terms of a modification of the
Debye-Wailer factor, as recently proposed by
Gillessen and Biem~o and others. We have ob-
tained a parametrized force-constant model to.
be used as an interpolation scheme to obtain the
phonon frequencies all over the zone. This was
useful in characterizing the measured phonon
spectrum for solid hcp He, enabling other prop-
erties, such as structure factors and thermody. -
namic properties, to be calculated.

It is concluded that further work needs to be
done on calculating the damping effects on the self-
consistent phonons and perhaps in improving on the
short-range correlation effects in the theory, so
as to improve on the density dependence of the
theoretically predicted phonon frequencies.
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Helium-II heat-flow experiments have been carried out with the helium contained in small
channels {tubes &10 p in diameter d) having simple geometries and with the temperature dif-
ferences limited to -5 &&10 K or less. In this domain, the heat current density is found to
be proportional to the temperature gradient and the differential thermohydrodynamic equa-
tions of London and Zilsel should be valid. Comparison with the London-Zilsel theory shows
good agreement for most of our data with regard to the absolute magnitude of the thermal con-
ductivity & and its dependence on temperature. The experimental K values have a weaker de-
pendence on the channel size than the theoretically predicted square of d, and this size depen-
dence is a function of temperature. Our data for the largest channels (d - 8 p) and at the larger
heat current densities depart significantly from the London- Zilsel predictions. This differ-
ence is not explainable on the basis of a Gorter-Mellink mutual friction, but is consistent with
a dissipative flow for the superfluid depending linearly on its velocity. This superfluid dis-
sipative flow is comparable to that reported in other helium-flow experiments.

I. INTRODUCTION

In the helium-0 heat-transfer domain where the
simple "internal-convection" mechanism of Tisza'
and London is the only mechanism to be considered,
the heat current density should be proportional to
the temperature gradient and a thermal conductivity
is definable for the helium II contained in a channel
of particular geometry. London and Zilsel have
calculated the heat conducted in this domain by he-
lium II contained in a cylindrical capillary of diam-
eter d and find a mean thermal conductivity given by
(ps) Td~/32tf„, where ps is the entropy density of
helium EI, T is the temperature, and g„is the vis-
cosity of the normal fluid. Experiments have been
carried out in our laboratory in an attempt to test
the theoretical results of London and Zilsel. In or-
der to do this, small channels with diameters of
less than 10 p, were used and the temperature gra-
dients were restricted to values less than 3@103

'K/cm. Our earlier results, ' while showing linear
heat-current-density-temperature-gradient rela-

tionships, were complicated by an apparent depen-
dence of the thermal conductivity on the length of
the capillaries, similar to the length effect discussed
by London and Zilsel' and reported by Forstat. '
Those results have now been found to be spurious
and related to defects in the channels used in our
earlier experiments. The results presented below
have been obtained using new channels in which any
defects present play a minor role in the heat-con-
duction process. The bulk of our new data shows
good agreement with the London-Zilsel theory, with
no apparent thermal-conductivity length effect. For
our largest channels and at the highest heat current
densities, however, the results depart significantly
from the London- Zilsel prediction. This departure
seezns not to be related to the nonlinear behavior
associated with mutual friction but may be inter-
preted in terms of a dissipative flow of the super-
fluid depending linearly on its velocity.

Two successful attempts, utilizing well-defined
channels of simple geometry, to verify the thermal-
conductivity expression of London and Zilsel have




