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A two-state semiclassical theory of elastic and inelastic scattering is formulated and com-
pared to the Stueckelberg-Landau-Zener, distorted-wave, and close-coupled two-state meth-
ods . The semiclassical theory is shown to explain the physical origin of oscillatory struc-
ture on both the elastic and inelastic differential cross sections, and of a rainbowlike struc-
ture in the elastic scattering. Using simple and plausible interactions, theoretical elastic
and inelastic differential cross sections are calculated and compared to the experimental
measurements of the elastic and inelastic differential cross sections for He++ Ne. The
scattering is characterized by a Z- Z crossing located at r„=2.02 a.u. with an energy E„
= 0.530 a.u. , leading to the final state He'+Ne (2p5 3s). The interaction energy at the cross-
ing is found to be V&&(r„) = 0.0082 a.u.

INTRODUCTION

A considerable volume of experimental informa-
tion is becoming available on the processes of
elastic and inelastic scattering of ions and atoms,
including the detailed angle and energy dependence
of various cross sections. Naturally, only a small
number of ab initio calculations are available for
comparison with the experimental results. In gen-
eral, experimental measurements, unlike calcula-
tions, can be carried out just as easily using heavy
atoms as light ones. In order to exploit this avail-
able experimental information and turn it into use-
ful understanding of the interatomic interactions
responsible for the scattering, we are making ex-
tensive use of methods of analysis based on semi-
classical ideas.

In scattering at small and moderate angles, which
is usually the most convenient region for experi-
mental observations because of favorable signal-to-
background ratios, presentation and analysis of the
data is particularly convenient if one expresses the
energy and angular dependence of the differential
cross section c(E, 8) in terms of the energy E and
the angle of scattering e by using the reduced scat-
tering angle 7 = Ee, which depends only on the im-
pact parameter b (except for small corrections if
8 becomes large), and the reduced cross section
P = 8 sin& v(E, 8), which similarly depends mostly on
the impact parameter, i.e. , on 7. itself. %hen the
scattering is simple and uncomplicated by quantal
interference patter'ns, such a reduced plot of elastic
scattering data allows the potential responsible for
the scattering to be deduced purely from the experi-
mental data.

However, in most cases, the scattering is not so
simple, and the differential scattering patterns
commonly show oscillating features of several types

that share certain general characteristics of regu-
larity. In general, they represent interference
patterns and can be related semiclassically to the
existence of two or more trajectories resulting in
scattering at the same observed angle and at the
same final velocity. Such patterns are observed
both in elastic and in inelastic scattering.

One of the commonest sources of these inter-
ference patterns is the crossing of two electronic
states of the combined system. This leads to in-
elastic transitions, the probability for which is often
governed by the well-known Landau-Zener-Stueck-
elberg theory. Characteristic of these interactions
in general is the fact that the transition occurs with
significant probability only near the crossing point,
and that a transition between states may occur either
on the inbound passage or on the outbound passage
at the crossing point. The result is two possible
trajectories leading to the same final state, and
therefore a quantal interference pattern as the angle
of scattering or the energy is changed. Such oscil-
lating patterns have been seen both in inelastic scat-
tering and in the companion elastic scattering
(where one trajectory involves no transitions at the
crossing, and the other involves two). Two signif-
icant types of information are available from these
inelastic scattering patterns and elastic perturba-
tions. These are the spacing of the oscillations and
their amplitudes, both of which commonly show sig-
nigicant regularities as functions of energy and
angle. The regularities in spacing can be well dis-
played if one numbers peaks by successive integers
N and plots as a function of v a quantity defined by
a(&) = 2m(N+ No) kv, where No can be determined
either theoretically or by adjusting the experimental
data so that the results at different energies fall
into a common pattern. Here, v is the collision
velocity. The quantity a(r) itself is a semiclassical
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quantity that represents essentially a reduced action
integral and controls the principal part of the rela-
tive phase of the two components of the scattering
amplitude .Like r and p, a(r) is essentially a func-
tion of the impact parameter only (except for small
corrections) and therefore is uniquely related to r
itself. The quantity Np is a quantal contribution to
the relative phase and may be genuinely constant,
or it may in fact vary slowly with E and b. From
the behavior of the function a(r), as well as from
p, much information can be obtained about the po-
tentials governing the trajectories participating in
the scattering, including information on the locations
of the crossings responsible for the inelastic trans-
itions. When oscillations of more than one type are
superimposed, their analysis presents greater dif-
ficulty, but with patience, luck, and plenty of data
many of these situations can be successfully dis-
entangled.

The amplitudes of the oscillating patterns associ-
ated with crossings contain important information
about the energy associated with the coupling be-
tween the states. The Landau-Zener formula is a
simple and very useful approximation to the correct
theory and often allows the magnitude of this coup-
ling matrix element to be extracted from the velocity
dependence of the transition probability. As we
shall see, the detailed behavior of the amplitude as
a function of angle, as well as energy, involves
other factors as well as the Landau-Zener transi-
tion probability.

The above concepts have been applied in the analy-
sis of several pieces of experimental information,
including elastic and inelastic scattering of He'by
Ne and Ar, and Li'by Li. ' Other information is
still being analyzed.

The use of semiclassical theory in these analyses
of experimental data is soundly based on quantum
mechanics, and the proofs have been developed in
a variety of ways, including Feynman's approach to
quantum mechanics through the use of action inte-
grals, the WKB approximation, 3 eikonal approxi-
mations, the Lippmann-Schwinger method using
integral equations, ' the wave packet approximation, 6

and the ordinary procedures derived from Schrod-
inger's version of quantum mechanics requiring the
solution of coupled differential equations. In a very
important series of papers, Delos and Thorson are
now publishing a definitive study on the foundations
and validity of the semiclassical method as well as
on the Landau-Zener approximation for inelastic
processes. '

The semiclassical procedure in scattering prob-
lems consists in approximating the scattering am-
plitude by a sum over one or more complex terms,
each of which arises from a mell-defined classical
trajectory between the initial and the final states;
the squared absolute magnitude of each term is just

the classical contribution to the cross section arising
from that trajectory, and the phase of each complex
term is determined by the classical action integral
over the trajectory in question, divided by h. Semi-
classical procedures thus make the greatest possible
use of quantities computed classically in order to
express typical quantal phenomena such as inter-
ference patterns, and the expressions involved are
often extremely good approximations to the true
quantal solution. Further improvements can some-
times be made by using the procedure which we have
termed semiquantal, in which cross sections are
computed by an explicit summation over partial
waves, but the phase shifts for each value of l are
computed classically. (The so-called "WEB phase
shift" is identically a classical quantity, and in fact
the WKB procedure merely provides a proof that the
classical expression is a good approximation to the
quantal phase shift. )

In this paper we shall concern ourselves with the
systematic development of the semiclassical method
as applied to curve crossings and the resulting in-
elastic scattering and elastic perturbations. We
develop methodically the semiclassical expressions
for scattering involving the various elastic and in-
elastic trajectories using the Stueckelberg-Landau-
Zener theory for the crossing, and we compare the
reSults with two-state calcu1.ations using the dis-
torted wave approximation and a close-coupled cal-
culation of the transition probabilties from the dif-
ferential equations. The results are applied to the
specific case of He'+ Ne.

THEORY

A. Semiclassical

Consider a crossing at r„between two states with
potentials Vz(r) and Vz(r) such that V, & V~ for r & r„
V, & Vz,, for r &r„and with an interaction Vza(r) that
is small compared to the separation ~ V= V, —V2
except in a small region r, + 5r„.

Outside the crossing region, i. e. , when

~r z;~ 'ez-, = V„(z„)/(~V'(z, ) ~,

the particles can be thought of as traveling on an
essentially classical trajectory controlled by one
of the individual potentials V& or V2. Switching
from one trajectory to another occurs only near the
crossing point r„. If the turning point (and, in gen-
eral, the impact parameter) is less than r„—5r„
there are several trajectories available, two elas-
tic ones (T, following the potential V, everywhere,
T« following V, for r &r, and following V2 for r&r„)
and two inelastic [Tzzz following V, all the way in
to the turning point r, and out again to r„where it
switches to V2 for the rest of the outward passage,
azzd Tzv following Vz only to the first (inward) pas-
sage past r, and switching to V& for all the rest of
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the encounter]. As long as the turning points r, and

r2 fall outside the crossing region r, + Br„a semi-
classical treatment of the collision parameters is
feasible; when the turning points approach r„ too
closely, threshold effects occur that require more
detailed quantal analysis.

To discuss the scattering pattern, we need to
know the deflection function Bz(L, E) (8=i, II, III,
IV) for each of the trajectories, and the corre-
sponding classical action integrals Az(L, E}. The
e~ can be expressed as linear combinations of the
ordinary deflection functions

8((L, E) = v —2b(

V) r —Vg b " dr
E —V&(~) r r

(r, is the outermost zero of the integrand, and b,
is the impact parameter), or their average

and of the special action integrals

A;(L, E, r„)= 2(2p[E —V, ( )])"'

Vgr —V;~

v, (r) v-,.( )

Z —V((~) r
(6)

The functions B,(L, E) and A, (L, E) can be ex-
Panded in Powers of [Z —V, (~)] ' by an established
procedure, a variant of which can also be used to
obtain expansions of 8,(L, E, r„) and A, (L, E, r„).
If we define

dff
G„(r)= —,[E —v;( )]"

d

e.(L, E) = —,'[e, (L, E)+e, (L, E)], (2)
the usual expansions are

and of the special deflection functions reflecting the
contributions inside r, e, (L, E) = - 2b, Z (10)

8,(L, E, r, )= —2b,

A, (L, E) = 2(2p[E —V, ( )]) Z
" G„'(r)r'dr

(r —b, )

which always appear in the combination

8,(L, E)=-,'[6,(L, E, r„)—Bz(L, E, r„)] . (4) v, (r„)- v,.( ) (12)

The special functions can be written in a similar
form if we use the upper limit

The b, are related to the orbital angular momentum
I by

Lz = 2p[E —V;(~)] bz» .
But, unlike Eqs. (10) and (11), the leading term
(n= 0) of the expansion does not vanish:

The e~ are then

e, (L, E)=e,(L, z),
8 (L, E) =8 (L, E) —26 (L, E),

8„(L,Z) =8,(L, E)+8 (L, E),

8„(L,z) = e.(L, E) —e, (L, z) .

(6) A, (L, E, r„)=2(2p[E —V, ( }]/~z

G„'(r)r dr~ J (P bz)1M ~

bg

(14)

e, (L, Z, r,)= —2b; Z z"
bz zgz, (13)

G„'(r) r dr
n=o

b ~

The action integrals A~ are exactly the same sorts
of combinations of the ordinary action integrals

A, (L, E)=2(2i [E- V, ( )])'"

V, r —Vg~

v, ( ) —,(-)
z-v( )

The successive terms of 9& and A; can in turn be
expanded in powers of E; it is convenient first to
introduce a standard impact parameter defined by

bz=L'/2pz . (15}
For the n = 0 terms we get

8(" (L, E, r„)= —2 cos ~ (b (/z, )

( b V(r, )b' 2z( ' b')'~'

(16)
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A", ='
(L, , E, r„)=2{2i1[E -v(~)]p 2(2' -b')"'

= 2(2}IE)"'(r' —b')' "
(2p/E)'"r' V(. )

E(P b2)1/2

and taking

b/r„= p =1 —y,
we may evaluate ~~ and e~ and expand them about
b„=r„:

1
(17)

Up to terms of second order, these expressions can-
cel identically when the subtractions are made to
form the functions 6& and A&.

The terms of lowest order in 1/E can now be ex-
pressed concisely if we use an average and a differ-
ence potential in the form

ll Cp(1 p2)1/2 (1 C) p

xln l (l —(('/")

(24)

v. =-', [v, (r)+ v, (r) ],
V„=-'. [V, (r) —V,(r)] = nV/2 .

(18)
= —,

' C (1 —p2)1 /2 (1+2p2)+ —,'(1 —C)

The angles and actions can be written in the reduced
form

T (b' E )= EB (b E)= b 2 2 I/2
dV, dr

b

1 + (1 p2)1/2
(1 p2)1/2 + p.2 in

= (2yl't'
(l

— ——, C (Rvlsn11y
12

"dy r2dr
a', (b) E ) = — A, (b, E)= ~'

(
2 b2)1/2

b

(2O)

T (b;E )=EB (b, E)= —b 2 21/2
"dV dr

b
dr r —b

"(l (21)

""dy, r'dr
(22(b; E )= — A2(b, E)=

d (
2 b2)1/2

(22)

To this approximation —ignoring terms in 1/E—
it suffices to use the single impact parameter b in
these expressions.

To evaluate 7, and e, it is necessary to know the
average potential V,(r) over its whole range from
b to , but the difference potential in y~ and e~ need
only be known inside r„. Using a quadratic expres-
sion for the difference potential

V2(r) = (r —r„)V2(r,)+(r —r„)2 V2 (r,)/2

C r=r V(r) ——1 +———1 (23)x 2 rx x

P12 ~ igIII(8& E)+EIVW E)i

with its elastic counterpart

(26)

By differentiating Eq. (24), one can see that 7z(b)
has a vertical slope at b =r, . These expansions are
valid for b near r„and have the property that suc-
cessive derivatives of V(r) first appear in terms
with higher and higher powers of y. Unfortunately,
they cannot be relied upon except close to r„be-
cauee the successive coefficients such as C [E(l.
(23)] may be of the order of magnitude of unity;
convergence then requires that Z be quite small.
One very important aspect of this vertical slope at
b = r„ is that, even with repulsive potentials, the
classical trajectories 6„=6, —29~ and 6» = 6, —9~
will possess minima. Upon forming the elastic dif-
ferential cross section, then, a rainbowlike struc-
ture will usually appear (this depends of course on
the magnitude of the coupling matrix), and a smaller
effect of the same sort may sometimes be expected
in the inelastic scattering pattern. This phenom-
enon is discussed later in the text.

Both the inelastic and the elastic differential
scattering cross sections may show an interference
pattern due to the two trajectories. In the semi-
classical approximation, the reduced inelastic
cross section p, /= 8 sin&crI/(8) can be written

where P11= (d ~gI(8 E)+gII(8 E)~ (2V)

C = r„V,
"

(r,)/V', (r,), The factor & ' is a symmetry factor; for ground-
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x exp(i[I'/I/(8, E) - y~] ) (28)

where the magnitude PJpJ is the product of a tran-
sition probability PJ with an ordinary classical re-
duced cross section from the trajectory of Eqs. (6}:

1 db~(v)
P. ( )=-2 dl„, ~ (29)

The functions b~(v) are the impact parameters
responsible for scattering at the reduced angle T

through each of the trajectories TJ; they may differ
considerably from each other. They are found by
simple inversion of the function v~(b)

The probabilities of transition PJ may be approx-
imated by the Landau-Zener formula, at least in
the limit where (r, —b)/5r, is large. They are

P, (E, b, )=e

P„(E,b„)=(1 —e "»)3,

P, (E, b~)=e z(I —e &) (J=III, IV),

with

2v V,2(r„) ~V b

m v(2E/p. )"' z

(30)

2v5r, (p/2)'/ V,2(r, )
= Iz"'[I -b', /g'/'

Near the threshold the Landau-Zener formula fails,
and a more refined treatment is called for. Equa-
tions (30) have been connected with the $ matrix in
another paper. 9

The inelastic scattering cross sections are then
written as

pip=& '[&nz(z bz )pnt(8»E}+Pzv(z b'av»zv(8

state He'+ He, where the crossing is in the states
of g (gerade) symmetry only, and only He' (or only

He ) is detected, &a=4. For the He +Ne case, &u

is equal to unity.
The reduced scattering amplitudes can be written

g, (e, z)=[I,(z, b, )p, (e, z)]"'

constant is y =v/2.
The difference in the action integrals, Eqs. (33)

and (34), may be identified with the difference in

impact parameters for scattering at angle 8 through
the use of a general theorem connecting the angular
momentum I., the action integral A, and the de-
flection function 9. In the case of interest here,
the deflection function 8 is equal to the angle of

scattering 8, but in other cases such as rainbow
scattering it may have the opposite sign. Since we

have

( ),(, )
J ~ J (36)

it follows that

2mb &N
Db(B, E}=

( )
q/q— (36)

B. Quantal Treatments: Exact and Approximate

The semiclassical procedure presented above is
obviously approximate, and it is important to test its
validity and examine alternative approximations. For
this purpose, we consider the quantal equations for a
two-state system

d Gg/ g l(l + 1)
dr r2 + ~1 2 U11 Glt ~12 2l~ (37a)

d~G2( 2 l(l + 1)
dr 2 + ~2 2 U22 ~2l U12G11 t (3'lb)

where

where N is the indexing number of the oscillations.
Tneref ore, the oscillations seen on both the elastic
and inelastic scattering cross sections yield in-
formation about the difference in the impact param-
eters for the two trajectories observed at the angle
8.

We will now go on to present the semiquantal
formulas for the two-state elastic and inelastic
scattering and in a later section present the results
for calculating the cross sections by the various
methods.

+ 2I",/', (E, b„,)p,",,'(e, E)Z,'/'(E, b„)p,',"(e,E)

~ cos[2vN(e, Z)]), (32}
2 JLL

27/Nq, (8, E}=b [Ag(8, E) —A, ~(8, E)]—y. (34)

According to Thorson and Boorstein, ' the phase

where the interference oscillations appear as a
term proportional to cos2vN(8, E) with the index
number N determined by the difference in the action
integrals, that is,

2vN (B, E) =b [A„,(e, z) —A, (e, z)] -y+v. (33)

A similar expression to Eq. (32) may be written
for the elastic scattering with the interference
terms proportional to

and where the boundary conditions must provide
properly for conservation of flux. The desired
output is the 2&2 8 matrix as a function of E and l;
because ot its unitarity (conservation of particles)
and symmetry (microscopic reversibility), there
are really only three independent real parameters,
a magnitude A(IAI &I} and phases q, and n, :

$ (1 A2)1/2 2(s) $ (1 A2)1/2 e2ln2

S12 = S» = u e""1'"2'.

Since A itself may oscillate, it is sometimes con-
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venient to factor it in the form

A = q(l, E) sin5(l, E), (37d)

rameters evaluated at the crossing point r„where
the initial- and final-state energies are equal. The
inelastic transition probabilities are given by

xsinq„&, „2(k,r)]. (33)

Then the off-diagonal element S,2 is of the form
(3Vc) with the zero-order phase shifts t)(0, and a
first-order estimate for A

(p p )
j/2 Gg)(r) U$2(r) G()((r) « ~

r 2~

From the S-matrix elements, the cross sections
may then be computed by

o„(8) = ~f(e) ~'=
~
(2ie, ) 'Z, (21+ 1)(S,', —t)„)

x p((cos8)
i

. (40)

One distinct disadvantage of the DW approximation
is that it does not preserve the unitary property of
the S matrix. One method to remove this feature
is to renormalize the S matrix" so that g ~lSI, i' = 1.
For the cases involved here, this renormalization
did not institute any significant changes. It does,
however, allow the DW method to be extended to
larger transition probabilities lS, J I . Nevertheless,
when the factor q of Eq. (3Vd) approaches or ex-
ceeds unity, the DW approximation should be
abandoned.

Another often-used approximation' for calculat-
ing the transition probabilities is the Stueckelberg-
Landau-Zener (SLZ) method. ' Here, transitions
are assumed to depend only on the interaction pa-

where q and t) are slowly varying functions (the
factorization is not unique, and one of these func-
tions is arbitrary).

The S-matrix elements can be computed at each
l orbital angular momentum quantum number
(Il = L) for a given set of initial and final energies
and potentials, and the scattering amplitudes or
cross sections are then obtained by the partial wave
summation. At the energies involved here
(-100 eV), the number of l values required for
solution with a given set of conditions extends into
the hundreds; hence approximations are demanded

by computer cost. It is, however, desirable that
exact solutions to Eqs. (37) be available so that
comparisons may be made with the approximate
solutions.

If the transition probabilities are small, the dis-
torted wave (DW) approximation" may be utilized.
One first obtains G«and G2, as solutions to Eqs.
(37) with U,2=0; the associated phase shifts are

We have assumed wave functions with the
asymptotic form

1/2

G';, (c) - (- c'" [ccsc,', J,.„,(c, ) ~ (- ))'

~
S»~ '= 4p, (1-p, ) sin'(t), +y), (41)

where p, = e is the usual Landau-Zener formula
in which a) is given by Eq. (31), and t), by the quad-
ratures

t, = J "g',"«- J'""g" 'dr,
where

(42)

with

(l+ —,')'
fic2= ~)c2 U11c?P, (43)

The phase constant Z has been mentioned previously
in Eq. (33). Since f), customarily extends through
several multiples of w, oscillatory structure is con-
tained within sin 5, , and hence the transition prob-
abilities I Sq'2 I . The SLZ inelastic cross sections
are computed via Eqs. (3Vc) and (40) with

A' = pl
~ '(1 —p, )

~' sin (ti, + y) . (44)

For both the DW and SLZ methods, the elastic
differential cross sections may be calculated by Eq.
(40) with the S-matrix elements of Eq. (37c).

In principle, the SLZ treatment is less reliable
than the DW method, because the former approxi-
mates the potentials and U, & by certain constant val-
ues evaluated at the crossing point, whereas the
latter method allows correctly for their functional
behavior at large distances from r„. Both of these
approximations are formulated in such a way as to
be correct at moderate-to-high energies, but the
DW method should continue to be valid much higher
in the energy scale because of this more realistic
formulation. It appears that there is quite a large
range of energies where both of these approxima-
tions are reliable, and in this region the SLZ meth-
od is simpler to apply. Under these conditions, the
semiclassical method almost always leads to re-
sults identical with those of the SLZ method. The
semiclassical approach is conceptually helpful in
viewing the cross sections as arising from a com-
bination of trajectories with interference effects
caused by their mixing at some common angle 8.

At energies extremely close to threshold, where
k2 approaches 0, the DW approximation breaks down
because Eq. (39) exceeds unity, violating unitarity
of the S matrix. In this region the SLZ result, in
contrast, remains formally satisfactory in that its
value for 4 approaches 0 instead of ~, but it is in
fact somewhat incorrect because it does not allow
for tunneling. Near threshold, therefore, an im-
proved approximation or a numerical solution is
called for. This region has been studied by Bykovskii
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TABLE I. He'-Ne potential and crossing parameters.

All values are in atomic units.

a~

a2

as
a4
as
yx

Ex
v„(~„)
v', {~„)
v,'(~„)

21.1
0. 678

12. 1
0. 170
0.667
2. 02
0.530
0.008 19

—l. 044
—0. 134

and his associates" and recently by Delos and
Thorson. '

CALCULATIONS

Before we can perform calculations via the sev-
eral methods described above, we must first choose
potential forms that are physically realistic so that
qualitative comparisons can be made with experi-
mental data. In this case, we will utilize potential
functionalities that approximately reproduce the He'
+ Ne elastic and inelastic data. ' They are given by

V, (~) = a, r-' e "'",
V,(r) =(a&r ' —a~) e " 's+16. 8 eV,

Viz(&)=a4 e" ",
(45)

and are intended to reproduce the elastic and He'
+Ne- He'+Ne(2p53s) inelastic reaction. " In Table
I, we give the various values for a„a~, . . . , a, and
also the pertinent crossing parameters. Figure 1
illustrates V, (r) and Vm(r). The adiabatic calcula-
tions of Michels' are also shown. Here we see that
the adiabatic potential follows V, (r) for r &r„dan

then switches to V2(r} for r &r„. This is as expected
for a crossing between potential curves of the same
symmetry. Of particular significance is that the
functionality of V, (r), Eq. (45) and its parameters,
also reproduces the elastic data.

In the computations, the coupled radial wave
equations, Eqs. (37), were solved by using the
same starting conditions and Numerov integration
scheme as did Lane and Geltman with the 8 matrix
being formed by the methods of Lester and Bern-
stein. ' Checks were made at several energies and
l values with the amplitude density program of
Secrest and Johnson. The real and imaginary
parts of the S matrix were found to agree to four
significant figures. The DW solution, Eqs. (38) and
(39), to the S matrix was formed by using a one-
channel Numerov integration procedure. Gaussian
quadratures were utilized in the SLZ method, and
the phase constant of Eq. (41}was set equal to zero.
More will be said about this phase constant later,
since it appears to be a function of 6, . All phase
shifts g, were calculated by the JWKB method.

Using the potentials given by Eq. (45) and the pa-
rameters of Table I, we will now calculate the de-
flection functions of Eqs. (1)-(6) for the elastic and
inelastic traj ectories. These deflection functions
will then be related to the elastic and inelastic cross
sections.

The two elastic deflection functions at 70. 9 eV
are shown in Fig. 2. The deflection function e,
= e, corresponds to trajectory T~ where the particles
follow potential V, (R) everywhere. Trajectory T„
yields the deflection function e» = e& -2e~ and cor-
responds to the particles following potential V&(r)
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FIG. 1. The diabatic potentials for He'-Ne from
which the calculations were made. The solid circles
are from the theoretical calculations of Michels (Ref.
18) on the first excited state (adiabatic).

I I I i I
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FIG. 2. Deflection functions for the two potentials of
Fig. 1 versus the orbital angular momentum quantum
number l (l = bk). The kinetic energy of the ground state
is E&=2.606 a.u. (70.9 eV) and of the excited state E2=1.988 a.u. (54. 1 eV).
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IO
200 225 250 27& 300 &~& &&0

FIG. 3. Average deflechon functionn and the average
plus and minus eth difference deflection function for
the same conditions as in Fig. 2.

to t„, switching to Vm(r) for r(r„and then trans-
ferring ba.ck to V|(r) at r, on the outward passage.

Severa c ar1 har acteristics should be noted. The
atl =322.f t ' the perpendicular slope of S«at „=irs is

This was predicted by the expansions in q.
Secondly, it should be pointed out that So possesses

t S=21' v'=E8=1490 eVdeg. If thea minimum a
coupling matrix is o a magt ' ' f a magnitude such that it allows
transfer to po ent t tial V (r) at r, then the possibili y

o thatarises for the existence of rainbow structure so a
'll be a sharp peak on the elastic cross sec-

tions. More importantly, this phenomenon oes no
require that Vi(r) or Vm(r) have a minimum within
r(r„. Also we should note that at a given angle

h 8 8 = 8(l ) the observed scatteringgreater than
will result from the particles following two trajec-

0.25—

0.20

0.05

0
ff) 0.25

020

O. l 5

0, IO

0.05

tories w ic avh h h ve two different impact parameters
or / vaues.1 Therefore, at the common ang e, an

illinterference e ec wiff t ll result and oscillations wi

be observ on eed th elastic cross sections for ang es
& 8 . The spacing of the oscillations may be re-

lated to the difference in impact paramete y q.
(36)

3 h the deflection functions corre-
ndin to the inelastic case. Here trajectory

with the deflection function 6», = S&+S~ p
1 V r until thet the articles following potentia

outward passage where at r„ they switc pch to otential
deflection functionVz(r). In trajectory T,» with the de ec io

—6 the particles switch from potential
e and thenV, (r) to V2(r) at r, on the inward passage an

As in Fig. 2 we see that thereremain on V~ r .
is a sharp brea a „,ank tl and then for l (l„ there is the
ossibility of the particles following two differentpossi i y o

paths so that for scattering to angles 8&8 there will
be interference effects, and oscillatory structure
will appear on the inelastic cross sections.
the elastic case, q.E (36) relates the difference in
impact parame ers ot to the spacings of the oscillatory
structure. Also, there is a possibility of the rain-

However, this requires tunneling through a poten-
tial barrier; hence, the weighting probability would
be sma 11. It should be noted that, because of the

ticnature o e ranf th t sition probabilities, the inelas ic
le thatscattering will have a sharp threshold angle a

corresponds to 8 at l„. Also, in almost all cases,
el inelone will find that 8„48„

To compute the elastic or inelastic cross sec-
E . (40), the transition probabilities musttions, q.

first be calculated. Here, we have used e po
tial parameters of Table I and, at an energy of 70. 9
eV, we have calculated the transition probabilities
via the SLZ, DW, and close-coupled two-state
methods. They are presented in Fig. 4.

On the upper portion of the graph, the SLZ re-
sults, Eqs. (41) and (43), are displayed; the phase

The SLZ transi-constant 7 was set equal to zero.
tion probabilities have the expected oscillatory
structure and begin quite abrup ytl atl =322, since
there is no allowance for tunneling. For compari-
son, the DW results are shown on the lower part of
Fig. 4. Immediately it is apparent that there is a
s 1 ln p ash'ft h e of the oscillatory structure when the
two methods are compared with one another.

TABLE II. Inelastic totals. All values are xn atomic
units.0

0 50 IOO I50 200 250 XX3 550

FIG. 4. Coxnparison between the SLZ and DW transi-
tion probabilities at 70. 9 eV. The solid circles on the
DW results are from two-state close- p-cou led calculations.

Energy

0. 919
2. 606
7.350

SLZ

0.645
0. 567
0.365

DW

0.874
0.729
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We have also calculated the elastic cross sections
by the semiclassical method described in Eqs. (30)-
(34). The cross sections are well reproduced in

both their magnitude and frequency of oscillations
for 1000 eVdeg & v & 2500 eVdeg. As expected,
about 8„ the semiclassical method breaks down.

What must be remembered is that the semiclassical
method provides a practical physical insight into
the collision process.

Figure 6 presents the SLZ and DW inelastic cross
sections. The dashed line is a reproduction of the

70. 9 eV experimental data' shown in Fig. 7. As
predicted by the classical deflection functions of
Fig. 3, we see a rapid rise when the threshold is
reached, followed by oscillatory structure. These
oscillations again are directly related to the differ-
ence in impact parameters for the particles follow-
ing either trajectory T„,or T,v and scattered to the
common angle 8. The main difference between the
DW and SLZ calculations is found in the first maxi-
mum where the SLZ calculation differs slightly in
its threshold characteristics and in its magnitude.
The following SLZ peaks also display a slight shift
which is due to the phase factor question in the tran-
sition probability. At larger and larger angles, the
two methods become identical. The calculations
were also performed by the semiclassical method
of Eqs. (30)-(33), and at r ~1250 eVdeg they agreed
almost perfectly with the SLZ method. For impact
parameters close to r„, as in the elastic case, we

get spurious results from the lack of smoothness
in the special deflection functions, Fig. 3. The
qualitative features of the experimental data shown

by the dashed line in Fig. 6, and displayed more
completely in Fig. 7, are well reproduced by the
two-state calculation. The magnitude of the minima
differs but this is believed to be because more chan-
nels are opening up for b & b„; hence there is damp-
ening of the experimental oscillations. It is en-
couraging to see that the general features are re-
produced by the two-state calculation. Also, it is
heartening to know that the SLZ method and the
semiclassical method work so well in predicting not
only the amplitude but also the positions of oscilla-
tory structure and their threshold values. It indeed
allows for a rapid estimation of the crossing param-
eters from the experimental data.

CONCLUDING REMARKS

In the calculation of the transition probabilities
via the SLZ and DW methods, the phase constant y
of Eq. (41) was found to vary between 0 and v/4 as
I approached I„. The m/4 factor for I values close
to E„ is in accordance with the predictions of Thor-
son and Boorstein. ' From calculations at other

energies, however, we did notice that y was a func-
tion of l and, upon closer investigation, found it
correlated with 5,. This functionality has been
roughly parametrized for this system as

r)= (w-/4) e '&

where y, and 5, are in radians. Other calculations
of y for the general case will soon be available.

We must also note that the semiclassical formulas
relating the oscillatory scattering patterns to the
difference in impact parameters, Eq. (36), can be
verified. From a plot of the index number
N (N=0, 1, 2, for the maxima as 8 increases)
versus 7 for the inelastic calculations of Fig. 6,
the slope yields a nb(8) of 0. 36 a. u. or a bl(8) of
64. In Fig. 3, the average Al(8) for l&l„ in the
angular range of interest is about 63.

The main drawback to the semiclassical formulas
is that they are not valid for impact parameters
close to r„and hence do not yield cross sections
that are valid in the threshold regions. Possibly,
much of this disadvantage can be removed by
smoothing the special deflection functions in the
regions about b„and by using a suitable extension
of the SLZ formulas through to the tunneling region.

We also observe that on the elastic cross sections
there was a sharp peak which was predicted by the
semiclassical method. This structure is akin to
rainbow scattering but is not dependent upon any
intermolecular potential possessing a minimum;
the only requirement is that there is an inelastic
channel available for reaction.

Part of the amazingly good agreement between
the semiclassical and DW treatments may rest in
the fact that the crossing point is mell localized for
this case. An estimate of the effective width of the
crossing may be calculated from

For the crossing described, we find 5r„ to be equal
to 0. 01, which indicates a very-well-defined cross-
ing point.

In conclusion, we believe it is reasonable to say
that the semiclassical method makes it possible to
understand and analyze the experimental measure-
ments of the elastic and inelastic differential cross
sections. If the crossing point is well defined, the
method should yield quantitative estimates of the
potential parameters which can then be used in
more rigorous calculations.
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Production and Detection of the Orientation of Ions by Spin-Exchange Collisions with
Optically Pumped Rubidium

H. M. Gibbs and G. G. Churchill
Bell Laboratories, Murray Hill, Nese Jersey 07974

(Received 24 November 1970)

Radio-frequency spectroscopy of ions has been performed on the (Sr ) ', (Cd )', and
(Cd )' ground states utilizing spin-exchange collisions with optically pumped rubidium atoms
for both producing and detecting the orientation.

I. INTRODUCTION

The ion ground-state orientations reported here
are the first to be both produced and detected via
spin-exchange collisions with polarized atoms.
This technique requires no ion resonance radiation,
which is often difficult to produce. Conceivably,
the technique could be applied to negative ions,
most of which have no resonance radiation. Also,
only small quantities of material are required,
making feasible an extension to rare isotopes. The

technique is rather general, since no resonant
collisions are required for detection. However,
the precision of the technique is not competitive
with the ion-storage collision technique, because
of the short relaxation times in the unconfined high-
density discharge; this may also restrict the meth-
od to S states. The possible extension of the tech-
nique to a measurement of g values and hyperfine
structures of any S-state ion is suggested by the
observation of Zeeman resonances in Sr' (which
is representative of the group-IIA tons) and Cd'


