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A group-theoretical analysis of the states of first-row atoms and their internal electrostatic
interactions is developed. The Hamiltonian is found to be completely expressible as a linear

combination of operators that are diagonal in U(3), operators diagonal in O(4), and operators

diagonal in both. This makes possible a simple and uniform treatment of the energy levels of

first-row atoms. We use it here to analyze configuration mixing between the 2s 2p" and
2p"' configurations, and determine the contribution of configurations of O(4) and U(3) sym-

metry in several types of mixed-configuration wave functions.

I. INTRODUCTION

It has been well known since the work of Fock'
and of Bargmann that the accidental degeneracy of
the energy levels of a particle in a Coulomb poten-
tial is due to the fact that the problem has as a sym-
metry group the orthogonal group of four dimensions
O(4). This group contains as a subgroup the usual
proper orthogonal group in three dimensions 0'(3),
associated with rotations in the physical space.
Thus, the Coulomb problem has a higher symmetry
than the one associated with an arbitrary central
potential.

The group O(4) continues to be a symmetry group
when we pass from 1 to Z noninteracting particles
in a Coulomb potential. The question that immedi-
ately arises is: To what extent will the symmetry
continue to hold when we introduce a Coulomb inter-
action between the particles? If the symmetry is
only weakly broken, the O(4) group would provide
us with new approximate integrals of motion, i.e. ,
new quantum numbers, for the atomic Hamiltonian,
at least insofar as we neglect any spin-dependent
contribution to this Hamiltonian. On the other hand,
if the symmetry is not retained in the presence of
the interaction, it is interesting to determine the
manner of symmetry breaking for the states that
are the basis for irreducible representations (IR)
of O(4).

We shall analyze in this paper the O(4) symmetry
breaking for a system of electrons that are filling
the 2s-2P shell of the common Coulomb potential
when we introduce an interaction between the elec-
trons. We shall also see that the states in the 2s-
2P shell can be classified according to the IR of a
U(3} group, which essentially gives the distribution
of the electrons between the 2s and the 2P shells.
We then discuss the symmetry breaking introduced

by the interaction between the electrons in the U(3)
classification scheme. Furthermore, we later take
into account the effect of the closed 1s shell when

the states are classified by the IR either of O(4) or
of U(3}.

We shall compare the results of our analysis with

the Hartree-Fock calculations of other authors, thus

being able to give a quantitative measure to the ex-
tent of symmetry breaking both in the O(4) and U(3)
cases.

We start our discussion with the introduction of
the classification schemes for the states in the 2s-
2P shell.

II. CLASSIFICATION SCHEMES IN 2s-2p SHELL ASSOCIATED
WITH IRREDUCIBLE REPRESENTATIONS OF U(3) or 0(4)

Consider the states in the 2s-2p shells of a com-
mon Coulomb potential for a system of n particles.
The states admit the following integrals of motion,
which will remain good even in the presence of a
central interaction: the total number of particles
n in the 2s-2p shell, the total spin S and its projec-
tion Ms, the total orbital angular momentum L and

its projection Ml, and the parity m. Further quan-
tum numbers are in general necessary to completely
characterize the states. We consider first configu-
rations that can be denoted (2s)~ (2P)"~, where d
is the number of electrons in the 2s subshell. The
states can then be characterized by the kets

~(2s)'(2p)""SM, I.M, v)
-=~ nSf, d) . (2. 1)

We shall denote these states by the shorthand nota-
tion on the right-hand side of (2. 1), where Mz and

ML, have been suppressed, as they are irrelevant
for calculation with central interactions. The kets
(2. 1) contain no other quantum numbers, as in the
2s-2P shell n, d with S, L, and m completely char-
acterize the states, as discussed in Appendix A.
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We also show in Appendix A that the kets (2. 1) are
characterized by the IR of a unitary group in three
dimensions U(3) associated with the 2P subshell.

In Tables I and II we give all possible values for
n, S, I., m, and d for states with n=0, 1, . . . , 8

particles. We have separated the states into two

sets. The first set is in Table I, where n, S, L, m

by itself characterizes the state; i.e. , there is
only one state for these quantum numbers. The
second set is given in Table II, where we have two

states for each n, S, L, m. This distribution is con-
venient for the presentation of the two-body matrix
elements discussed in Sec. II, which are also given
in Tables I and II. There are seven pairs of states
in Table II. Each pair of states of a given n, S, I.,
m has been termed a "complex" by Layzer and we

shall use this term henceforth. '
In the column after the d we include the IR of

U(3) characterized by the partition (It,hobo) of n-d.
We note that there is a one-to-one correspondence
between (h, Itaho) and d, once the quantum numbers

n, S, L, and m are specified.

As is well known, the Coulomb problem admits,

besides the angular momentum L'= rxp, another

integral of motion, the Runge-Lenz vector

A' = (2Zme') ' (L' xp —p x L') + (1/r) r . (2. 2)

Both L' and A' commute then with the Hamiltonian

X=p'/2m —Ze'/o (2. 3)

We redefine now the angular momenta and Runge-

Lenz vector by

2I 2 -f/2
L= —L', A= —

2 4 X A' (2. 4)

and find that the commutation relations between the

two vectors are

~L s I o 1= i'coo I.i

V-i "o 1= i 'got &~

[Ai, A„]=i cia, I, ,

(2. 5)

which are associated with a Lie algebra of an or-
thogonal group of four dimensions O(4). This group

Table I. One-component states of the L shell.

nSL' (h ih2h 3)d (p, v)

Numerical eigenvalue of

interactions eo/r;&
i&j

for hydrogenic basis

Eigenvalue of interaction Z V(r;, )

in terms of Slater integrals

lyl
1-,'0+
202+

201
2 11+
211"
3-'2

3—0'
3'1'
3-'2'
3p0
321
401
402
411
410
412
420
51,2-
5-,'0+
5/1'
512+

5g0
5~31+

602'
601
611'
611
7g1
71 P+

800'

(100)0
(000) 1
{200)0
(100)1
(110)0
(100)1
(210)0
(200) 1

(110)1
(200)1
(111)0
(110)1
(210)1
(210)1
(210)1
(111)1
(210)1
(111)1
{210)2
(220) 1
(211)1
(220) 1
(111)2
{211)1
(220) 2

(221) 1
(211)2
(221) 1
(221)2

(222) 1
(222) 2

(»)
(11)
(10)
(10)

br')
(11)
(20)
(10)
(11)
(11)
(00)

(»)
{11)
(10)
(10)

(00)

~In F~~~ and G~gg, i = 0 denotes 2s, i = 1 denotes 2p;

0
0

{Z'e /512ap) {94.8)
{Z'e /512ap) (98)
(Z'e /512ap) (84)
{Z'e /512ap) (68)
(Z'e /512ap) (268. 2)
(Z'e'/512a, ) (262)
(Z'e /512ap) (265)
(Z'e2/512a0) (245. 8)
(Z'e /512ap) (252)
(Z'e /512ap) (220)
{Z'e2/512ap) (528)

(Z'e /512ao) {498)
(Z'e2/512a0) {516)
(Z'e /512ao) {487.2)
(Z'e /512ap) (456)
(Z'e /512ap) (798 2)
(Z'e /512ap) (860)
(Z'e /512ap) (863)
(Z'e /512ap) (843. 8)
(Z'e /512ap) (782)
(Z'e /512ao) {818)
(Z'e /512ao) (1222. 8)
(Z'e /512ap) (1294)
(Z e /5 12ap) (1212)
{Z e /512ao) {1264)
(Z'e /512ap) (1726)
(Z'e /512ap) {1794)
{Z'e2/5»a, ) (2324)

o&
=

Ioooo&

0

0

Fff+»Fff0 M 2

Fpf+ 3 Gpi
0 1 1

5 Ffi0 g 2

0 I 1Foi 3 Goi
3Fif —

25 Fi 1
0 M 2

2F01 ~Gof +F11 +
5 F110 1 1 0 2 2

2Fp, +-,Gpi+Fii 5 Fff0 i 1 o

2Fot
—'

Go~ oFit ++IFtt
3F11 SF11

0 3 2

2Fof 3Goi +F11
0 2 1 0 1 2

3Fo, +3F„
5Foi+5F«-foFIi
3Fpi ~G()f +3F)f

01 3 Oi ii 5 fi
0 & 1 0 2

5Foi —oGtt+5F»-kF«
3Foi —Gof '3F«- 5F«0 1 0 3 2

Fpp
+ 6Fpi —Gpi + 3F1 1

—
25 F11

0 0 1 0 ~ 2

4Foi —3 oi'6Fif0 2 1 0

4Fof +6Fii0 0 & 2

4Fot oGti+6F&&-QFq
Fpo'6Foi —Goi '3F 1

—5Fii0 0 1 0 2

4F01 G01 6F11 5 F11
0 2

Foo+ 6Fot rGft +6F)t +Ftf
Fot + OFtt - *FIt - oGt(
00+ F()f 3

0 g 1 0 2

5Foi Goi+ 10Ff f F1 f
0

Fpp 0Fpf 3 G01 10Fif 'F1 1

o o ~ o o 4

6Ft& Got +15Ffj fFtf
FM+12Fo&+15F&& IFu 2G4
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TABLE II. U(3) matrices.

200+

3&1-

400+

402+

411+

521

600

(hih2h3) d

(200)0

(000)2

(210)0

(100)2

(220) 0

(200)2

(220) 0

(200)2

(211)0

(110)2

(221)0

(210)2

(222) 0

(220)2

Numerical matrices for

the interaction

111 —15/3 l" —15(3 77 i
i 2 279 —15/2)

—15/2 228

tt 558 —30 l
o (-30 490 /

(541.8 —15 l
o k —15 473. Si

tt'531 15
Z 8

4SS)

/894 15' 2l

0
I), 1&/2 809 i

1341 1&/ 3

512ap

Matrices for interaction V(r~f)
f

in terms of Slater integrals

/Fn+. F[i
!

—(1/ 3)G', o)

k —(1/V 3)Gip

(2o-'/')

—(9/2/9)G]p Epp ——'Ggp+2Eoi J

(
——.Gip l

Gio Foo+ 4Fof 3Gio+Fif+ "Fif )2 i 0 0 2 i 0 2 2

6F„—$ F»

ip Fpp +Wpf 3Gip +Fii +~Fff1 i 0 0 2 i 0 M 2

6Fii SFfi
0 & 2

~Gip

3G10 Fpp+4Fpi 3Gfp+Fii 5 Fff1 i 0 0 2 i 0 X 2

()/ 2/3) Gip

(
15Fu 5 Ff/ (1/ 3) G[o

(1/ 3)G[p Epp+ SEE( o G[p+ SF[))

contains a subgroup, the proper orthogonal group
of three dimensions 0'(3) associated with ordinary
rotations whose generators are L.

We could then try to characterize the set of states
in the 2s-2P shell by IR of the O(4) group. For this
we are required first to know the quantum numbers
that could characterize the IR of O(4). There are
many ways of defining them, but one we find partic-
ularly transparent involves the introduction of the
two auxiliary vectors

g)t= o(L+A), gt = o(L —A), (2. 6)

and, moreover, either both p, and p are integer or
both are semi-integer. The states in the 2s-2p
shell can then also be denoted by

I
ns L'()1 v) ) . (2. 10)

When dealing with the problem of a single particle
in the Coulomb potential, i. e. , when L and A are
given by (2. 4), it is obvious that A L= 0 and thus
gg '= 9/ . Single-particle states are then charac-
terized by the IR (V, )1) of O(4}, and it can be easily
shown~'4 that

which from (2. 5) satisfy the commutation relations

[g)ty, 9)to]=o&goo 9))o, [9t1, 9to]=italo, gi, ,

3C= —(Z m'e /2IP) (29Jto+ 291P+1) '

= —(2 m e /2K ) (49 t + 1) (2. 11)

[g)tt, 9t o]= 0. (2. 7)
We conclude that

4)1()o+ I)+ I= (2)1+I)'

(v, v)

As from (2. 6), L= 9)t+gt, we conclude that

(2. 8)

(2. ())

The ne generators g)t, and 9t
&

of O(4) show then ex-
plicitly that this group is locally isomorphic to the
direct product of two three-dimensional orthogonal
groups. The IR of this group are determined by the
eigenvalues of the operators g& and 3), which we
could denote, respectively, by )1(V, +I}and v(v+1).

We shall then characterize the IR of our O(4)
group by the two numbers

corresponds to the square of the principal quantum
number. Thus the 1s shell corresponds to p. = 0,
the 2s-2P shell to p, = ~, the Ss-3d shell to p=1,
etc. In particular, in our shell of interest the sin-
gle-particle states could be characterized by

(v, v)Lt)f=( —,
' —')00 or (-,'-,')IM, (2. 13)

the first corresponding to w and the second to 2p.
The states from 0 to 8 particles in the 2s-2p

shell can then be built from the single-particle
states (2. 13) by using the standard rules of addition
of angular momenta for ~ and g( separately, as
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U(8) 2 U(4) xSU'(2) . (2.1 4)

The group U(4) can admit several chains of sub-
groups, two of which are of particular interest to
us. The first one contains a unitary group in three
dimensions associated with the 2P subshell, and the
second the orthogonal group in four dimensions.
Both chains contain as a subgroup the proper orthog-
onal group of three dimensions 0'(3) associated

well as for their sum L, thus obtaining the values
of the quantum numbers (p v) L appearing in the ket
(2. 10).

In Tables I and III we give the values of (p, v) for
the IR of O(4) associated with the states charac-
terized by n, S, L, v. As in the case of U(3), we
separate our states into two sets, the first in Table
I, where there is only one state for each n, S, I., m,

and the second in Table III, where there are two
states for these quantum numbers. The seven
2x 2 matrices that connect the states in the O(4} with
the states in the U(3) classification are given in
Table IV.

The group-theoretical background on which these
tables are based is discussed in detail in Appendix
A. There we show that the states in the 2s-2P shell
are characterized by the completely antisymmetric
IR [I"]of a unitary group whose dimensions are
equal to the total number of single-particle states
in the 2s-2P shell, i.e. , U(8). Furthermore, this
group admits as a subgroup the direct product of a
unitary group of four dimensions U(4) associated
with the configuration part of the states and a unitary
unimodular group SU'(2) associated with the spin
part, i.e. ,

with rotations in ordinary space, i. e. ,

(4( (U(3( 0) ~ (0'(3) 0) (2. 15a)

U(4\a O(4(Z ( ) (2. 15b)

We assume the Condon-Shortley phase conventions.

The quantum numbers appearing in the ket (2. 1) are
related to the IR of the groups in the chain (2. 14},
(2. 15a), while those in the ket (2. 10) are related to
the chain (2. 14), (2. 15b). Thus, for example, in

(2. 10) n, S, L, v, and (1(v} are related, respective-
ly, with the IR of U(8), SU'(2), O'(3), and O(4). The
IR of U(4) is dependent on n and S, as indicated in

Appendix A.
By using well-known branching rules of the uni-

tary and orthogonal groups, all the possible quantum
numbers in Tables I and II were obtained, as well
as the explicit form of the kets (2. 1). By determin-
ing the matrices of A2 29q2+29i2 L2 with respect
to the kets (2. 1) for the seven two-dimensional
cases, and then diagonalizing them, we get the re-
maining states (2. 10), and thus the matrices given
in Table IV.

When using A it is not necessary to assume that
one is dealing with hydrogenic functions and that it
is expressed in terms of the dynamical variables
as indicated by (2. 2) and (2.4). One may define a
general A by the matrix elements of one of its com-
ponents and the commutation relations (2. 5). We
choose the defining elements to be

&OI»= I».&

nSL Q v)

(00) Z' e 80 —16v 3

(11) —16&3 108

TABLE III. 0(4) matrices.

Numerical matrices for
the interaction P e /y&f

l&f

$Ff I+ F00 + F» —y G 1 0
0+1 0 +3

—to get —(J3/4) Ff f
+ (&3/4) F()p (&3/10) F1 f (&3/6) G f 0

Matrices for interaction ~ V{~ )fQ 4/

in terms of Slater integrals

(45/4) Ft 1 ( /3/4) 00 ( /3/ )Ef 1
—(~3/6) Gf

1 p 3 p 1 2 1~F«+ 4F00' to Ftf + kGfo

(y 2)
3211-

Z' e 242 —22v 2
512ao —22&2 265

Fpo + 3Fpt 2 « —
2I 10

0 +2 0 ~ Fo 11 1

W2/3) E(lp (2&2/3) () t —vt 2 F1 1
—(R/ 2/27)

{~2/3)E00 + (2~2/3) Ept vt 2Ef 1 (5v 2/27) Gf

+4 0 0 2. 1
3 00 3 01 11 27 10

, (00) Z'e 494

(11) ' -34

—
34)

(
oo

' 2Fot '
2 Fti +

5 Fit —Gfo
0 ~Z 0 2 1

0 0 0 0
2 00 2 0( 2Ett 5» 3 G10

1+4 0 p2~oo 2Fpf 2 if +
5 &~f1 & fo

&Eoo+2Eot+ 2 Fit+ s F»+3Gfo0 0 ~ 0 ~ 2 1 1

(11) Z'e 492. 8 —34 ) 2Fpo+2Fol 2 Ett 25 F» $Gfo

(1o)
512ap J 1 o o & o 1 2 1 t34 522. 8J 2Foo+2Foi 2 Fif '

5 Ftt —3 Gfp

a Fop + 2Eoi —
2 Et t ' s Ef I 3 Gip

p 4 ~Epp+ 2~of + rF» 25~~if

, (11) Z'e 512
512(20

(20) —34 482

2F00 - 2Fpi 2
F" —~E

11

1 0 ~ 0 & 0 1 2 1 12Foo ' 2Fot —
2 Fii ' s F«- 3G~0

f ~ 12~00+ 2Fof —
2 ~ if W& if 3G«

gmqo + 2Fpi +
2 r 11

—
5 Ftf 3G10

Z3 e2 17 3 23 3~2 2.Fo o + lfi. E (~2/3) pp 2&2 Fpf + (7 2/3)F —(4~2/15)Etf + (2v 2/9) Gfp
(&$) 23. 3v2 885.7 —(i&2/3)Eoo —2v2Fpt+(7v2j3)F(t-4v 2/15)F»+ {2v 2/9)Gio F 0+2F + +3 Fp00+ Fot 3 11 15 ff g Gfp

(00) Z' e 1242 18&)
(11) 18vr3 1338

3 0 0 33~ " 2 14E00+6Eof+ 4 ~it 10 Etf —IGio

(H3/4) Fp 0 2/ 3F()1
+ {~3/4)F

1 I
—(3&3/1 0)Ff f+ (W3/6) G

1p

—(v 3/4)Foo —2v 3Epi & ( ~/ )Ett ( v / 0)Fif + (R3/6) Gio0+ag@~32 i
4 ~ff 10 «+ 0 Gip
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&SL'

200+

W3/2

1/&3

TABLE IV. Transformation matrices between
U(4) ~U(3) and U(4)ao(4) chains.

A (p, ) 0
0 (00) &3/2

determined central interaction V(r,&), rather than

by the e /rs associated with the Coulomb repulsion.
We shall assume in this section that our single-

particle states are those of a Coulomb potential of
charge Z'. Thus in the matrix elements of H with
respect to states with definite number of electrons
n, the single-particle part contributes a constant
and we need only concern ourselves with the evalua-
tion of the matrix element

400'
(00) 1/ 2

—1/ 2

1/ 2

1/v 2

(n —1) (n S L w d' ~V(r &z) ~
n S L w d )

or, equivalently,

(n- 1) (nS Lw(pv)'
~

V(r&z) ~nS Lw(pv) ),

(3. 2a)

(3.2b)

402'

411'

521

600'

(20)

(10)

(00)

1/W2

—1/ 2

1/W2

—1/W2

1/W3

&3/2

1/W2

a/W2

1/W2

1/W2

1/v 3

—W3/2

which are diagonal in S, L, and w, as V(r,z) is a
central force.

In Appendix B we discuss fully the evaluation of
the matrix elements (3. 2) by noting that the operator
corresponding to EV(r, &) in the second-quantized
picture can be expressed as a sum of operators that
are diagonal for states either in the U(4)DO(4)
chain, or in the U(4)D U(3) chain, or in both. Fur-
thermore, the diagonal matrix elements of these
operators can be immediately evaluated, as they
are all essentially Casimir operators of groups in
the chain (2. 14), (2. 15). Introducing the abbreviated
notation for the Stater integrals, ' we obtain in (B8)
of Appendix 8 the explicit form of the two-body in-
teraction within the I shell. For the case in which
d is either 0 or 2, it is easy to see that the Casimir
operator (j of U(3) can be expressed in the form

For hydrogenic functions with Z =1, if

[ 2s) = (32w) ' '(2 —r) e " '

then we must let

~
2pg = —(32w) ~ we "~

(2.1Ia)

(2. 17b)

q = 5(st —',0) ——,'(x, —m)' —2s'. (3. 3)

It follows then for the states in the even complexes
of Tables II or III, the interaction operator takes the
form

A generalized Runge-Lenz vector defined in this
way is related to the hydrogenic vector by the same
unitary transformation that transforms the 2s and
2p functions of Eqs. (2. 16) into hydrogenic 2s and
2P functions.

III. HAMILTONIAN OF PROBLEM AND ITS MATRIX
REPRESENTATION FOR STATES IN 2$-20 SHELL

We shall first consider that our system of elec-
trons in the 2s-2p shell has a Hamiltonian of the
form

As this Hamiltonian is acting within the shell, we
may consider it as an effective rather than the ac-
tual Hamiltonian. Thus we have designated the
charge of the nucleus by Z' rather than by the full
Z of the atom in question, to stress that it may be
an effective rather than actual charge. We further-
more represent the interaction by an, as yet, un-

v= —,'F'(2s, 2s) ~(m —1)+F'(2s, 2p) 0(m. -m)

+~8G'(2s, 2p) (a' —st- 2z)

+-,'F'(2P, 2P) (m-&)(x-m —1)

+~25F (2p, 2p) [10(5L-'D) ——,(3t —&) —2Z —6S~].

(3. 4)

Thus the two-body interaction appears as a linear
combination of operators that are diagonal in the
U(3) basis only: '.0, B, and x&; an operator that is
diagonal in O(4) only: 8; and operators that are
diagonal in each basis: 3t., ~, &, and S . Denoting
them, respectively, by 'U„, Vo, V„o, we get

+u+~ 0++so&

'Fo(2s, 2s) n(m ——1) +F (2s, 2p) ',0(z —&)

——,
'

G '(2s, 2P ) & + ~ F (2P, 2P ) '.& ( D+ 1 —2~&)

—$ F'(2P, 2P) r&(&- 2st+4),

v, ,=~BG'(2s, 2p) &',
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1:„,=-~6G'(2s, 2p)&+-,'F'(2p, 2p) ~t(;n —1)

Fa(2P, 2P) [5'n(x —4)+3r. +12~ ] ~ (3. 5)

To evaluate the in-shell contribution to the energy
of states of Table I, one of course simply inserts
the appropriate eigenvalues into (3. 2).

To evaluate the contribution of the nondiagonal
operators, one makes use of the transformation
brackets of Table IV,

&nSL vdlnSL v(p. v)&-=(dl(uv) &. (3. 6)

Thus

(3. I)

&(pv) I~„I(}v)) = &(pv)'I» &2I&.l» &21(»}&.

In the first case the sum contains two terms, but
in the second only the term with d = 2 contributes be-
cause 'o„annihilates U(3) states with d = 0. In this
manner one obtains the results of Tables II and III.

Tables I-IV provide us then with the fundamental
results we need for any calculation of energies of
atomic states between lithium and neon. However,
we have not, as yet, included the contribution of the
(1s) electrons in the closed-shell configuration.

IV. INCLUSION OF EFFECT OF ls SHELL

The states we mould like to consider nom have,
when classified by the U(4)DU(3) chain, the config-
uration (ls} (2s)~ (2P)"~, where n+ 2 is now the
total number of electrons. The corresponding kets

I(1.)'(2s)'(2p)" SM L'M. ) -=!ns L'd) (4. 1)

could still be denoted by the shorthand notation of
the right-hand side, but we use the round bracket

I } to distinguish them from the states (2. 1) with
angular bracket I ), where the 1s shell was not
included.

The Hamiltonian of our problem now has the form
~+2 1 rf +2

8= Ql —p(+ U(r;) + 5 V(r;y}, (4. 2)
, (2m

where for both the common and interacting poten-
tials we assume, as yet, undertermined expres-
sions.

The inclusion of a closed shell in the analysis has
been discussed both by Condon and Shortley and by
de-Shalit and Talmi. ' The matrix elements of H

with respect to the states (4. 1) are given by

2I(ls ) + d f(2s ) + (n —d) f(2p)

U(4) 3 O(4) rather than by the U(4) 3 U(3) chain, the

1&&1 matrices for which n, S, L, and g completely
characterize the states remain unchanged, but the
2~ 2 matrix elements have to be obtained by carry-
ing out a similarity transformation on (4. 3) using the
2&& 2 orthogonal matrices of Table IV. This has
already been done in Table III for the last matrix
elements in (4. 3), so we need only to carry out the
transformation for the part that is associated with
the interaction of the (ls) with the (2s-2p) shells.
We thus obtain the matrix elements of the Hamil-
tonian (4. 2) with respect to the states (4. 1), or the
corresponding states where (p.v) replaces d.

with eigenvalues

(
EV„),

E, = —,
' [E,+ E

~ + [(E,—E ~) + 4 V,q]
' ~ ~ ]

and corresponding eigenvectors (C„,C„), we may
measure the deviation from a diagonal matrix in
several ways. Define parameters

&-=E, —E~ and 5= V,~/ .O

A convenient criterion of the energy effect of the
off-diagonal elements is then given by

One measure of the effect of t/",
~ on the eigenvectors

is given by the deviation of the ratio )C~, /C„~ from
zero. We have

l =,'c„/C.
I

= I~I/15I.

Another natural measure is supplied by the overlap
between the vector (C„, C~, ), say, and the vector
(1, 0), which we measure by the square of their
scalar product. Table V lists a few representative
values of e(5), }W. (5), and this overlap.

Using the analysis of the previous sections, let
us now determine the extent to which the two O(4)
or U(3) configurations of a complex interact. The
1/Z expansion allows us to begin with hydrogenic
systems and consider their transformation into
Hartree-Fock and extended Hartree-Fock systems.
One writes

Y. ESTIMATION OF SYMMETRY BREAKING
AND CONFIGURATION MIXING

The fundamental criterion that a perfect quantiza-
tion scheme must satisfy is that it diagonalize the
interaction of interest.

For a matrix

+F (1s, ls)+ 2dF (1s, 2s)+ 2(n —d)F (ls, 2p)

—d G (ls, 2s) ——,(n —d) G'(1s, 2P)

ff=~=g —,v, ——+ —5I, 1 1

t j ~ i&/ 0)f
where

(5. I)

+ (matrix elements in Tables I or II). (4 3}

Had we chosen to characterize the states by the
p, zr, , v;—=.=—(-1) '; p;= Ip~l, etc.
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TABLE V. Relation between measures of symmetry
breaking.

Overlap

0.05
0.10
0.25
0.50
1.00

0.3
1
6

21
62

0.05
0.09
0.24
0.41
0.62

0.998
0.990
0.949
0.854
0.724

and one then considers the final term as a perturba-
tion which, at first, operates within the manifold of
hydrogenic configurations. In terms of operators
of the groups O(4) and U(3)

H' = —
2 Z((&4(+L(+1) '+(I/Z) V-=H(&+(1/Z) V,

(s. 2)

where V is the operator of Eqs. (3.4) and (4. 3).
It is to be understood that A& is constructed from
the dynamical variables p, and w, , while in V, A
=ZA(, L=FL„and S=gS, .

The degeneracy in each hydrogenic complex needs
first to be removed, and it has become evident that
this is an important point in ordinary Hartree-Fock
calculations where systematic discrepancies exist
between single-configuration calculations and ex-
tended, two-configuration calculations that are re-
latable to just this degeneracy. ' We shall begin
by considering the contribution to the first-order
configuration mixing that is due to interactions with-
in the L shell at large Z, and then let Z approach
n. Later, we will allow Z to increase by 2, and
put two electrons in the K shell in order to consider
the consequences of the interaction with the real
core.

From Eq. (3.4) we can immediately obtain the
conditions that would preserve O(4) or U(3) quantiza-
tion within the shell. The portion of the operator

'U, =JG'(2s, 2p) a' (s. 4)

If there were no interaction 'Uo, the eigenstates of
0' would be eigenstates of U„also. Now because

&„Id&=0 H d=o, . s)

it follows that in the presence of z& a and x&„0 [Eq.
(3. 5)], 'U„determines the energy of a U(3) config-
uration, 8~, with respect to the configuration with
no 2s electrons. It follows that

«»)'I'I(») &
= &(»)'I» &2I~.I2& &2I(»»
= &(uv)'I» (&a —&o) &2I(uv)),

(s. 5)
where the right-hand side of (5. S) is a consequence
of the definition

h. =«IH. +&..+~.ld& (5 7)

The O(4) basis therefore diagonalizes the Hamil-
tonian if and only if the two U(3) configurations are
initially degenerate, that is, degenerate in the ab-
sence of vo. On the other hand, U(3) cannot be a
perfect symmetry unless the exchange integral
G'(2s, 2p) vanishes. This is because in the expres-
sion for the U(3) off-diagonal elements

(3.4) that is not diagonal in O(4) is

u„=(- —,'F'(2s, 2s)+ —,'F'(2p, 2p) —i-O'(2s, 2p)
——',F'(2p, 2p)}n

+I-,'F'(2s, 2s)+-,'F'(2P, 2P) -F'(2s, 2P)

-$F'(2p, 2p)} m'

+(F'(2s, 2p)-F (2p, 2p)+ ,'F (-2p, 2p)}st& (s. 3)

The portion that is diagonal and that has different
eigenvalues for different O(4) members of the same
complex is

«'I&. ld&= ~ «'l(»»«»)l&. l»)&«»)ld&
gP

=i-G'(2s, 2p) 2 &d' l(uv)) 2[u, (u+1)+ v(v+1) —f(f+ I))((uv) ld & (s. s)

the sum never vanishes, as can be seen from
Table IV.

For hydrogenic functions the Slater integrals
have the following values:

Inserting these in (5. 3), we obtain
Z'e 1 (250'D+ 256 + IOKX&} . (5. 9)ap

Similarly, (5. 4) yields
0( )

Ze 77
ao

Z'e 45
ap 512 '

F'(2s, 2p) =
512 '

Zl 2

( )
Z 93
ao

Z~ 2

F'(2p, 2p) =
ap 512

'

Z'e' 75
ao 5120 (5. 10)

From Table IV we find then that the contribution of
(5. 3) to the O(4) off-diagonal elements is

((~ &'IU. I(~ &&=&(~~&'l»&21(v &&(,
(s. 11)
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TABLE VI. U(3) and O(4) overlaps of eigenkets of
I -shell interaction for hydrogenic functions.

Complex

200
3—1
400
402
411
511
600

U(3) overlap
Lowest state

0.76
0.88
0.87
0.96
0.96
0.95
0.95

O(4) overlap
Lowest state

0.72
0.67
0.83
0.70
0.70
0.86
0.92

while its contribution to the difference between the

diagonal elements is

(5. 12)
In Tables II and III we have given the total matrix
elements of the operators (3. 3) for kets composed
of hydrogenic functions. Diagonalizing these ma-
trices using (5. 11) and (5. 12), one obtains the eigen-
vectors of each complex. In Table VI we display
the overlap of the lowest-energy eigenvector of each
pair with the corresponding O(4) and U(3) eigenvec-
tors. It is evident from the table that while the in-
teraction acts to break both U(3) and O(4) symmetry,
U(3) quantum numbers retain more validity than
their O(4) counterparts in this basis set. It is also
evident that, from n = 3 on, there is a general ten-
dency for O(4) quantization to improve as the num-

ber of electrons increases.
Consider now the effect of continuously increasing

the parameter 1/Z from an infinitesimal value to
the value ~ to3 that is appropriate for second-row
atoms. The complete solution of the extended
Hartree-Fock problem for each value of the param-

eter 1/Z will produce values for each of the F, G

integrals. It has been apparent for some time that
the Z dependence of these values is a very nearly
linear one for a wide range of atoms and ions in

their ground and excited states. From the recent
tabulation of Condon and Odabasi, one finds that
for 6 (Z ( 20 the integrals for ordinary configura-
tions obey the following relation remarkably well:

It,', (Z) = (Z s")R-',(e) It'=F', G' (5. 13)

where R(H) is the value of R obtained using hydro-
genic functions with Z = 1, and the screening param-
eters s~~ depend upon the configuration e as well as
the orbitals a and b. In Table VII we have cal-
culated average values of the parameters s by in-
verting (5. 13) and inserting the tabulated values of

Z, R,&(Z), and the hydrogenic integral. Deviations
from (5. 13) become appreciable for Z & 5, so the
screening parameters have been calculated using
Z values greater than 5.

It is apparent that even for values I/Z&$ there
has been a pronounced shift of the Hartree-Fock
values below the hydrogenic values. The screening
parameters should therefore be dealt with in the
first-order terms of the 1/Z expansion, using
screened hydrogenic functions as Layzer has em-
phasized.

With a screening parameter $', common to all
orbitals, we may then write

E'= T,(Z —$') + V, Z(Z —$')+ (eZ —$'), (5. 14)

where T„V,, and &1 are, respectively, the kinetic
energy, nuclear electronic potential energy, and
electronic repulsion energy when hydrogenic orbitals
with Z = 1 are used to build the configuration e.
Choosing $' variationally and making use of the
virial relation 2T, = —V„one finds

TABLE VII. Z dependence of Hartree-Fock Slater integrals (Ref. 9).

Config.

ls22s2
s 22p2

ls22s2p

] s22s22p2

1s22s22p4

Integral
0

0

Fp,s,
F2 g,
2 2p

1

Fags
0

F2 y
0

Gt

0

Gp pp
1

0

Fgpg

Sly

1.503 56
2. 132 98
2.301 32
l.749 62
1.11002

2.014 12
2. 29472
1.549 31
2.71473
2.964 40

2. 573 55
2.928 40
2.050 53
3.455 37
3.810 74

0.300 78
0.363 28
0.175 78
0.324 22
0.175 78

0.300 78
0.324 22
0.17578
0.363 28
0.175 78

0.300 78
0.324 22
0.175 78
0.363 28
0.17578

0.32408
0.38632
0.185 29
0.362 68
0.231 13

0.297 15
0.354 29
0.218 17
0.413 15
0.20204

0.290 3Q
0.343 04
0.208 76
0.401 25
0.196 53

0.303 49
0.386 18
0.177 76
0.328 42
0.18108

0.302 14
0.328 70
0.182 23
0.370 29
0.179 37

0.301 08
0.328 39
0.18347
0.370 45
0.17963

0.301 71
0.365 11
0.176 61
0.325 76
0.177 64

0.301 45
0. -'326 03
0.178 35
0.366 10
0.177 22

0.301 13
0.32608
0.179 21
0.36641
0.177 44

Difference of integrals for Z+1 and Z
Z=n Z=n+5 Z =n+10
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Note that $ is independent of the nuclear charge
Z and so is appropriate to finite values of the ex-
pansion parameter 1/Z. It is evidently necessary
also to improve this approximation in first order by

minimizing the energy with respect to individual

orbital screening parameters

while taking into account the necessity of orthogo-
nalizing the resulting radial wave functions. There-
after, as Layzer' has shown from an analysis of the
experimental data, the first-order 1/Z expansion
gives results that are much better than those of the
usual theory dealt with in Condon and Shortley.

If one chooses $' according to the relation (5. 16)
for the lower states of our L-shell complexes, and

then minimizes their energy with respect to (~2, and

g», one finds that the energy is changed only very
slightly and that $~ fz&= $'. Thus in the series
with two electrons in the L shell we have fz~- fz,
& 0. 02, and the energy lowering when Z = 2 is less
than 0. 0001es/ao or 0. 004% of the difference in en-
ergy between the upper and lower state, while in
the series with six electrons in the L shell we have

$z~ —(z, &0. 2, and the improvement in the energy
when Z = 6 is 0. 014es/ao or 4%%up of the difference in

energy between the upper and lower state.
In short, as one expects, in the L shell, intra-

shell shielding effects are of minor importance when

there is no K shell. Consequently, as Z»n, all
the L-shell electron repulsions should remain pro-
portional to Z -s. If complete Hartree-Fock cal-
culations were done on these neutral atoms lacking
K shells, treating them as doubly excited states of
neutral atoms, the matrix elements of 'Uo and 'U„

would each be proportional to Z -s. Consequently
we expect to find the same configuration-mixing
parameters when Z =n that one finds as Z» ~ .

Let us now deal with the effects of the interaction
between the L shell and the core when the interac-
tion is no longer simply a Coulombic attraction to
the nucleus, but is the interaction with the nucleus
and the K-shell electrons. For this purpose we
replace the operator (3.4) by the operator of (4. 3)
and suppose that in the neutral atoms the nuclear
charge is increased by 2, as the K shell is doubly
occupied. The differences in symmetry breaking
that we find are then due to the difference between
a purely Coulombic interaction of the L electrons
with the nucleus and the shielded interaction due to
the presence of the K electrons. The additional
operator involved is diagonal in U(3) but not in O(4).
As is wellknown, it separates the energies of the con-
figurations 1s 2s 2P'and 1s 2p*' by amounts in ex-
cess of e /ao. [An algebraic estimate of the effect
of the core interactions in breaking O(4) symmetry

TABLE VIII. U(3) and O(4) overlaps of eigenkets of
K- and L-shell interactions for hydrogenic functions
with 2' =1.

Complex
U(3) overlap

Atom Lowest state
O(4) overlap
Lowest state

200
3—1
400
402
411
5-1
600

Be
B
C
C
C
N

0

0.949
0.972
0.960
0.989
0.988
0.982
0.980

0.465
0.496
0.697
0.605
0.605
0.783
0.863

~Calculated from eigenvectors of Ref. 10.

has been given by Perelomov, Popov, and Teren-
tev. j If we allow it to act on hydrogenic complexes
that are also interacting among themselves via the

operator (3.4), we get the zero-order results of

the 2 -expansion approximation to the extended
Hartree-Fock theory of normal atoms. '' The
overlap of the resulting functions with O(4) and

U(3) IR is given in Table VHI.
We may improve these functions somewhat if we

include in them a common nuclear charge param-
eter ~ ' and minimize the energy with respect to
it. The overlap of the resulting eigenfunctions with

O(4) and U(3) functions is displayed in Table IX.
As one would expect, the U(3) classification retains
a large measure of validity for both sets of calcula-
tions, while O(4) does not.

Clementi and Veillard and McKoy and Sinanoglu
have carried out extensive SCF calculations on
first-row atoms and have allowed for the interac-
tions between configurations of a number of com-
plexes. In Table X we indicate the extent to which
the Clementi-Veillard wave functions overlap O(4)
and U(3) functions. It is apparent that in all cases
the complete interaction again favors U(3) symme-
try. In Table X we also compare the Clementi-
Veillard mixed configurations with the hydrogenic
ones that are appropriate as Z- ~. The effect of
moving from infinitesimal 1/Z to finite I/2 is seen
to be extremely small, even in the case of Be,
where 1/Z =-,'.

Sinanoglu and Alper have concluded that, in B
and C, O(4) symmetry is preserved by the L- hse II
interactions between Hartree-Fock functions that
have been calculated for atoms with complete K
shells. ' We examine this point in Tables XI and

XII. In neutral atoms it is apparent that for this
interaction O(4) is a much better symmetry than

U(3). However, this does not remain true as one
successively removes electrons from oxygen to ob-
tain members of the N, C, and B series with suc-
cessively higher nuclear charges.

In Table XIII we have analyzed the contributions
to the O(4) off-diagonal elements in the neutral
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TABLE IX. U(3) and O(4) overlaps of hydrogenic functions with energy-optimized scale parameter.

175

Atom and
multiplet

Be 'S'

B P

C 'S+

C D+

C'P+

N P

O'S'

Z' optimal

3.376

4.159

4.899

4.907

4.914

5.646

6.369

Minimized
energies

(a.u. )

—14.2
—13.504

—23.8
—22. 65

—36.0
—34.6

—36.16
—34.8

—36.33
—34.S

—51.9
—50

—71.0
—68.7

Experimental
energies
(a.u. )

—14.669
—14.343

—24. 659

—37.758

—37.810

—37.856

—54. 482

—74. 958

Overlap
U(3) state
with d=2

94
6

97

95.5
45

99
1

99
1

98.5
1.5

98
2

(~o)

0(4) state
with A +I
minimum.

48. 5
51.5

50. 5

49.5

71.
29

60
40

60
40

77.5
22. 5

86
14

atoms. We see that, unlike the situation with hy-
drogenic functions, the sign of the ore contribution
is opposite to that of the 5) and S contributions.
As n increases, we reach, in the neutral carbon
atom, a point where the two contributions very
nearly cancel and each pair of U(3) configurations
in each complex is almost degenerate when the core
and 8 interactions are disregarded. In several
other cases in Table XI, where U(3) is a particular-
ly poor symmetry group though O(4) is not outstand-
ingly good, the U(3) configurations of a complex are
nearly degenerate because of additional contribu-
tions from the 8 interaction.

For a given value of n, as Z increases, the con-
tribution of each of the Slater integrals changes,
but now, because the effective nuclear charges are
not all the same, the:onfiguration mixing is not
stable, and we do not find that O(4) continues to be
a good symmetry group for the interaction.

VI. CONCLUSIONS

It is apparent that analysis of operators and wave
functions into O(4) and U(3) components provides
a greatly simplified way of dealing with calculations
on first-row atoms. A result that emerges from
the analysis is the full extent of the stability of L—
shell configuration mixing to variations in Z from
values near n to values approaching infinity. The
near invariance of this mixing is found to hold in
normal first-row atoms and ions, in their excited
states, and in states having two holes in the K
shell. Tuan and Sinanogu some time ago called
attention to the weak dependence of 'S(2s )-'S(2P )
mixing upon the form of the radial functions. ' The
Z stability of mixing in ground states has been evident

TABLE X. Overlaps with unrestricted Hartree-
Fock functions. a

Complex Atom

200 Be
3—1 B
411 C
5%1 N

600 0

U(3) overlap
lowest state

0.839
0.947
0.978
0.968
0.962

O(4) overlap
lowest state

0.561
0.564
0.648
0.823
0.897

Overlap
with zero-
order function

0.991
0.995
0.998
0.998
0.997

aCalculated from eigenvectors of Ref. 12.

from the aforementioned study of Layzer, ' while a
comparison of the work of Cohen and Dalgarno" on
transition probabilities with that' of Iutsis and
Kovetshis, Bolotin and Iutsis, and Bolotin et al. ,
shows that for several individual systems the sta-
bility holds for excited states as well. A fully
group-theoretical understanding of these near-in-
variances awaits an analysis in terms of the dy-
namical noninvariance groups of Coulomb systems. '
It must not be supposed, however, that this Z in-
dependence is universal: Configuration mixing in
the third shell can be markedly Z dependent, as
has been emphasized by Fischer. '

Finally, we wish to call attention to the fact that
the first entry in Table VII is in contradiction with
the earlier results of Wulfman. The latter are in
error because of an incorrect assessment of the
phase convention used by Lipsky and Russek in their
calculations on helium doubly excited states.
We wish to thank Wybourne for an intensive
correspondence that enabled us to clear up this
point. It is now evident that neither O(4) nor U(3)
provides a good quantization scheme for L-shell
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TABLE XI. In-shell off-diagonal matrix elements in Hartree-Fock approximatior. .~

States
nSL

Atom In-shell
contribution

0(4) U(3) 0(4) O(4) U(3) U(3)

—0.0616
—0.0330
—0.238
—0.0176
—0.0176
—0.0176
—0.187
—0.187
—0.187
—0.0799

0.0598
—0.1659

200
311

Be
B
p+3 C

C
C

C
p+2 d

0+2 d

p+2 d

N
p+ C

0

—0.1897
—0.1589
—0.218
—0.4583
—0.2292
+0.2292
—0.731
-0.365
+0.365
—0.3455
—0.5585
—0.4283

0.0118
0.0093
0.377
0.0352
0.0352

—0.1129
—0.0859
—0.182
—0.2292
—0.1146
+0, 1146
—0.365
—0.183
+0.183
0.1895
0.2433
0.2685

—9.5678
—9.2366
—0.483
—6.5114
—3 ~ 2557
+3.2557
-0.976
-0.488
+0.488
—5.3230

0.8140
—3.6630

0.3247
0.2077
1.096
0.0384

+0.0768
—0.0768

0.256
0.512

—0.512
0.2313

—0.1071
0.3874

400
402
411 0.0352
400 0.374
402 0.374
411 0.374
511 —0.0356
511 0.2989
600 —0.0733

Parameters for neutral atoms were computed from integrals of Table XII.
"For definition of b, , 5 see Sec. V.
'Pa. rameters for 0' were computed from the integrals of A. J. Freeman, quoted in J. C. Slater's, Quantum Theory

of &torsi,c Structure, Vol. I. p. 357-8 (McGraw-Hill, New York, 1960).
Parameters for 0' and 0' are from D. R. Hartree. W. Hartree, and B. Swirles, Phil. Trans. Roy. Soc. London

A238, 229 (1939).

systems containing no K electrons.

APPENDIX A: CLASSIFICATION AND DETERMINATION
OF STATES IN 2s-2p SHELL

When dealing with a system of particles obeying
Fermi statistics that are restricted to a finite num-
ber of single-particle configurations, it is always
convenient to use the second-quantization
formalism. '

In the 2s -2p shell the single-particle states could
be characterized by the set of quantum numbers

O(4}, as discussed in Sec. II.
As the numbers 2 or (-,'-,') will remain fixed so long

as we stay within the 2s-2P shell, we suppress them
from the indices of the anticommuting creation and
annihilation operators, which we write as

y t b
l'm'a'

lmap

An arbitrary state of n particles is then given in
terms of an homogeneous polynomial of degree n in
the bt's acting on the vacuum state lO).

The operators

2lmo or (-,'-,')Imc, (Al) m a yt yl m'a'
a lma lma (As)

where l =0, 1 stands for the orbital angular rnomen-
turn in the 2s or 2p subshell, respectively, m is the
projection of l, and a = ~-, is the projection of the
spin. The number 2 indicates the total quantum
number in the shell and (-', &) the equivalent IR of

where & is a shorthand notation for Ema, satisfy
the commutation relations

[(qn' (IB'
)

(IB' gu
'

(Iu ' fB' (A4)

which indicate that they are associated with a Lie

TABLE XII. Hartree-Fock parameters, in units of e /aa. ~

Atom

Be

N

0

Configuration

2s2

2s 2p
2p2

2s 2p
2s2p
3p
2s22p2
2p
2s22p3
fg

2s 2p

0.349 07

0.460 25

0.572 86

0.688 79

0.802 18

F2@,0

0.322 53

0.437 37

0.554 19

0.657 66

0.766 23

0

0.306 65

0.417 73
0.538 60

0.631 67

0.736 56

G212p
1

0.19557

0.273 29

0.343 72

0.401 98

0.464 96

0.13547

0.18976
0.243 30

0.280 66

0.325 20

Int»tegrals are from S. Fraga and C. Fisk, University of Alberta, Division of Theoretical Chemistry Technical
TC 6801, 1968 (unpublished), except in the case of Be, where they are from Ref. 9.
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& = lmo, with l = 1, m = 1, 0 —1, cr = a —,';
(A5)

l =0, m=0, o=a-,'

If we contract separately with respect to o and

lm, we obtain the operators

6,'."=Z ",.',", (A6a)
0

O'=+K' '
a

which satisfy commutation relations similar to (A4)
and thus, because of (A5), are, respectively, the
generators of a U(4) and a U(2) group. The latter
admits a unitary unimodular subgroup SU'(2) whose
generators

(A6b)

8.=Cv'3', &()=2(C,",l —C ',~3), 8 =C",'3 (A7)

are the operators of total spin of the system.
The group U(4) admits as a subgroup the unitary

group in three dimensions U(3}, associated with the
2P shell whose generators are

(A8)

Rather than discuss them in the form (A8), we re-
place them, as well as the full set of generators
(A6a}, by the unit tensor operators~'

%L,(l, l')= 2 (I'km'qIIm}CI~™,

l, l ' = 0, 1, 0 = 0, 1, 2 .
(A9)

The operators '4', (I, 1) are then equivalent to the
set of generators of U(3) and, in particular, '

~2&,'(I, 1)-=Z„q=1, 0, —1 (A10)

are the generators of the proper orthogonal subgroup
0'(3) of U(3), i.e. , the second-quantized form of
the operators of total orbital angular momentum.

Vfe have thus obtained the generators of all the
groups associated with the chains (2. 14), (2. 15a).
For the chain (2. 15b) we need to have the second-
quantized form of the Runge-Lenz vector, i.e. ,

'
a, = Z &2fmIA, I2f'm'&eI."

lmf' m'

=~ &21 'I
I

A
I I2I}&!(I,I ')

algebra of an eight-dimentional unitary group U(8) as (A11)

f &h & f &h & f &h & f o 0 (A12)

that gives us all possible IR of U(3). The number
of particles d in the 2s configuration is then obtained
from

d=n —(k, +h, +h, ) . (A13)

As the parity of the 2p state is negative and that of
the 2s positive, the total parity of our state will
be given by

( )hg+hp+ll3 ( )ll-d (A14)

Finally, to get the values of L in a given IRof U(3),
we use either the well-known ' branching rule of
U(3) 2 0'(3) or the familiar plethysm procedure.

To get the values (pv) of the IRof 0(4) in the IRf
of U(4), we again can use either the branching rule''
U(4)30(4} or the plethysm procedure. The values
of L consistent with each (gu) are given by (2.9).
An important point in these analyses is to note that
the vector ~' has positive parity, while ~3( has neg-
ative parity. Thus the vectors && and 9l do not have
definite parity and the states classified by the
(2. 15b) will likewise, in general, have no definite
parity. %'e note though that under reflection % and
9) interchange their roles, and thus the combination
of the states

= ~,(10) —&%l,(01) .

Thus Z, and ~, are the generators of the 0(4) group.
To obtain now all quantum numbers for the states

in the 2s-2P shell characterized by the IR of the
chain of groups (2. 14), (2. 15), we proceed as fol-
lows: First, the number of particles n gives the
IR [I"j of U(8), and this indicates that the IRof U(4)
and SU'(2) are given by associate~~ partitions of
n. Thus the IR of U(4) is characterized by aparti-
tion f = ff, fz-f,f, j of n, in which f, fz- f, f4- 0
andall f, ~2, i=1, 2, 3, 4. This Young diagram
has then two columns whose total number of blocks
is n, and half the difference between the first and

second columns is the total spin S. Therefore n

and S determine the partition f.
Once we have the IR f of U(4), ifwewant to pro-

ceed by the chain U(4}DU(3), we just remember
the branching rule

TABLE XIII. Contributions to 0(4) symmetry-breaking interaction for Hartree-Fock functions.

Atom

Be
B
C
N

O

~3/4
T2/3

1/2
—W2/3
—W3/4

Scoeff.
—0.140 59
—0.188 26
—0.22902
—0.274 81
—0.317 88

coeff.
—0 ~ 008 21
—0.017 36
—0 ~ 02279
—0.025 50
—0 ~ 029 38

M X) coeff.

+0 ~ 042 97
+0.057 59
+0, 064 25
+0.08212
+ 0.094 71

TotaIb

—0.142 14
—0.100 42
—0.035 20
+0.169 58
+0.383 24

a=(pv ) 2) b=((pv) t 2) .
2( ~coeff. ) + 2 (m coeff. ) +2n( x S coeff. ).
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I ns(i1v)L) +(-)"" a Ins(vI1)L) (A15) ms+'''+me-L
~

oi+'' +0'5 S (A20)

z, P„„„(b')Io&=0,

3 P„„(b')
I 0) = sP„„(b ) I 0),

S,P„sar, (b')I 0) =0 .
We could then take products of operators

(A17b)

(A18a).

(A18b)

(A19)

such that d of them have l = 0 and the rest l =1, with
the restrictions that

has even or odd parity depending on whether we
use the + or —sign. The states (2. 10) correspond
to the combination (A15), and to avoid redundancy
we choose always in Table I p, & v.

We have thus indicated how we could classify the
states in the 2s-2t) shell. It remains to determine
them explicitly, which we first do in the U(4)& U(3)
chain. We start by noting that what we require are
the homogeneous polynomials P of degree n in the
b that are associated with all the quantum numbers,
i.e. ,

I
nsL, 'd& =P„„„(b')Io& . (A16)

As we are not concerned with the values of M~ and
M~, we could choose them as M~=I and M~=S,
thus having to satisfy the equations

ZaP„sara(b )I 0) =LP„sa&a(b")
I 0), (A17a}

Taking linear combination of all products of this
type, with arbitrary coefficients, we determine the
latter with the help of Eqs. (A17b) and (A18b). The
procedure is unique, as there is only one state for
each nSL'd.

For the U(4) 2 O(4) chain the states are the same
when nSL' characterize them completely. For the
seven cases when we have two states with the same
nSL', we first note that from (2.6) the operator 8 a

is given by

Q 2 ~2 + 2cg2 g2

Z &fmI w1I
'fm'&e™

lfftl ' fft'
(Bl)

where % and X are the second-quantized versions of
9R and g). Thus 6 is diagonal for the states
InSL'(I1v) & with a definite eigenvalue. As we have
obtained the states lnSL' d), we can evaluate with
respect to them the matrix of the 8 operator and
from its diagonalization determine the states
InSL'(I1v)&. The 2x2 transformation matrices be-

tween the U(4)D U(3) and U(4)&O(4) states are given
in Table II.

APPENDIX B

In the second-quantization formalism the expres-
sions for a one-body/", , W, and a two-body g1» 1 V1~
spin-independent inter action are'

I a ~

&l1m„ famaI v1aI f 1m 1, f am a& (6I1 18Ia~a —5'15 a18Ia~a),
l il2 fftfm2 l 'l, l2 fft 1fft 2

where the 8I are the generators of the U(4) group
acting on the configuration space of the 2s-2P shell
and which were defined in Appendix A, Eq. (A6a),
in terms of the creation and annihilation fermion
operators. In the two formulas above the l's take
the values 0 or 1.

In the case of a central one-body interaction, the
matrix element in (Bl) is diagonal in l and m and
independent of m,' hence W is expressed as a linear
combination of the number operators for the 2s and
@ shells:

-1
6M=~,'(00)-=~, Z 6I:=~',(1, 1) . (»)

The coefficients of this linear combination are the
I

one-electron Slater integrals

f(nf)= J R„,(r) W, R„,(r)r dr,
where R„,(r) is the radial part of a wave function
belonging to our basis. These operators (B3) are
diagonal in the U(3) basis, and their eigenvalues
were denoted in the text by d and n -d, respectively.
Obviously the total number oPerator is %= & + 'll aa(1, 1).

Now, for the two-body central interaction we
make an expansion

V,a(I r, raI )
—Q V, (r» ra) P, (cos1d, a)

0=0

and using a standard technique, we write the two-
particle matrix element in (B2) as

&flm1& famal Vial l1m 1 l am a) 2 1 2f 1
Z (f1kooI l10) &l akoOI lao)

(2f; + 1)(2f,' + 1)
l 1+ a+ a=o

x R (2l 12l a, 2l 1 2l a) Z (-)' &l 1km 1q I
11m1& &f a km a q I

f a ma&,
tf=A'

where the R' are the Slater integrals

R (naf1nala, . n', l1nal a) =J J R„, (r,)R„, (ra) Va(ra, ra)R„,;(r1)R„,~ (ra)r, radr1dra . (B5)
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Introducing (B4) into (B2), and taking into account
the definition of the unit tensor operators 'u,'(/l ')
given in (A9), we obtain immediately the two-body
interaction in the form

(I,'l 00' l,o)
r

' &' a (2l&+ 1)(2l2+ 1)

&(I 2@00~ l20) R'(21~2f~; 2l ~ 2l 2)

&& Z (-)'u', (l, l,') &",(l, l ')

—
2 ~

2~ I- (lgl200~k0)
2l2+ 1 2

t&t2a +

&R (2lg212,.2l22l, ) uoo(lql, ) . (B5}

When written out in detail, this interaction appears
as a linear combination of the rotation reflexion
invariant operators

St, SI ', u, u', St u, a ', and p (-)' W,'(I I)e ', (l I) .
It is convenient, however, to replace the last op-
erator by the Casimir operator of the U(3) group
(8 ) and other operators, using the formuiaa'

g is diagonal in the U(3) basis and its eigenvaiues
for the IR (h& h2h, ) are g = h', + h~+ h', + 2h, —2 h, . In-
troducing the abbreviated notation for the Slater
integrals, we have the explicit form of the two-
body interaction

'U =- F (2 s, 2S) u(S —1)+F (2S, 2P) S(SI —XI)

+ —,
' G'(2s, 2p) (8'-st-2&)

+ ', F '(-2l, 2P)(m, -u)(& —m —1)

+ 2'5 F2(2p, 2p)

x [3 g —-', 2 —at —&2 + 2 X 5) —5% + 5 & j . (B8)

Thus the two-body interaction appears as a linear
combination of operators that are diagonal in the
U(3) basis: S, &, XX), and g; an operator that is
diagonal in the O(4) basis: ft; and operators that
are diagonal in both bases: X, &, and 2 . The
one-body interaction, as we saw above, is diagonal
in the U(3) bases. As we know the transformation
coefficients of Table IV that connect the U(3) and
the O(4) bases, we can easily construct the matrix
of the Hamiltonian in any of the two bases.
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