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We study the Thomas-Fermi-Dirac statistical model of the atom in the energy-functional
formulation. We obtain minima of the total energy for five analytic-screening-function-den-
sity combinations. Total energies, average radii, and rms radii vary from model to model

quite markedly, and depart quite substantially from "data" based upon Hartree-Fock or Har-
tree-Fock-Slater calculations. For the model based upon the analytic screening function due

to Green, Sellin, and Zachor and for a closely related "regularized" model, the dependence of
the component energies upon the electron number N, the model parameters, and certain inte-
gral constants is represented analytically. Minimization of the total energy with respect to the
potential parameters leads to simple algebraic equations. The results again are poor. How-

ever, by making reasonable semiempirical modifications in the component terms, we find we

can achieve stability with binding energies and potential parameters which are close to the
data obtained from Hartree-Fock (HF) or Hartree-Fock-Slater (HFS) studies.

I. ANALYTIC INDEPENDENT-PARTICLE MODEL
(IPM) AND THE THOMAS-FERMI (TF) MODEL

In aprevious work, Green, Sellin, and Zachor'
(to be referred to as GSZ) have proposed an IPM
potential for atoms which uses a potential of the
form (in Rydberg units)

y(r) = 2r-'[NT(r) -Z].
Here Z is the number of nuclear protons and N the
number of core electrons, and 2r 'T(r) is the elec-
trostatic potential associated with an average elec-
tron cloud. The screening function Q(r) = l —T(r),
which they utilize, has a simple analytic form,
which we shall discuss in Sec. III. Poisson's equa-
tion permits us to derive from an analytic screening
function the radially symmetric charge distribution

2

n(r) = (4')-' (2)dy2

The availability of approximate analytic potentials
and density functions permits us to carry out certain
approximate calculations on atoms and ions which
are extremely complicated from an exact many-
electron point of view.

The starting point of the GSZ study was an analytic
characterization of the universal TF ' potential,
which had some degree of analytic convenience and
accuracy with respect to earlier representations.
In the present study we turn to the TF model of the
atom in a variational form. This has been the sub-
ject of a number of recent investigations, most of
which have been concerned primarily with the ex-
change energy arising from statistical theory.
This exchange energy has been used in attempts to
find independent-particle-model simplifications of
Hartree-Fock (HF), e. g. , the Hartree-Fock-Slater
(HFS) or Hartree-Fock Kohn-Sham (HFKS) equations.
Here, we will attempt to deal with many of the terms
of the statistical theory of the atom and endeavor to

relate this total energy to the total energy as ob-
tained from HF and HFS calculations.

II. THOMAS-FHQ4l-DIRAC (TFD) ENERGY FUNCBONAL

In the statistical theory, ' we may express the
total energy of a many-electron system containing
N electrons and Z protons in the form

Er =P,E„ (3)

E~=E„=-2ZN f r n(r)dv,

the electrostatic interaction energy between the
various electrons

ES=E,=N f ~

r —r'
~

n(r)n(r')d7'dv'

=N f r T(r)n(r)dr,

and the main kinetic energy of the electrons

E,=E, =C,N' 'f n' 'dr, C„= ', (3 )v-

(4)

(6)

Equations (4)-(6) constitute the major energy
components and the ones that are well established
in the literature. In addition, however, there is the
Weizsackers correction to the kinetic energy given
by

E~=E~„=C~~Nf [(vn) /n]dr, C,~=@ .
This value for C~ is that of Kompaneets and Pav-
lovskii, 7 which has been verified by other authors. s'~

It is 9 of that originally proposed by Weizsacker.
In addition, we must include the exchange energy'

E,=E„= C~ 'fn"'dr, C, -= ,'(3/v)"', -(6)

where E, represents the various identifiable com-
ponents of the total energy expressed in terms of
the electron density and the electrostatic potential.
These components include the energy of the electron
cloud in the field of the nucleus
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and the inhomogeneity correction for the exchange
energy

E,= E,„= C—„.N~'f f(vn)'/n"']dr,

C„„=2w/(3w')'" .
Finally, we shall give some consideration to a

correlation energy, which in the approximate form
interpolated by Lewis may be given by

E, = E, = c,Nf—n in[i+ b(Nn)"') d r, (10)

where c,= (2/w )(1 —ln2) = 0.06225 and

b = (3wl) [0.89 (4/9w) 'w-1]/2w'c, = 10.86 .
In principle, we may choose any analytic form

of potential and the corresponding density function
obtained from Poisson's equations to evaluate the
various integrals given in Eqs. (3)-(10). Thus, we

may obtain each component energy in terms of the

N, 2, and the parameters which characterize the
density and potential. The stable atom should cor-
respond to the parameters which give the least
total energy. Let us see how such a conceptual
procedure works out for the GSZ potential.

III. GENERALIZED DISTRIBUTION FUNCTION (GDF)

The screening function of GSZ has the analytic
form

A(r) = [H(e"~ —1)+1]
A good fit to the universal Thomas-Fermi screening
function is obtained if we choose d = pwb/Z~~', where
pa=0. 8853, 5 =4.478, and H=5+1=5.478. These
relations imply that the reduced parameter h = H/
dZ I' =1.382. In the course of the GSZ study, it
was found that a closer approximation to HF and
HFS results could be obtained by permitting the
parameters H and d to take on values which varied
throughout the periodic table. The values of d, H,
and h obtained by fitting the HFS screening functions
of Herman and Skillman, ' as modified in the as-
ymptotic region to yield an r ' asymptotic potential,
are given in Table I for seven sample substances.
Also given are the total energies and the reduced
binding energies b = Er/Nv" which h-ave been ob-
tained from HF calculations. ' In attempting to

TABLE I. HF data (all lengths are in Bohr radii and
energies are in Rydbergs).

adapt the statistical model we shall use the values
for d, h, and b as empirical "data" which realisti-
cally characterize atoms.

The normalized electron density corresponding
to Eq. (11) is given by

H e" ~ He" +H —1
n(R =

4wdm r (He'~ —H+ 1)
(12)

This density function is singular at the origin as
r . While this is weaker than the r singularity
of the strict TF model, it occasions, as we shall
see, a difficulty with E,„, the inhomogeneity cor-
rection to the kinetic energy.

Except for the E„and E, terms, which can be
evaluated analytically, the integrations were carried
out using a 96-point-G quadrature routine several
times to cover the region of integration. In addition,
singular integrands were expanded in a power series
about the origin to obtain the contribution from this
region. These procedures yielded accuracy to
about five decimal places. In the case of E, , we
employed a cutoff procedure in which the denomina-
tor in Eq. (7) was replaced by n+ /n'I', where n
is a reasonable nonsingular density which departs
from n only at very short range.

It is simple to establish the dependence of the
integrals upon the parameter d by using d as the
unit of length. Apart from the small correlation
term, all potential-energy components go as d
whereas all kinetic-energy components go as d
This makes it simple to minimize the total energy
with respect to d so that the further minimization
problem need only be carried out with respect to H.

Numerical calculations showed that the total energy
is a very slowly varying function of H, having a
minimum at large unrealistic values (H- 100). To
look at component energies we imposed the ad hoc
rule H= 1.3Z . Minimization with respect to d
then led to the component energies presented in
Table II for a sample of elements. The parameters
H, d, h, the total energies, and reduced energies
are given in Table III. Focusing on the reduced
energies we note that at large Z the results (- 1.35)
are quite comparable to HF values (see Table I).
However, for small atomic numbers the GDF model
is too large (-1.4) comparedto HF (-1.2). Further-
more, the parameter h (-1.6) is also too large com-
pared to those obtained from fits to HFS screening
functions (- 1.3).

IV. OTHER MODELS AND COMPARISONS

10 0.443
20 1.08
30 0 ~ 559
40 1.01
50 0.789
70 0.752
90 1.09

1.06
3.05
2. 15
4.73
3.74
4.46
7.10

1.134
1.041
1.238
1.369
1.286
1.439
1.453

257
1 354
3 556
7 078

12046
26 783
48 719

1.193
1.247
1.272
1.294
1.308
1.326
1.342

Whether the source of difficulties in Sec. III was
the GDF scattering function and its corresponding
singular density or the energy functional can be
examined by studying alternative models which do
not have singular densities. In this section we
examine four other screening functions-density com-
binations. These include a regularized screening
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TABLE II. Individual contributions to total statistical energy for constrained case (h = 1.3Z 1/&

E

10
20
30
40
50
70
90

262. 4
1344.2
3 515.6
6955. 2

11 803
26 177
47 416

37.1
123.1
248. 7
409.3
601.8

1074.3
1653.5

—686. 4
—3474. 1
—8997.8

—17 679
—29 848
—65 724

—118473

134.8
661.1

1 685.3
3 277. 8
5 494. 0

11976
21 440

22 ~ 7
—71.3

—140.0
—226. 0
—327. 8
—574. 2
—872. 8

—24. 8
—50. 2
—76.0

—102.1
—128.3
—180.1

233 ~ 7

—1.6
—3.6
—5.8
—8.1

—10.6
—15.7
—21.0

function (RGDF) having the form

(13)

and the corresponding nonsingular density

H2e3 ~~ + 4H(H —1)em~1~+ (H —I)~e'~~

8d [H

The results for RGDF are illustrated in Table IV
and essentially two difficulties are apparent. The

energy minimum occurred at unreasonable values
of d and H as compared with fits by Eq. (13) to HFS

screening functions. In addition, the binding energies
are too small.

We have also examined screening functions of the

form

Q(r)=(1 A)e 'I'-[1+(r/2a)]+Ae "I [1+(r/2d)]. (15)

The corresponding density, obtained from Eq. (2),
consists of a sum of two exponential terms and is
finite at the origin, i.e. ,

n(r) =(4v) [(1-A)(2a~) ~e~~'+(A/2d )e '~ ]. (16)

When A is set equal to 0 this double exponential
(DE) model becomes a one-parameter exponential
(E) model. These models bear a close relationship
to the regularized Yukawa potentials of Green" and

the regularization techniques of PauU. and Villars
used in meson field theory.

The results of minimization for the exponential
models are presented in Table V for a ample of
elements. Note that the single-parameter form is
not sufficiently flexible to effectively minimize the
total energy, i.e. , the resulting statistical binding
energies are substantially smaller than the HF

TABLE III. Parameters and energies for the con-
strained case.

values.
The results of minimization with respect to a,

A, and d in the DE model are also shown in Table
V. Here the values of the individual terms ar
quite similar to those in Table II. The total re-
duced energies compare more favorably with the
HF data in Table I except at low values of Z.

We have also considered the normalized density
function of Kirzhnits (K), 9

n(r) = [po."/4v r( 3/p)] e ' (17)

and the corresponding screening function

g(r) = [r(3/p, u) —«1(2/p, u)]/r(3/p), (18)

4vr'n(r) = Z 'P u„,P'„g(r), (19)

for Z = 50 using a semilog representation. The
solid line represents the IPM densities based upon
GDF with H = 3.991 and d = 0.841, the values which
fit the HF eigenvalues. The circles are densities
obtained from HFS model using the code of Herman
and Skillman. The K distribution is shown by the
long dashes and, as one sees, it visually appears
quite reasonable. The E and DE models are not
shown because they are quite unreasonable. The
former has much too high a peak (e.g. , 2. 4 at 0.23).
The latter has a double peak (l. 53 at 0.033 and

where I'(x) and I'(x, u) are the complete and in-
complete I' functions, respectively, and u= (ar) .
The reduced energies and the corresponding param-
eters are also given in Table V. It is noted that the
total energies are good for high Z values but, like
the GDF and DE models, give too strong a binding
at low Z values. The component energies (not
given) are quite similar to those in Table II.

Another way of viewing the various models is
given in Fig. 1. Here we show the composite IPM
densities

10
20
30
40
50
70
90

2. 80
3.52
4.04
4.44
4.78
5.36
5.82

0.8161
0.8120
0.8081
0.8048
0.8023
0.7989
0.7966

1.594
1.602
1.609
l.616
1.620
1.628
1.632

301
1 471
3 770
7 373

12 415
27 267
49 091

l.396
l.355
1.348
l.347
l.348
1.350
1.352

TABLE IV. Regularized GDF parameters and energies.

Z d H —E h 5 d h

10 15.7 100 277 2. 957 1.286 0.362 2.02
50 23. 31 250 10 941 2. 912 1.188 0.623 2. 14
90 19.15 250 42 811 2. 914 1.180 0.850 2.35

~From fits to HFS screening functions.
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TABLE V. E and K parameters and reduced energies.

Double Kirz, hnits

o. (10~)

10
20
30
40
50
70
90

0.1827
0.1500
0.1324
0.1209
0.1126
0.1010
0.093 08

0.982
0.899
0.874
0.862
0.854
0.846
0.839

0.030 30
0. 22 94
0.020 00
0.016 37
0.015 17
0.013 52
0.012 40

8. 0

9.0
9.0

10.0
10.0
10.0
10.0

0.91
0.91
0.91
0.92
0.92
0.92
0.92

l.330
1.270
1.255
1.249
1.242
1.247
1.242

0.2504
0. 2280
0.2169
0.2098
0.2048
0.1978
0.1931

0.262
1.23
3.04
5.76
9.38

19.30
32.58

1.3935
1.3614
1.3619
1.3662
l.3709
1.3792
1.3858

1.65 at 1.3}and a minimum of 0.84 at 0.1.
A more quantitative representation of the dif-

ferences of the various models is given in Table
VI. Here the values of (r) and (r )'I' are given.
Using the Schrodinger model as 'data" we see
clearly that the E and DE models are collapsed,
whereas the I model is inflated and the GDF and
RGDF models at equilibrium are exploded.

The next entry in Table VI represents the con-
strained GDF model discussed in Sec. III. These
parameters when used with Eq. (12) yield ( r) and

(r )'~ closest to the data calculated with the in-
dividual electron densities. The corresponding
density function is shown in Fig. 1 by the dashed
lines. The next two entries are for GDF and RGDF
parameters which have been obtained by GSZ by
fitting HF energy values as discussed in Sec. V.
The corresponding curves are also given on Fig.
1. The last entry, modified-Hartree-Fock gener-
alized distribution function (MHF-GDF), will be
discussed in Sec. VI.

V. ANALYTIC APPROACH

B K B~H+Bo K2H +KSH
(21)

where the meanings of B and K and of B» Bo, K»
and K, can readily be identified by comparison with

\ ~ ~ ~ I~ W I V ~ ~

defined by Eqs. (4}-(9), and we have discarded the
correlation energy. Analytically it is possible to
show that a = 2 and p = p, + po/H, where p, = —,

' and

Po =
6 ~ By numerical evaluations we find to good

appr oximation y = 0.487; and 5 = 50+ 6&H, where
60 = 0.270 and 5j = 0.01 p = 0.298 and T' = 1 ~ 57 ~ If
all the integrals were independent of H (i.e. , we
neglect Po and 5,) then we readily minimize the total
energy with respect to the reduced shape-scaLe
parameter H/d. The terms po/H and 5qH in prin-
ciple should permit us to solve for H and d simul-
taneously by minimizing the energy with respect
to both parameters. To do this we write the total
energy in the forms

—p N ——7N@ —,g/3H 3H
d d' (20)

where the successive terms correspond to those

In this section we reexamine the energy integrals
for the GDF and RGDF models using an approximate
analytic approach. Thus, we characterize the
dependence of the various integrals upon the param-
eter H analytically. This converts the energy func-
tional into an explicit energy function of the param-
eters N, Z, d, and H and a set of coefficients arising
from the numerical integrations. Then minimiza-
tion with respect to d and H permits us to determine
the total energy at stability as well as d and H
as explicit functions of N and Z and, of course,
the integration constants.

In the important inner region the screening func-
tion depends on H/d; accordingly, we use the
dependence upon d to factor out the corresponding
H/d and thus reexpress each of the integrals in
Eqs. (3)-(10}. Thus, we write

E = —QZcy —+ PN —+ yN ~ + 5N ~2H 5]3 H H
d d d d

I.5

I.O

.OI

r(a u)

I.Q

FIG. l. Solid line labelled Schrodinger is the sum of
the electron densities based upon the IPM using the GSZ
potential with constants fitted to HF eigenvalues. The
circles show the corresponding densities using the HFS
program of Herman and Skillman's. The GDF-HFS and
RGDF—HFS are based upon parameters which fit HFS
screening functions. GDF* is the constrained model.
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Model

TABLE VI. Intercomparison of various models for Z=50(p=(r ) /&r&).

(p) 1/2

IPM
GDF
RGDF
F
D
K
GDF
GDF-HF
RGDF
MHF-GDF

3.991
100.00
250. 00

4. 780
3.991
5.027
4.35

0.841
17.0
23.31

0.8023
0.S41
0.6312
0.875

1.289
l.595
2.91

1.620
1.288
2. 145
1.350

0.6830
1.58
1.543
0.3378
0.4223
0.9472
0.6641
0.7783
0.7594
0.7680

1.026
5. 27
6.367
0.3901
0.5043
l.768
1.039
1.178
1.131
1.180

l. 50
3.32
4. 11
1.16
1.19
1.87
1.56
l. 513
1.50
1.54

l.308
l. 356
1.188
0.854
1.242
1.370
1.348
1.307~
1 303
1.308

~Fixed parameters.
From atomic-energy formulas (see Sec. V).

Eq. (20). The minimization of E with respect to
d now gives the condition

d = 2K/B = 2(K2H +KIH )/(BgH+Bo). (22)

If we insert this in Eq. (21) we have for the energy
at this minimum with respect to d

E~ = —B~/4K= —(BqH+Bo) /4(K2H +K+ }.(23)

We may now minimize this with respect to the
parameter H which leads to a quadratic equation
whose root may be expressed in the form

2' p 9E~8~ 3 B~ (24}

We may now insert this into Eqs. (22) and (23) to
arrive at analytic expressions for the total energy
of the atom and for the scale parameter d in terms
of N and Z. In practice we again use the reduced
parameters h = H/dN'I' and b = —Er/N"' as quan-
tities to compare with data from the GSZ study.

When we use the parameters determined by the
integrals we obtain reasonable values of b but
d-1. 95 rather than -0.8 and h-1. 62 rather than
-1.3. Thus, we are very far from the empirical
values of these screening function parameters.

We will now approach the atomic-energy-formula
work from a nuclear-energy-formula' ' standpoint
by exploring various empirical adjustments of the
integral parameters. We will attempt not only to
fit the atomic-energy "data" but also the scale and

shape parameters determined by fitting HF screen-
ing functions. To mechanize our search for good
parameters we have used a nonlinear least-squares
program which minimizes the composite g:
X =w, (b —b„r) +w2(h —h„r~) +w3(d —d„r~) . (25)

Since we wish to give the greatest emphasis to the
well-defined energies, while h fluctuates and d
fluctuates rather wildly, we have chosen for most
of our work the weights w, =1, w2=-,', and w3= —,'.
After many searches, we arrived at a number of
simple solutions listed in Table VII. The second
column shows the initial integral parameters. The

is very large, since the fits to the data are very
poor. The remaining columns show the results of
various restricted searches in which the parameters
indicated by stars or zeros are held fixed. In the
search represented by column H, the weights w,
=1, w&=0. 12, and w, =0. 048 were assigned on the
basis of the standard deviation of b, d, and h from
the G solution. Note that the parameters obtained
are not significantly different in columns 6 and H

indicating an insensitivity to weighting. Figure 2
shows the simultaneous fits to b, d, and h for the
simple four-parameter-model case E. These fits
are fairly representative of cases D, F, G, and H

as well. One sees that we have found a variety of
simple representations of the data.

Using Eqs. (13) and (14}it is possible to proceed
analytically for the RGDF case just as for the GDF.

Initial B

TABLE VII. Parameters for GDF.

D G

O. -P)
P()

p
T
'y

60

100''

1.666
0.1666
0.298
1.57
0.487
0.275
0.010

36.8

1.956
0.1666
0.298
1.57
0.683
0.275
0.109
7.38

1.98
0. 0973
0
0
0.719
0
0.06~
6.87

1.99
0.130
0
0
0.712
0
0.08'
6.68

2.00
0.162
0
0
0.705
0
0.100~
6.53

2.04
0.277
0
0
0.637
0
0.177
6.33

2.04
0.388
0.298
0
0.664
0
0.248
6.28

2.04
0.527
0.679
0
0.635
0
0.339
6.31

2.04
0.489
0.573
0
0.642
0
0.314
2. 87

'Fixed parameters.
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&-PI 0.800
Pp 0.1029
p 0.1683

0.683
0.1333
0.030
0.002

100X' 39.1
1F1xed parameters

1.184
0.0978
0
0
0.2539
0
0.02K

6.00

1.194
0.146
0
0
0.250
0
0.03
5.58

1.205
0.191
0
0
0.246
0
0.04'
5.35

1.21
0.223
0
0
0.243
0
0.0478
5.34

l.21
0. 397
0.382
0
0.227
0
0.0855
5.28

1.21
0.369
0.314
0
0.230
0
0.0795
2.44
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trast with the "explosions" using the TDF approach.
Furthermore, the energies obtained are very close
(-10 ppm) to the true HF energy. The (r) and

(r ) '~ obtained in this approach (see last row of

Table VI) are very close to the IPM.
These results suggest that the difficulty with TDF

is due, at least in part, to the assumption that
Poisson's equation serves as a link connectingn(r) to
Q(r), which is rather basic to the usual forms of the
statistical model. Thus, on the statistical model
the GDF 0 leads to a singular n(r) whereas the
MHF-GDF model or IPM-GDF model gives a reg-
u1arized n(r), albeit one with shell structure.

The greater realism of the MHF results suggest
that one might treat the component energies in the
HF scheme using analytical formulas suggested by
our work in Sec. V. This approach might unite the
HF and TFD methodologies into a convenient yet
precise formalism. A complete set of MHF param-
eters would permit the realistic inclusion of shell
effects which would carry one beyond the capabilities
of any statistical model.

Granting the greater realism of the HF approach

does not preclude the possibility that within the
framework described in Sec. II improvements can
be made either by resorting to different potential
or density functions or by introducing additional

corrections to the energy functional. Our efforts
in Sec. V, in which the various components in the

energy functional are looked upon as to their param-
eter dependences, suggest that we must find a com-

ponent which enhances the H~N/d ' term which arises
out of the kinetic-energy inhomogeneity correction.
With a sufficient enhancement we should be able to
obtain good energy minima at H and d parameter
values consistent with our analytic fits to HFS
screening functions or HF energies.
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