(Riemann-Lebesgue lemma). Such a procedure then assumes that we are discussing a system of independent two-level atoms with a given distribution of level separations.

However, despite the existence of a definite infinite time limit, it must still be noted that the final state depends on the initial condition, a rigorously demonstrated result in the XY model.

¹T. Niemejer, Physica <u>36</u>, 377 (1967).

²E. Barouch and M. Dresden, Phys. Rev. Letters 23, 114 (1969).

³A. Muriel, J. Chem. Phys. <u>49</u>, 2339 (1968); A. Muriel and M. Dresden (unpublished).

⁴W. H. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964).

⁵T. H. Shirley, Phys. Rev. <u>138</u>, B979 (1965).

⁶A. Icsevgi and W. E. Lamb, Jr., Phys. Rev. <u>185</u>, 517 (1969).

PHYSICAL REVIEW A

⁷V. F. Weiskopff and E. P. Wigner, Z. Physik <u>63</u>, 54 (1930).

⁸For a more realistic model, one should look at the following works: B. R. Mollow and M. M. Miller, Ann. Phys. (N. Y.) 52, 464 (1969); B. R. Mollow, Phys. Rev. 188, 1969 (1969).

⁹W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964). ¹⁰See, e.g., V. M. Fain and Y. I. Khanin, Quantum Electronics (MIT U.P., Cambridge, Mass., 1969), Vol. I.

VOLUME 3, NUMBER 5

MAY 1971

1581

Two-Center Integrals Involving Correlated Orbitals. I. Inclusion of James-Coolidge or Hylleraas r_{ij}^n Terms*

E. V. Rothstein^{\dagger}

Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California 94720 (Received 20 May 1970; revised manuscript received 26 October 1970)

All integrals needed to evaluate the wave function of the form

$$\Psi_{\text{tot}} = \tilde{\mathfrak{Q}} \left\{ \left[\prod_{j} \sum_{s} a_{s_j} \Phi_s(j) \right] \left[1 + \sum_{j < i} w_{ij} r_{ij}^n \right] \right\} \quad \text{for } n = 1$$

and the Hamiltonian given are contained herein. For this form of the wave function, the integrals needed can be expressed as a product of integrals (involving at most four electrons). An indication of how to increase or decrease exponents of r_{ij}^n in steps of one or two is given. Some indication of how to proceed if the Hamiltonian contains $1/r_{ij}^2$ terms or if the wave function is of the form

$$\Psi_{\text{tot}} = \tilde{a} \left\{ \left[\prod_{j} \sum_{s} a_{sj} \Phi_{s}(j) \right] \left[1 + \sum_{j < l \leq k} w_{jlk} \gamma_{jl}^{n} \gamma_{lk}^{n} \right] \right\}$$

is given. Consideration of all possible types of integrals (using picture-writing graph theory) involving $r_{ij}^a r_{kl}^b r_{mn}^c$ with a < 0, b > 0, c > 0; |a| = |b| = |c| = 1, is given. Integrals corresponding to the graphs (numbers next to the individual diagrams indicate the number of the equation) are given in analytical form. These can be evaluated by numerical-integration routines.

INTRODUCTION

Much success in ab initio calculations has been achieved with the use of correlated wave functions (wave functions that included the distance between two electrons explicitly). For the He atom, ¹ the Li atom, 2 and the H₂ molecule, 3 these wave functions have yielded the most accurate energy levels and molecular properties.

Constructing the total wave function as a Slater determinant or antisymmetrized product is tantamount to using the Pauli principle, which excludes two electrons with identical quantum numbers and spin from occupying the same volume element at

the same time. It does not tell us anything about two electrons with opposite spin, which we would expect to repel each other electrostatically. By including terms dependent upon the interelectronic separation, we cause the probability, calculated from this wave function, of finding two electrons at specified regions of space to decrease when the two electrons approach one another.

A correlated wave function can be an eigenfunction of spin and angular momentum. If $\alpha(F)$ is an eigenfunction of the total and z component of spin and angular momentum, then Ψ is an eigenfunction of the same.⁴ Using the Nth-order permutation group, ⁵ all spin states⁶ for the N electron system

$$\Psi = \alpha (FR),$$

$$F = F(1, 2, 3, ..., N) = (N!)^{-1/2} \Phi_1(1) \Phi_2(2) \cdots \Phi_N(N),$$

$$R = 1 + \sum_{j < i} \sum_{j < i} (w_{ji} r_{ji} + x_{ji} r_{ji}^2 + y_{ji} r_{ji}^3 + \cdots),$$

and $\hat{\alpha}$ is the antisymmetrization operator.

H is the Hamiltonian (in the Born-Oppenheimer approximation) in atomic units, Z_a and Z_b are the nuclear charges, R is the distance between nuclei a and b, $r_{i\lambda}$ is the distance between electron i and nucleus λ , r_{ij} is the distance between electron iand electron j:

$$\mathbf{H} = -\frac{1}{2}\sum_{i} \nabla_{i}^{2} - \sum_{i} \left(\frac{Z_{a}}{\gamma_{ia}} + \frac{Z_{b}}{\gamma_{ib}} \right) + \sum_{i < j} \frac{1}{\gamma_{ij}} + \frac{Z_{a}Z_{b}}{R}$$

The coordinate system⁷ used is confocal elliptical. ϕ_i is the out-of-plane angle and R is the distance between nuclei a and b. $d\tau_i$ is the volume element and r_{12} the interelectronic distance. We have also

$$\begin{split} \xi_i &= (r_{ai} + r_{bi})/R, \quad \eta_i = (r_{ai} - r_{bi})/R, \\ &1 \leq \xi_i < \infty, \quad -1 \leq \eta_i \leq 1, \quad 0 \leq \phi_i < 2\pi, \\ d\tau_i &= \frac{1}{8}R^3(\xi_i^2 - \eta_i^2) d\xi_i d\eta_i d\phi_i, \\ r_{12}^2 &= \frac{1}{4}R^2 \{\xi_1^2 + \xi_2^2 + \eta_1^2 + \eta_2^2 - 2 - 2\xi_1\xi_2\eta_1\eta_2 \\ &- 2[(\xi_1^2 - 1)(\xi_2^2 - 1)(1 - \eta_1^2)(1 - \eta_2^2)]^{1/2} \end{split}$$

 $\times \cos(\phi_1 - \phi_2) \}. \tag{1}$

The basis functions $\Phi_s(j)$ and the total wave function are represented in Eqs. (2) and (3):

$$\Phi_{s}(j) = \xi_{j}^{p_{s}} \eta_{j}^{q_{s}} (\xi_{j}^{2} - 1)^{\gamma_{s}/2} (1 - \eta_{j}^{2})^{\nu_{s}/2} e^{-\alpha_{s}\xi_{j}} e^{\beta_{s}\eta_{j}} e^{im_{s}\phi_{j}},$$

$$s = (p_{s}, q_{s}, \gamma_{s}, \nu_{s}, \alpha_{s}, \beta_{s}, m_{s}), \quad i = \sqrt{(-1)} \quad (2)$$

$$\Psi_{\text{tot}} = \bar{a} \left\{ \left[\prod_{s} \sum_{s} a_{sj} \Phi_{s}(j) \right] \left[1 + \sum_{s} \sum_{s} \omega_{j1} r_{j1}^{n} \right] \right\}.$$
(3)

For molecules with more than two nuclei, the spherical coordinate system and Gaussian transforms⁸ or ζ -function expansions⁹ can be used for integral evaluation.

CLASSIFICATION OF INTEGRALS

The classification of types of integrals involving $r_{ij}^a r_{kl}^b r_{mn}^c$ can be considered in the notation of "picture-writing"¹⁰ graph theory.¹¹ Figure 1 depicts the ten distinct integral types, for the case a = b = 1, c = -1. The small circles are electrons and the line segments connecting electrons *i* and *j* corresponds to the distance r_{ij} . The dashed line represents r_{ij}^{-1} . The numbers in parentheses next to each graph, in Fig. 1, correspond to the integral equation for that graph. If a line segment has no electron in common with any other line, it can be factored out of the integral. For the form of the wave function given in (3), the integrals needed can be expressed as a product of primitive integrals (involving at most four electrons). All the integrals needed to evaluate this wave function involving r_{ij} to the first power are given.

TWO-ELECTRON INTEGRALS

We have

$$\langle r_{12}^2 \rangle = \langle \Phi_s(2) r_{12}^2 \Phi_t(1) \rangle = \int d\tau \ \Phi_s(2) r_{12}^2 \Phi_t(1)$$

= $\frac{1}{64} R^8 \pi^2 \delta(m_s; 0) \delta(m_t; 0)$
 $\times \int_1^{\infty} \int_{-1}^{\infty} \int_{-1}^{1} \int_{-1}^{1} (\xi_1^2 - \eta_1^2) (\xi_2^2 - \eta_2^2) d\xi_1 d\xi_2 d\eta_1 d\eta_2$
 $\times \Phi_s(2) \Phi_t(1) \{\xi_1^2 + \xi_2^2 + \eta_1^2 + \eta_2^2 - 2 - 2\xi_1 \xi_2 \eta_1 \eta_2$
 $- [(\xi_1^2 - 1) (\xi_2^2 - 1) (1 - \eta_1^2) (1 - \eta_2^2)]^{1/2} \}.$ (4)

The Neumann¹² expansion for $1/r_{12}$ in prolate elliptical coordinates is

$$\frac{1}{r_{12}} = \frac{4}{R} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (-1)^{m} \frac{2l+1}{2} \left[\frac{(l-|m|)!}{(l+|m|)!} \right]^{2} P_{l}^{lm!}(\xi_{1<2}) \times Q_{l}^{lm!}(\xi_{2>1}) P_{l}^{lm!}(\eta_{1}) P_{l}^{lm!}(\eta_{2}) e^{im(\phi_{1}-\phi_{2})}.$$
(5)

 $P_{l}^{m}(\xi)$ and $Q_{l}^{m}(\xi)$ are associated Legendre polynomials of the first and second kind in the complex plane.¹³ $\xi_{1\leq 2}$ and $\xi_{2\geq 1}$ mean the smaller and the larger, respectively, of ξ_{1} and ξ_{2} . The $P_{l}^{m}(\xi)$ and $Q_{l}^{m}(\xi)$ have the range $[1, \infty]$. The $P_{l}^{m}(\eta)$ have the range [-1, 1]. For further details, see Refs. 13-23. We have

$$P_{I}^{m}(\xi) = \frac{(\xi^{2}-1)^{m/2}}{2^{l}l!} \frac{d^{l+m}}{d\xi^{l+m}} (\xi^{2}-1)^{l},$$

$$P_{I}^{m}(\eta) = \frac{(1-\eta^{2})^{m/2}}{2^{l}l!} \frac{d^{l+m}}{d\eta^{l+m}} (\eta^{2}-1)^{l},$$

$$Q_{I}^{m}(\xi) = (\xi^{2}-1)^{m/2} \frac{d^{m}}{d\xi^{m}} Q_{I}(\xi),$$

$$Q_{I}(\xi) = \frac{1}{2} P_{I}(\xi) \ln\left(\frac{\xi+1}{\xi-1}\right)$$

$$- \sum_{j=1}^{\epsilon(j+1)/2} \frac{2l-4j+3}{(2j-1)(l-j+1)} P_{I-2j+1}(\xi).$$
(6)

The $\langle 1/r_{12} \rangle$ [Eq. (10)] can be expressed more concisely, using the definitions of Eqs. (6)-(9),

$$a = (p_{a}, q_{a}, \gamma_{a}, \nu_{a}, \alpha_{a}, \beta_{a}, m_{a}),$$

$$b = (p_{b}, q_{b}, \gamma_{b}, \nu_{b}, \alpha_{b}, \beta_{b}, m_{b}),$$

$$K^{\sigma}_{\mu, \mu^{*}, \alpha}(z) = \int_{1}^{z} \int_{-1}^{1} d\xi \, d\eta \, (\xi^{2} - \eta^{2}) \, \xi^{p_{a}} \eta^{a_{a}} (\xi^{2} - 1)^{\gamma_{a}/2} \\ \times (1 - \eta^{2})^{\nu_{a}/2} \, e^{-\alpha_{a} \xi} \, e^{+\beta_{a} \eta} P^{\sigma}_{\mu}(\xi) \, P^{\sigma}_{\mu^{*}}(\eta),$$

(7)

$$F_{\mu}^{\sigma}(z) = \frac{-d}{dz} \left(\frac{Q_{l}^{m}(z)}{P_{l}^{m}(z)} \right) = \frac{(-1)^{\sigma}(\mu+\sigma)!/(\mu-\sigma)!}{\left[P_{\mu}^{\sigma}(z) \right]^{2} (z^{2}-1)} , (8)$$

$$Z^{\sigma}_{\mu} = (-)^{\sigma} \left[\frac{(\mu - |\sigma|)!}{(\mu + |\sigma|)!} \right]^{2}, \qquad (9)$$

$$\langle 1/r_{12} \rangle = \langle \Phi_a(1) (1/r_{12}) \Phi_b(2) \rangle = \frac{1}{8} \pi^2 R^5 \delta(m_a + m_b; 0)$$

$$\times \sum_{\mu=\sigma=lm_{a}l}^{\infty} (2\mu+1) Z_{\mu}^{\sigma} \int_{1}^{\infty} F_{\mu}^{\sigma}(z) K_{\mu,\mu,a}^{\sigma}(z) K_{\mu,\mu,b}^{\sigma}(z) dz .$$
(10)

For $\frac{1}{2}(\gamma_a + \sigma)$ and $\frac{1}{2}(\nu_a + \sigma)$ integers, the one-dimensional integral $K^{\sigma}_{\mu, \mu', a}(z)$ can be evaluated analytically for each z and inserted in the numerical integration at the appropriate mesh points:

$$K_{\mu,\mu^{\prime},a}^{\sigma}(z) = \sum_{j=0}^{\lfloor (\mu-\sigma)/2 \rfloor} \sum_{r=0}^{(\gamma_{a}+\sigma)/2 \rfloor} \sum_{k=0}^{\lfloor (\mu^{\prime}-\sigma)/2 \rfloor} \frac{(\nu_{a}+\sigma)/2}{2^{\mu}j!(\mu-j)!(\mu-\sigma-2j)!(\mu-\sigma-2j)!(2^{\mu^{\prime}}-2k)!} \frac{(2\mu-2j)!(2\mu^{\prime}-2k)!}{2^{\mu^{\prime}}k!(\mu^{\prime}-k)!(\mu^{\prime}-\sigma-2k)!} \times \frac{(-1)^{(\nu_{a}+\sigma/2)-r}[\frac{1}{2}(\gamma_{a}+\sigma)]!(-1)^{t}[\frac{1}{2}(\nu_{a}+\sigma)]!}{r![\frac{1}{2}(\gamma_{a}+\sigma)-r]!t![\frac{1}{2}(\nu_{a}+\sigma)-t]!} \left\{ S_{2}!V_{0}!\sum_{s=0}^{S_{2}} \sum_{\nu=0}^{V_{0}} \frac{[e^{-\alpha}a-e^{-\alpha}a^{s}}{\alpha^{s+1}}(S_{2}-s)!}{\alpha^{s+1}(S_{2}-s)!} \frac{[e^{\beta}a(-1)^{\nu}-e^{-\beta}a(-1)^{V_{0}}]}{\beta^{\nu+1}(V_{0}-\nu)!} + S_{0}!V_{2}!\sum_{s=0}^{S_{0}} \sum_{\nu=0}^{V_{2}} \frac{[e^{-\alpha}a-e^{-\alpha}a^{s}}{\alpha^{s+1}}(S_{0}-s)!}{\alpha^{s+1}(S_{0}-s)!} \frac{[e^{\beta}a(-1)^{\nu}-e^{-\beta}a(-1)^{V_{2}}]}{\beta^{\nu+1}(V_{2}-\nu)!} \right\}, \qquad S_{0}=\mu-\sigma+p_{a}-2j+2r,$$

$$S_{2}=S_{0}+2, \qquad V_{0}=\mu^{\prime}-\sigma+q_{a}-2k+2t, \qquad V_{2}=V_{0}+2.$$

$$(11)$$

The upper limit of j is $\frac{1}{2}(\mu - \sigma)$ or $\frac{1}{2}(\mu - \sigma - 1)$, whichever is an integral. The upper limit of k is $\frac{1}{2}(\mu' - \sigma)$ or $\frac{1}{2}(\mu' - \sigma - 1)$, whichever is an integral. The upper limit of t is $\frac{1}{2}(\nu_a + \sigma)$ and the upper limit of r is $\frac{1}{2}(\gamma_a + \sigma)$; if these are not integrals, the summations are infinite ones. In practice, the $K^{\sigma}_{\mu,\mu',a}(z)$ are evaluated recursively and numerically.^{24,25} If the $\Phi_a(j)$ of Eq. (10) are Slater-type orbitals, the integrals can be reexpressed²⁶ as a sum of "charge distributions." The r_{12} expansion is needed for the evaluation of r_{12} and for raising the value of *n* in r_{12}^n . This expansion [Eq. (12)] has been derived by Harris.²⁷ The partial integration of Eq. (14) is used in the evaluation of the corresponding integral [Eq. (15)]. In Eq. (14), for $z \rightarrow \infty$ and $\mu \neq 0$, the first term approaches 0. For $\mu = 0$, $X_{\mu}^{\sigma} = 0$;

$$O_{per} \begin{pmatrix} a \\ b \end{pmatrix}$$

denotes interchange of a and b charge distributions. We have

$$\begin{split} \gamma_{12} &= \frac{R}{2} \sum_{\mu=0}^{\infty} \sum_{\sigma=-\mu}^{\mu} \left[\left(U_{\mu}^{\sigma} g_{\mu}^{\sigma} + V_{\mu}^{\sigma} h_{\mu}^{\sigma} + 2W_{\mu}^{\sigma} \right) Q_{\mu}^{\dagger\sigma\dagger}(\xi_{2>1}) + \frac{X_{\mu}^{\sigma} \xi_{2>1}}{P_{\mu}^{\dagger\sigma}(\xi_{2>1})} \right] P_{\mu}^{\dagger\sigma\dagger}(\xi_{1>2}) P_{\mu}^{\dagger\sigma\dagger}(\eta_{1}) P_{\mu}^{\dagger\sigma\dagger}(\eta_{2}) e^{i\sigma(\phi_{1}-\phi_{2})} , \\ g_{\mu}^{\sigma} &= \frac{P_{\mu*2}^{\dagger\sigma}(\xi_{1})}{P_{\mu}^{\dagger\sigma\dagger}(\xi_{1})} + \frac{P_{\mu*2}^{\dagger\sigma}(\xi_{2})}{P_{\mu}^{\dagger\sigma}(\xi_{2})} + \frac{P_{\mu*2}^{\dagger\sigma}(\eta_{1})}{P_{\mu}^{\dagger\sigma}(\eta_{1})} + \frac{P_{\mu*2}^{\dagger\sigma}(\eta_{2})}{P_{\mu}^{\dagger\sigma}(\eta_{2})} , \qquad h_{\mu}^{\sigma} &= \frac{P_{\mu*2}^{\dagger\sigma}(\xi_{1})}{P_{\mu}^{\dagger\sigma}(\xi_{1})} + \frac{P_{\mu*2}^{\dagger\sigma}(\eta_{1})}{P_{\mu}^{\dagger\sigma}(\xi_{2})} + \frac{P_{\mu*2}^{\dagger\sigma}(\eta_{1})}{P_{\mu}^{\dagger\sigma}(\eta_{1})} + \frac{P_{\mu*2}^{\dagger\sigma}(\eta_{2})}{P_{\mu}^{\dagger\sigma}(\eta_{2})} , \\ U_{\mu}^{\sigma} &= Z_{\mu}^{\sigma} \frac{(\mu - |\sigma| + 1) (\mu - |\sigma| + 2)}{(2\mu + 3)^{2}} , \qquad V_{\mu}^{\sigma} &= -Z_{\mu}^{\sigma} \frac{(\mu + |\sigma| - 1) (\mu + |\sigma|)}{(2\mu - 1)^{2}} , \\ W_{\mu}^{\sigma} &= Z_{\mu}^{\sigma} \frac{2(2\mu + 1) (4\sigma^{2} - 1)}{(2\mu - 1)^{2} (2\mu + 3)^{2}} , \qquad X_{\mu}^{\sigma} &= -\frac{(\mu - |\sigma|)! 2(2\mu + 1)}{(\mu + |\sigma|)! (2\mu - 1) (2\mu + 3)} , \\ G_{\mu}^{\sigma}(z) &= \frac{-d}{dz} \left\{ \frac{z}{\left[P_{\mu}^{\sigma}(z)\right]^{2}} \right\} = \frac{-l_{\mu}^{\sigma}}{\left[P_{\mu}^{\sigma}(z)\right]^{2} (z^{2} - 1)} , \qquad l_{\mu}^{\sigma}(z) = (2\mu + 3) z^{2} - 2(\mu - \sigma + 1) z \frac{P_{\mu+1}^{\sigma}(z)}{P_{\mu}^{\sigma}(z)} - 1, \end{aligned}$$
(12)

$$X^{\sigma}_{\mu} \int_{1}^{z} \frac{x}{P^{\sigma}_{\mu}(x)} w(x) dx = \frac{X^{\sigma}_{\mu} z}{\left[P^{\sigma}_{\mu}(z)\right]^{2}} \int_{1}^{z} P^{\sigma}_{\mu}(x) w(x) dx - X^{\sigma}_{\mu} \int_{1}^{z} \frac{l^{\sigma}_{\mu}(x) dx}{\left[P^{\sigma}_{\mu}(x)\right]^{2} (x^{2} - 1)} \int_{1}^{x} P^{\sigma}_{\mu}(\xi) w(\xi) d\xi, \qquad (14)$$

$$\langle r_{12} \rangle = \langle \Phi_{a}(1) \Phi_{b}(2) r_{12} \rangle = \frac{1}{32} R^{7} \pi^{2} \delta(m_{a} + m_{b}; 0)$$

$$\times \left[1 + O_{per} \binom{a}{b} \right] \sum_{\mu=\sigma=1}^{\infty} \int_{1}^{\infty} dz K^{\sigma}_{\mu,\mu,a}(z) \left[F^{\sigma}_{\mu}(z) \tilde{K}^{\sigma}_{\mu,\mu,b}(z) + \frac{1}{2} X^{\sigma}_{\mu} G^{\sigma}_{\mu}(z) K^{\sigma}_{\mu,\mu,b}(z) \right],$$
(15)

E. V. ROTHSTEIN <u>3</u>

$$\tilde{K}^{\sigma}_{\mu,\mu,a}(z) = U^{\sigma}_{\mu} \left[K^{\sigma}_{\mu+2,\mu,a}(z) + K^{\sigma}_{\mu,\mu+2,a}(z) \right] + V^{\sigma}_{\mu} \left[K^{\sigma}_{\mu-2,\mu,a}(z) + K^{\sigma}_{\mu,\mu-2,a}(z) \right] + W^{\sigma}_{\mu} K^{\sigma}_{\mu,\mu,a}(z) .$$
(16)

THREE-ELECTRON INTEGRALS

The three- and four-electron integrals have been formulated in a straightforward manner, using partial integration. Equation (17) illustrates a technique of partial integration useful in the derivations. Whenever the product of two or more associated Legendre polynomials occurs, these can be replaced by a sum over a single associated Legendre polynomial. The coefficients involve products of Clebsch-Gordan coefficients. Equation (22) is a Clebsch-Gordan series. For further information see Refs. 23 and 28-35. We have

$$\int_{1}^{\infty} f(y) dy \int_{t=y}^{\infty} g(t) dt = \int_{1}^{\infty} g(y) dy \int_{t=1}^{y} f(t) dt, \qquad u(y) = \int_{1}^{y} f(t) dt, \qquad v(y) = \int_{1}^{y} g(s) ds,$$

$$\langle r_{12} r_{13} \rangle = \langle \Phi_{a}(1) \Phi_{b}(2) \Phi_{c}(3) r_{12} r_{13} \rangle$$

$$= \frac{1}{128} R^{11} \pi^{3} \delta(m_{a} + m_{b} + m_{c}; 0) \left[1 + O_{per} \binom{b}{c} \right] \qquad \sum_{\mu=\sigma=1}^{\infty} \sum_{m_{b}^{1} \mu^{*}=\sigma^{*}=1}^{\infty} \sum_{m_{c}^{1}} \sum_{\mu=\sigma=1}^{\infty} \sum_{m_{b}^{1} \mu^{*}=\sigma^{*}=1}^{\infty} \sum_{m_{c}^{1}} \sum_{\mu=\sigma=1}^{\infty} dz \left[\tilde{\Re}_{\mu^{*}, \mu^{*}, c}^{\sigma^{*}}(z) + X_{\mu^{*}}^{\sigma^{*}} \tilde{\Re}_{\mu^{*}, \mu^{*}, c}^{\sigma^{*}}(z) \right] \left[F_{\mu}^{\sigma}(z) \tilde{N}_{(\mu, \mu^{*}), a}^{(\sigma, \sigma^{*})}(z) + F_{\mu}^{\sigma}(z) N_{\mu, \mu^{*}, a}^{\sigma, \sigma^{*}}(z) \tilde{K}_{\mu, \mu, b}^{\sigma}(z) + X_{\mu}^{\sigma} G_{\mu}^{\sigma}(z) N_{\mu, \mu^{*}, a}^{\sigma, \sigma^{*}}(z) K_{\mu, \mu, b}^{\sigma}(z) \right]$$

$$+\int_{1}^{\infty} dz \, \Re \, {}^{\sigma'}_{\mu',\,\mu',c}(z) \left[F^{\sigma}_{\mu}(z) \, \tilde{\tilde{N}}^{\sigma,\sigma'}_{\mu,\,\mu',a}(z) \, K^{\sigma}_{\mu,\,\mu,\,b}(z) + F^{\sigma}_{\mu}(z) \tilde{N}^{(\sigma',\,\sigma)}_{(\mu',\,\mu),\,a}(z) \, \tilde{K}^{\sigma}_{\mu,\,\mu,\,b}(z) \right. \\ \left. + X^{\sigma}_{\mu} G^{\sigma}_{\mu}(z) \, \tilde{N}^{(\sigma',\,\sigma)}_{(\mu',\,\mu),\,a}(z) \, K^{\sigma}_{\mu,\,\mu,\,b}(z) \right] \right\},$$
(18)

$$\Re^{\sigma}_{\mu,\mu,b}(z) = \int_{z}^{\infty} F^{\sigma}_{\mu}(z) K^{\sigma}_{\mu,\mu,b}(z) dz , \qquad (19)$$

$$\overline{\mathfrak{X}}_{\mu,\mu,b}^{\sigma}(z) = \int_{z}^{\infty} G_{\mu}^{\sigma}(z) K_{\mu,\mu,b}^{\sigma}(z) dz, \qquad (20)$$

$$\tilde{\mathfrak{K}}^{\sigma}_{\mu,\mu,b}(z) = \int_{z}^{\infty} F^{\sigma}_{\mu}(z) \tilde{K}^{\sigma}_{\mu,\mu,b}(z) dz , \qquad (21)$$

$$P_{l}^{m}(z) P_{l^{*}}^{m^{*}}(z) = \sum_{j} \begin{bmatrix} l & l' & l \\ m & m' & (m+m') \end{bmatrix} P_{j}^{(m+m')}(z), \qquad (22)$$

$$\begin{bmatrix} j_1 & j_2 & j \\ m_1 & m_2 & m \end{bmatrix} = \begin{bmatrix} j_2 & j_1 & j \\ m_2 & m_1 & m \end{bmatrix} = \delta(m; m_1 + m_2) \left[\frac{(j-m)!(j_1+m_1)!(j_2+m_2)!}{(j+m)!(j_1-m_1)!(j_2-m_2)!} \right]^{1/2}$$

 $\times \, C(j_1,\, j_2,\, j; m_1,\, m_2,\, m) \, C(j_1,\, j_2,\, j; 0,\, 0,\, 0) \, C(j_1,\, j_2,\, j; m_1,\, m_2,\, m)$

$$= \delta(m; m_1 + m_2) (2j + 1)^{1/2} \Delta(j_1, j_2, j)$$

$$\times \sum_{p} \frac{(-1)^{p} [(j+m)! (j-m)! (j_{1}+m_{1})! (j_{1}-m_{1})! (j_{2}+m_{2})! (j_{2}-m_{2})!]^{1/2}}{p! (j_{1}+j_{2}-j-p)! (j_{1}-m_{1}-p)! (j-j_{2}+m_{1}+p)! (j_{2}+m_{2}-p)! (j-j_{2}-m_{2}+p)!},$$

$$\Delta(a, b, c) = \left[\frac{(a+b-c)! (b+c-a)! (c+a-b)!}{(a+b+c+1)!} \right]^{1/2},$$

$$N_{\mu,\mu,a}^{\sigma,\sigma'}(z) = N_{\mu',\mu,a}^{\sigma',\sigma}(z) = \int_{1}^{z} \int_{-1}^{1} (\xi^{2}-\eta^{2}) d\xi d\eta P_{\mu}^{\sigma}(\xi) P_{\mu'}^{\sigma}(\xi) P_{\mu}^{\sigma}(\eta) P_{\mu'}^{\sigma'}(\eta) \xi^{p_{a}} \eta^{a} (\xi^{2}-1)^{\gamma_{a}/2}$$

$$\times (1-\eta^{2})^{\nu_{a}/2} e^{-\alpha_{a}\ell} e^{\beta_{a}\eta} = \frac{1}{2} \delta(m; \sigma+\sigma') \sum_{J} \sum_{J'} \left[\begin{array}{c} \mu & \mu' & J \\ \sigma & \sigma' & m \end{array} \right] \left[\begin{array}{c} \mu & \mu' & J' \\ \sigma & \sigma' & m \end{array} \right] \left\{ K_{J',J',a}^{m}(z) + K_{J',J',a}^{m}(z) \right\},$$

$$(23)$$

$$\tilde{N}_{\{\mu,\mu^{\prime}\},a}^{(\sigma,\sigma^{\prime})}(z) = \delta(m;\sigma+\sigma^{\prime}) \sum_{J} \sum_{J^{\prime}} \left\{ U_{\mu}^{\sigma} \begin{bmatrix} \mu+2 & \mu^{\prime} & J \\ \sigma & \sigma^{\prime} & m \end{bmatrix} + V_{\mu}^{\sigma} \begin{bmatrix} \mu-2 & \mu^{\prime} & J \\ \sigma & \sigma^{\prime} & m \end{bmatrix} \right\} \\
\times \begin{bmatrix} \mu & \mu^{\prime} & J^{\prime} \\ \sigma & \sigma^{\prime} & m \end{bmatrix} \left\{ K_{J,J^{\prime},a}^{m}(z) + K_{J^{\prime},J,a}^{m}(z) \right\} + W_{\mu}^{\sigma} N_{\mu,\mu^{\prime},a}^{\sigma,\sigma^{\prime}}(z),$$
(24)

$$\begin{split} \tilde{\tilde{N}}_{\mu,\mu,\mu,a}^{\sigma,\sigma'}(z) &= \tilde{\tilde{N}}_{\mu',\mu,a}^{\sigma',\sigma}(z) = \delta(m;\,\sigma+\sigma') \sum_{J} \sum_{J'} \left\{ \left(U_{\mu}^{\sigma} U_{\mu'}^{\sigma'} \begin{bmatrix} \mu+2 & \mu'+2 & J\\ \sigma & \sigma' & m \end{bmatrix} + V_{\mu}^{\sigma} V_{\mu'}^{\sigma'} \begin{bmatrix} \mu+2 & \mu'-2 & J\\ \sigma & \sigma' & m \end{bmatrix} + V_{\mu}^{\sigma} V_{\mu'}^{\sigma'} \begin{bmatrix} \mu+2 & \mu'-2 & J\\ \sigma & \sigma' & m \end{bmatrix} + U_{\mu'}^{\sigma'} V_{\mu'}^{\sigma} \begin{bmatrix} \mu-2 & \mu'+2 & J\\ \sigma & \sigma' & m \end{bmatrix} \right) \begin{bmatrix} \mu & \mu' & J'\\ \sigma & \sigma' & m \end{bmatrix} \\ &+ \left(U_{\mu}^{\sigma} \begin{bmatrix} \mu+2 & \mu' & J\\ \sigma & \sigma' & m \end{bmatrix} + V_{\mu}^{\sigma} \begin{bmatrix} \mu-2 & \mu' & J\\ \sigma & \sigma' & m \end{bmatrix} \right) \left(U_{\mu'}^{\sigma'} \begin{bmatrix} \mu & \mu'+2 & J'\\ \sigma & \sigma' & m \end{bmatrix} + V_{\mu'}^{\sigma'} \begin{bmatrix} \mu-2 & \mu' & J\\ \sigma & \sigma' & m \end{bmatrix} \right) \right\} \\ &\times \left\{ K_{J',J',a}^{\sigma}(z) + K_{J'',J,a}^{\sigma}(z) \right\} + W_{\mu'}^{\sigma'} \tilde{N}_{(\mu',\mu'),a}^{(\sigma,\sigma')}(z) + W_{\mu'}^{\sigma} \tilde{N}_{(\mu',\mu'),a}^{(\sigma',\sigma)}(z) - W_{\mu'}^{\sigma'} W_{\mu}^{\sigma} N_{\mu,\mu',a}^{\sigma,\sigma'}(z) \quad , \end{split} \right\}$$

$$\langle r_{12}/r_{13} \rangle = \langle \Phi_{a}(1) \Phi_{b}(2) \Phi_{c}(3) r_{12}/r_{13} \rangle = \frac{1}{64} R^{9} \pi^{3} \delta(m_{a} + m_{b} + m_{c}; 0) \sum_{\mu = \sigma = 1}^{\infty} \sum_{\mu' = \sigma' = 1}^{\infty} (2\mu' + 1) Z_{\mu'}^{\sigma'} \{ \int_{1}^{\infty} dz F_{\mu}^{\sigma}(z) \times \Re_{\mu',\mu',c}^{\sigma'}(z) [\tilde{N}_{(\mu,\mu'),a}^{(\sigma,\sigma')}(z) K_{\mu,\mu,b}^{\sigma}(z) + N_{\mu,\mu',a}^{\sigma,\sigma'}(z) \tilde{K}_{\mu,\mu,b}^{\sigma}(z)] + \int_{1}^{\infty} dz F_{\mu'}^{\sigma'}(z) K_{\mu',\mu',c}^{\sigma'}(z) \times [\tilde{N}_{(\mu,\mu'),a}^{(\sigma,\sigma')}(z) + N_{\mu,\mu',a}^{\sigma,\sigma'}(z) \tilde{\chi}_{\mu,\mu,b}^{\sigma}(z)] + X_{\mu}^{\sigma} \int_{1}^{\infty} dz N_{\mu',\mu',a}^{\sigma,\sigma'}(z) [K_{\mu,\mu,b}^{\sigma}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) G_{\mu}^{\sigma}(z)] + X_{\mu}^{\sigma} \int_{1}^{\infty} dz N_{\mu',\mu',a}^{\sigma,\sigma'}(z) [K_{\mu,\mu,b}^{\sigma}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) G_{\mu'}^{\sigma}(z)] + X_{\mu',\mu',a}^{\sigma'}(z) [K_{\mu',\mu',a}^{\sigma}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) G_{\mu'}^{\sigma'}(z)] + X_{\mu',\mu',a}^{\sigma'}(z) [N_{\mu',\mu',a}^{\sigma,\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z)] + X_{\mu',\mu',a}^{\sigma'}(z) [N_{\mu',\mu',a}^{\sigma,\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z)] + X_{\mu',\mu',a}^{\sigma'}(z) [N_{\mu',\mu',a}^{\sigma,\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z)] + X_{\mu',\mu',a}^{\sigma'}(z) \Re_{\mu',\mu',a}^{\sigma'}(z) \Re_{\mu',\mu',c}^{\sigma'}(z) \Re_{\mu'$$

$$+ \overline{\mathfrak{X}}_{\mu,\mu,b}^{\sigma}(z) K_{\mu',\mu',c}^{\sigma'}(z) F_{\mu'}^{\sigma'}(z)] \}, \quad (26)$$

$$/ r_{ee} \rangle = \langle \Phi_{\mu}(1) \Phi_{\mu}(2) \Phi_{\mu}(3) r_{10} r_{$$

$$\langle \boldsymbol{\gamma}_{12} \boldsymbol{\gamma}_{13} / \boldsymbol{\gamma}_{23} \rangle = \langle \Phi_{a}(1) \Phi_{b}(2) \Phi_{c}(3) \boldsymbol{\gamma}_{12} \boldsymbol{\gamma}_{13} / \boldsymbol{\gamma}_{23} \rangle = \frac{1}{126} R^{10} \pi^{3} \delta(m_{a} + m_{b} + m_{c}; 0) \left[1 + O_{per} \begin{pmatrix} b \\ c \end{pmatrix} \right]$$

$$\times \sum_{\mu^{\prime\prime}=0}^{\infty} \sum_{w^{\prime\prime}=-\mu^{\prime\prime}}^{\nu^{\prime\prime}} \sum_{\mu^{\prime}=0}^{\infty} \sum_{\mu=0}^{\infty} \delta(w^{\prime}; m_{c} - w^{\prime\prime}) \delta(|w^{\prime}|; \sigma^{\prime}) \delta(w; m_{b} + w^{\prime\prime}) \delta(|w|; \sigma) \delta(|w^{\prime\prime}|; \sigma^{\prime\prime})$$

$$\times (2\mu^{\prime\prime} + 1) Z_{\mu^{\prime\prime}}^{\sigma^{\prime\prime}} \left\{ \int_{1}^{\infty} dz \ \Re_{\mu^{\prime},\mu^{\prime\prime},\sigma^{\prime\prime}}^{\sigma^{\prime\prime}}(z) \left[N_{\mu,\mu^{\prime\prime},\mu^{\prime\prime},b}^{\sigma,\sigma^{\prime\prime}}(z) \tilde{N}_{(\mu^{\prime},\mu^{\prime\prime},\mu^{\prime\prime}),a}^{\sigma^{\prime\prime}}(z) \tilde{G}_{\mu^{\prime},\mu^{\prime\prime},b}^{\sigma}(z) \tilde{G}_{\mu^{\prime},\mu^{\prime\prime},b}^{\sigma,\sigma^{\prime\prime}}(z) X_{\mu^{\prime}}^{\sigma} + \tilde{N}_{(\mu,\mu^{\prime\prime},\mu^{\prime\prime}),b}^{(\sigma,\sigma^{\prime\prime},\sigma^{\prime\prime})}(z) \tilde{N}_{\mu^{\prime},\mu^{\prime\prime},c}^{(\sigma,\sigma^{\prime\prime})}(z) \right] + \int_{1}^{\infty} dz [X_{\mu}^{\sigma} \widetilde{\Re}_{(\mu,\mu^{\prime\prime}),a}^{(\sigma,\sigma^{\prime\prime})}(z) \tilde{G}_{\mu^{\prime\prime},\mu^{\prime\prime},a}^{\sigma,\sigma^{\prime\prime}}(z) N_{\mu^{\prime},\mu^{\prime\prime},c}^{\sigma^{\prime\prime}}(z) + \tilde{\eta}_{(\mu,\mu^{\prime\prime},\mu^{\prime\prime}),c}^{(\sigma,\sigma^{\prime\prime})}(z) \right] [N_{\mu^{\prime},\mu^{\prime\prime},a}^{\sigma,\sigma^{\prime\prime}}(z) N_{\mu^{\prime},\mu^{\prime\prime},c}^{\sigma^{\prime\prime}}(z) + \int_{1}^{\infty} dz F_{\mu^{\prime\prime}}^{\sigma^{\prime\prime}}(z) N_{\mu^{\prime},\mu^{\prime\prime},c}^{\sigma^{\prime\prime}}(z) [X_{\mu^{\prime}}^{\sigma,\sigma^{\prime\prime}}(z) + \tilde{\eta}_{(\mu,\mu^{\prime\prime}),a}^{(\sigma,\sigma^{\prime\prime})}(z) F_{\mu^{\prime\prime}}^{\sigma^{\prime\prime}}(z)] \right] + \int_{1}^{\infty} dz F_{\mu^{\prime\prime}}^{\sigma^{\prime\prime}}(z) N_{\mu^{\prime},\mu^{\prime\prime},c}^{\sigma^{\prime\prime}}(z) [X_{\mu^{\prime}}^{\sigma,\sigma^{\prime\prime}}(z) + \tilde{\eta}_{\mu^{\prime},\mu^{\prime\prime},a}^{\sigma^{\prime\prime}}(z)] + \frac{1}{2} \tilde{\eta}_{(\mu,\mu^{\prime\prime}),a}^{\sigma^{\prime\prime}}(z) + \frac{1}{2} X_{\mu}^{\sigma} X_{\mu^{\prime}}^{\sigma^{\prime\prime}}(z) \left[\tilde{\eta}_{\mu^{\prime},\mu^{\prime\prime},a}^{\sigma^{\prime\prime}}(z) \right] \right] + \int_{1}^{\infty} dz F_{\mu^{\prime\prime}}^{\sigma^{\prime\prime}}(z) \tilde{N}_{(\mu^{\prime},\mu^{\prime\prime}),c}^{\sigma^{\prime\prime}}(z) [\tilde{\eta}_{(\mu^{\prime},\mu^{\prime\prime}),a}^{(\sigma,\sigma^{\prime\prime})}(z)] + \tilde{\eta}_{\mu^{\prime},\mu^{\prime\prime},a}^{\sigma^{\prime\prime}}(z) \left[\tilde{\eta}_{(\mu,\mu^{\prime\prime}),a}^{\sigma^{\prime\prime}}(z) + \tilde{\eta}_{\mu^{\prime},\mu^{\prime\prime},a}^{\sigma^{\prime\prime}}(z) \right] \right] + \frac{1}{2} \int_{1}^{\infty} dz F_{\mu^{\prime\prime}}^{\sigma^{\prime\prime}}(z) \tilde{N}_{(\mu^{\prime},\mu^{\prime\prime}),b}^{\sigma^{\prime\prime}}(z) \tilde{N}_{(\mu^{\prime},\mu^{\prime\prime}),c}^{\sigma^{\prime\prime}}(z) \left[\tilde{\eta}_{(\mu^{\prime},\mu^{\prime\prime}),a}^{\sigma^{\prime\prime}}(z) + X_{\mu}^{\sigma} \tilde{\eta}_{\mu^{\prime},\mu^{\prime\prime}}^{\sigma^{\prime\prime}}(z) \right] \right] \right\}$$

$$\mathfrak{N}_{\mu,\,\mu^{*},\,a}^{\sigma,\,\sigma^{*}}(z) = \mathfrak{N}_{\mu^{*},\mu,a}^{\sigma^{*},\sigma}(z) = \int_{z}^{\infty} F_{\mu,\,\mu^{*}}^{\sigma,\,\sigma^{*}}(x) N_{\mu,\,\mu^{*},\,a}^{\sigma,\,\sigma^{*}}(x) dx \quad , \tag{28}$$

$$F_{\mu,\mu^{\bullet}}^{\sigma,\sigma^{\bullet}}(x) = \frac{-d}{dx} \begin{bmatrix} Q_{\mu}^{\sigma}(x) & Q_{\mu^{\bullet}}^{\sigma^{\bullet}}(x) \\ P_{\mu}^{\sigma}(x) & P_{\mu^{\bullet}}^{\sigma^{\bullet}}(x) \end{bmatrix}, \quad E_{(\mu,\mu^{\bullet})}^{(\sigma,\sigma^{\bullet})}(x) = \frac{-d}{dx} \left\{ \frac{x}{[P_{\mu}^{\sigma}(x)]^2} & \frac{Q_{\mu^{\bullet}}^{\sigma^{\bullet}}(x)}{P_{\mu^{\bullet}}^{\sigma^{\bullet}}(x)} \right\}, \quad G_{\mu,\mu^{\bullet}}^{\sigma,\sigma^{\bullet}}(x) = \frac{-d}{dx} \left\{ \frac{x}{[P_{\mu}^{\sigma}(x)]^2} & \frac{x}{[P_{\mu^{\bullet}}^{\sigma^{\bullet}}(x)]^2} \right\}, \quad (29)$$

$$\widehat{\mathfrak{N}}_{\mu,\mu^{\bullet},\mu^{\bullet}}^{\sigma,\sigma^{\bullet}}(x) = \widehat{\mathfrak{N}}_{\mu^{\bullet},\mu^{\bullet}}^{\sigma,\sigma^{\bullet}}(x) = \int_{a}^{\infty} G_{\mu,\mu^{\bullet}}^{\sigma,\sigma^{\bullet}}(x) N_{\mu,\mu^{\bullet},\mu^{\bullet}}^{\sigma,\sigma^{\bullet}}(x) dx, \quad (30)$$

$$\overline{\mathfrak{N}}_{(\mu,\mu'),a}^{(\sigma,\sigma')}(z) = \int_{z}^{\infty} E_{(\mu,\mu')}^{(\sigma,\sigma')}(x) N_{\mu,\mu',a}^{\sigma,\sigma'}(x) dx, \qquad (31)$$

E. V. ROTHSTEIN

$$\widetilde{\mathfrak{N}}_{\{\mu,\mu^{*}\},a}^{\{\sigma,\sigma^{*}\}}(z) = \int_{x}^{\infty} F_{\mu,\mu^{*}}^{\sigma,\sigma^{*}}(x) \widetilde{N}_{(\mu,\mu^{*}),a}^{\{\sigma,\sigma^{*}\}}(x) dx, \qquad (32)$$

<u>3</u>

$$\widetilde{\mathfrak{N}}_{(\mu,\mu'),a}^{(\sigma,\sigma')}(z) = \widetilde{\mathfrak{N}}_{(\mu,\mu'),a}^{(\sigma,\sigma')}(z) = \int_{z}^{\infty} E_{(\mu',\mu)}^{(\sigma',\sigma)}(x) \widetilde{N}_{(\mu,\mu'),a}^{(\sigma,\sigma')}(x) dx,$$
(33)

$$\tilde{\tilde{\mathfrak{N}}}_{\mu,\mu',a}^{\sigma,\sigma'}(z) = \tilde{\tilde{\mathfrak{N}}}_{\mu',\mu,a}^{\sigma',\sigma}(z) = \int_{z}^{\infty} F_{\mu,\mu'}^{\sigma,\sigma'}(x) \tilde{\tilde{N}}_{\mu,\mu',a}^{\sigma,\sigma'}(x) dx.$$
(34)

FOUR-ELECTRON INTEGRALS

We have

$$\times \begin{bmatrix} J' & \mu'' & L' \\ (\sigma + \sigma') & \sigma'' & m \end{bmatrix} \{ K^{m}_{L,L^{\prime},a}(z) + K^{m}_{L^{\prime},L,a}(z) \}, \qquad (36)$$

$$\widetilde{M}_{\{\mu,\mu',\mu'',\mu''\},a}^{(\sigma,\sigma',\sigma'')}(z) = \widetilde{M}_{\{\mu,\mu',\mu'',\mu'),a}^{(\sigma,\sigma',\sigma'',\sigma')}(z) = \delta(m;\sigma+\sigma'+\sigma'') \sum_{L} \sum_{L'} \sum_{J} \sum_{J'} \\
\times \left\{ U_{\mu}^{\sigma} \begin{bmatrix} \mu+2 & \mu' & J \\ \sigma & \sigma' & (\sigma+\sigma') \end{bmatrix} + V_{\mu}^{\sigma} \begin{bmatrix} \mu-2 & \mu' & J \\ \sigma & \sigma' & (\sigma+\sigma') \end{bmatrix} \right\} \begin{bmatrix} \mu & \mu' & J' \\ \sigma & \sigma' & (\sigma+\sigma') \end{bmatrix} \begin{bmatrix} J & \mu'' & L \\ (\sigma+\sigma') & \sigma'' & m \end{bmatrix} \\
\times \begin{bmatrix} J' & \mu'' & L' \\ (\sigma+\sigma') & \sigma'' & m \end{bmatrix} \{ K_{L,L',a}^{m}(z) + K_{L',L,a}^{m}(z) \} + W_{\mu}^{\sigma} M_{\mu,\mu',\mu',\mu'',a}^{\sigma,\sigma',\sigma''}(z),$$
(37)

$$\begin{split} \tilde{\tilde{M}}_{\{\mu,\mu',\mu',\mu''),a}^{(\sigma,\sigma,\sigma'')}(z) &= \tilde{M}_{\{\mu',\mu',\mu'')a}^{(\sigma,\sigma,\sigma'')}(z) = \delta(m;\sigma+\sigma'+\sigma'') \sum_{J} \sum_{J'} \sum_{L} \sum_{L'} \left\{ \begin{pmatrix} U_{\mu}^{\sigma} U_{\mu'}^{\sigma'} \begin{bmatrix} \mu+2 \ \mu'+2 \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} \right. \\ &+ V_{\mu}^{\sigma} V_{\mu'}^{\sigma'} \begin{bmatrix} \mu-2 \ \mu'-2 \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} + U_{\mu}^{\sigma} V_{\mu'}^{\sigma'} \begin{bmatrix} \mu+2 \ \mu'-2 \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} \\ &+ U_{\mu'}^{\sigma'} V_{\mu}^{\sigma} \begin{bmatrix} \mu-2 \ \mu'+2 \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} \right) \left[\begin{pmatrix} \mu \ \mu' \ J' \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} + \left(U_{\mu}^{\sigma} \begin{bmatrix} \mu+2 \ \mu' \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} \right) + V_{\mu}^{\sigma} \begin{bmatrix} \mu-2 \ \mu' \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} \right) \\ &\times \left(U_{\mu'}^{\sigma'} \begin{bmatrix} \mu \ \mu'+2 \ J' \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} + V_{\mu'}^{\sigma'} \begin{bmatrix} \mu \ \mu'-2 \ J \\ \sigma \ \sigma' \ (\sigma+\sigma') \end{bmatrix} \right) \right\} \begin{bmatrix} J \ \mu'' \ L \\ (\sigma+\sigma') \ \sigma'' \ m \end{bmatrix} \begin{bmatrix} J' \ \mu'' \ L' \\ (\sigma+\sigma') \ \sigma'' \ m \end{bmatrix} \\ &\times \left\{ K_{L_{1}L',a}^{m}(z) + K_{L',L,a}^{m}(z) \right\} + W_{\mu'}^{\sigma'} \widetilde{M}_{(\mu,\mu',\mu',\mu''),a}^{(\sigma,\sigma',\sigma'')}(z) + W_{\mu}^{\sigma} \widetilde{M}_{(\mu',\mu',\mu''),a}^{(\sigma,\sigma,\sigma',\sigma'')}(z) - W_{\mu'}^{\sigma'} W_{\mu}^{m} M_{\mu,\mu',\mu'',a}^{\sigma,\sigma',\sigma''}(z), \quad (38) \end{split}$$

$$\times X^{\sigma''}_{\mu''} + \tilde{N}^{(\sigma'',\sigma)}_{(\mu',\mu),a}(z) \, \mathfrak{N}^{\sigma''}_{\mu'',\mu'',a}(z) + N^{\sigma'',\sigma}_{\mu'',\mu,a}(z) \, \mathfrak{N}^{\sigma''}_{\mu'',\mu'',a}(z) + X^{\sigma''}_{\mu''} \, \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a,a}(z) + \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a,a}(z) \, \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a,a}(z) \, \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a,a}(z) \, \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a,a}(z) \, \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a,a}(z) \, \mathfrak{S}^{(\sigma'',\sigma)}_{(\mu',\mu),a}(z) \, \mathfrak{S}^{(\sigma'',\mu),a}(z) \, \mathfrak{S}^{(\sigma'',\mu),a}(z) \, \mathfrak{S}^{(\sigma'',\mu),a}(z) \, \mathfrak{S}^{(\sigma'',\mu),a}(z) \,$$

$$\tilde{\mathfrak{S}}_{(\mu,\mu,\mu),\mathfrak{d},\mathfrak{a}}^{(\sigma,\sigma')}(z) = \int_{1}^{z} dx F_{\mu,\mu}^{\sigma''}(x) \left[K_{\mu,\mu,\mu}^{\sigma''}(x) \tilde{N}_{(\mu,\mu,\mu),\mathfrak{a}}^{(\sigma,\sigma')}(x) + \tilde{K}_{\mu,\mu,\mu,\mathfrak{a}}^{\sigma''}(x) N_{\mu,\mu,\mathfrak{a}}^{\sigma'',\sigma}(x) \right],$$

$$\tilde{\mathfrak{S}}_{(\mu,\mu'),\mathfrak{d},\mathfrak{a}}^{(\sigma,\sigma')}(z) = \int_{1}^{z} dx G_{\mu}^{\sigma}(x) K_{\mu,\mu,\mathfrak{a}}^{\sigma}(x) N_{\mu,\mu',\mathfrak{a}}^{\sigma,\sigma'}(x),$$
(40)

$$\langle r_{12}r_{23}/r_{14} \rangle = \langle \Phi_{a}(1)\Phi_{b}(2)\Phi_{c}(3)\Phi_{d}(4)r_{12}r_{23}/r_{14} \rangle = \frac{1}{512} R^{13}\pi^{4}\delta(\sigma'; |m_{c}|)\delta(\sigma''; |m_{d}|)\delta(\sigma; |m_{b}+m_{c}|) \\ \times \delta(m_{a}+m_{b}+m_{c}+m_{d}; 0) \sum_{\mu=\sigma}^{\infty} \sum_{\mu'=\sigma'}^{\infty} \sum_{\mu'=\sigma''}^{\infty} (2\mu''+1)Z_{\mu''}^{\sigma''}(\int_{1}^{\infty} dz \{X_{\mu}^{\sigma}G_{\mu}^{\sigma}(z)[\Im_{(\mu}^{\sigma'}\eta_{\mu}^{\sigma})_{,d}a(z) + N_{\mu,\mu'',a}^{\sigma,\sigma''}(z)\Im_{(\mu',\mu'),d}^{\sigma'}a(z)]\} \{N_{\mu',\mu',a}^{\sigma'}\eta_{,a}(z) + N_{\mu,\mu'',a}^{\sigma,\sigma''}(z)\Im_{(\mu',\mu'),d}^{\sigma'}a(z) + N_{\mu',\mu'',a}^{\sigma,\sigma''}(z)\Im_{(\mu',\mu'),d}^{\sigma''}a(z) + N_{\mu',\mu'',a}^{\sigma,\sigma''}(z) + N_{\mu',\mu',a}^{\sigma',\sigma''}(z) + N_{\mu',\mu',a}^{\sigma',\sigma''}(z) + X_{\mu'}^{\sigma'} \Im_{(\mu',\mu'),c,b}^{\sigma'}(z) + \sum_{i=1}^{\infty} (i_{i}^{\sigma}\eta_{,a}) + i_{i}^{\sigma'}(i_{i}^{\sigma}\eta_{,a}) + i_{i}^{\sigma'}(i_{i}^{\sigma'}(z)) + i$$

$$\widetilde{\mathfrak{Z}}_{(\mu^{d},\mu),d,a}^{(\sigma^{\prime\prime},\sigma)}(z) = \int_{1}^{z} F_{\mu}^{\sigma}(x) K_{\mu,\mu,d}^{\sigma}(x) \widetilde{N}_{(\mu^{d},\mu),a}^{(\sigma^{\prime\prime},\sigma)}(x) dx, \qquad (43)$$

$$\widetilde{\mathfrak{I}} \left(\overset{\sigma'',\sigma)}{(\mu^{J},\mu),d,a}(z) = \int_{1}^{z} G^{\sigma}_{\mu}(x) K^{\sigma}_{\mu,\mu,d}(x) \widetilde{N}^{(\sigma'',\sigma)}_{(\mu^{J},\mu),a}(x) dx \right), \tag{44}$$

$$\tilde{\tilde{\mathfrak{S}}}^{\sigma,\sigma')}_{(\mu,\mu'),\sigma,b}(z) = \int_{1}^{z} F_{\mu'}^{\sigma'}(x) \left[K_{\mu',\mu',\sigma}^{\sigma'}(x) \tilde{\tilde{N}}_{\mu,\mu',b}^{\sigma,\sigma'}(x) + \tilde{K}_{\mu',\mu',b}^{\sigma'}(x) \tilde{\tilde{N}}_{(\mu,\mu'),b}^{\sigma,\sigma'}(x) \right] dx, \qquad (45)$$

$$\Im_{\{{}^{\sigma''},{}^{\sigma}_{\mu},{}^{\sigma}_{\mu},{}^{\sigma}_{\mu},{}^{\sigma}_{d},{}^{\sigma}_{d}(z) = \int_{1}^{z} F_{\mu''}^{\sigma''}(x) K_{\mu'',\mu'',{}^{\sigma}_{d}(x)}^{\sigma'',{}^{\sigma}_{d},{}^{\sigma}_{d}(x)} dx.$$
(46)

KINETIC ENERGY INTEGRAL

Essentially no new basic integrals are involved in the evaluation of the kinetic energy, nuclear attraction, and overlap integrals. In some cases, a modified $K^{\sigma}_{\mu,\mu',s}(z)$ integral is used. The modified integral $H^{\sigma}_{\mu,\mu',s}(z)$ is defined in Eq. (47); it differs in that the $\xi^2 - \eta^2$ term is not included:

$$H_{\mu,\mu',s}^{\sigma}(z) = \int_{1}^{z} \int_{-1}^{1} \xi^{p_{s}} \eta^{q_{s}} (\xi^{2} - 1)^{\gamma_{s}/2} (1 - \eta^{2})^{\nu_{s}/2} e^{-\alpha_{s}t} e^{\beta_{s}\eta} P_{\mu}^{\sigma}(\xi) P_{\mu'}^{\sigma}(\eta) d\xi d\eta , \qquad (47)$$

$$- \frac{1}{2} \int d\tau \Phi_{s}(1)\Phi_{t}(2)\Phi_{u}(3)r_{13}^{t'} \nabla_{1}^{2} [r_{12}^{t}\Phi_{a}(1)\Phi_{x}(2)\Phi_{y}(3)] = -\frac{1}{2} l(l+1) \int d\tau \Phi_{e}(1)\Phi_{f}(2)\Phi_{e}(3)$$

$$\times r_{13}^{t'} r_{12}^{t-2} - \frac{2}{R^{2}} \int d\tau \frac{D_{a}(1)\Phi_{a}(1)}{\xi_{1}^{2} - \eta_{1}^{2}} \Phi_{f}(2)\Phi_{e}(3)r_{13}^{t'} r_{12}^{t} - l \int d\tau \frac{V_{a}(1,2)\Phi_{e}(1)}{\xi_{1}^{2} - \eta_{1}^{2}} \Phi_{f}(2)\Phi_{e}(3)r_{13}^{t'} r_{12}^{t-2} , \qquad (48)$$

$$\Phi_{s}(1)\Phi_{a}(1) = \Phi_{e}(1), \quad \Phi_{t}(2)\Phi_{x}(2) = \Phi_{f}(2), \quad \Phi_{u}(3)\Phi_{y}(3) = \Phi_{e}(3)$$

$$\begin{split} \mathbf{D}_{a}(1) &= p_{a}^{2} + p_{a} + 2p_{a} \gamma_{a} + \gamma_{a} - \alpha_{a}^{2} - q_{a}^{2} - q_{a} - 2q_{a}\nu_{a} - \nu_{a} + \beta_{a}^{2} - 2\alpha_{a}\xi_{1}(p_{a} + \gamma_{a} + 1) \\ &- 2\beta_{a}\eta_{1}(q_{a} + \nu_{a} + 1) + \frac{p_{a} - p_{a}^{2}}{\xi_{1}^{2}} + \frac{q_{a}^{2} - q_{a}}{\eta_{1}^{2}} + \frac{2\alpha_{a}p_{a}}{\xi_{1}} + \frac{2\beta_{a}q_{a}}{\eta_{1}} + \alpha_{a}^{2}\xi_{1}^{2} + \frac{\gamma_{a}^{2}\xi_{1}^{2}}{\xi_{1}^{2} - 1} - \beta_{a}^{2}\eta_{1}^{2} + \frac{\nu_{a}^{2}\eta_{1}^{2}}{1 - \eta_{1}^{2}} + \frac{m_{a}^{2}(\eta_{1}^{2} - \xi_{1}^{2})}{(\xi_{1}^{2} - 1)(1 - \eta_{1}^{2})} \end{split}$$

$$\begin{aligned} \nabla_{a}(1,2) &= q_{a}(1-\eta_{1}^{2}) + p_{a}(\xi_{1}^{2}-1) + \alpha_{a}\xi_{2}\eta_{2}\eta_{1}(\xi_{1}^{2}-1) - \nu_{a}\eta_{1}^{2} + \beta_{a}\eta_{1}(1-\eta_{1}^{2}) - p_{a}\xi_{2}\eta_{2}\eta_{1}(\xi_{2}^{2}-1)/\xi_{1} - \gamma_{a}\xi_{2}\eta_{2}\xi_{1}\eta_{1} \\ &- \alpha_{a}\xi_{1}(\xi_{1}^{2}-1) - q_{a}\xi_{2}\eta_{2}\xi_{1}(1-\eta_{1}^{2})/\eta_{1} + \nu_{a}\xi_{2}\eta_{2}\xi_{1}\eta_{1} - \beta_{a}\xi_{2}\eta_{2}\xi_{1}(1-\eta_{1}^{2}) + \gamma_{a}\xi_{1}^{2} \\ &+ \left(\alpha_{a}\xi_{1} + \beta_{a}\eta_{1} + q_{a} - p_{a} - \frac{\eta_{1}^{2}\nu_{a}}{1-\eta_{1}^{2}} - \frac{\xi_{1}^{2}\gamma_{a}}{\xi_{1}^{2}-1}\right) \left[\frac{e^{i(\bullet_{1}-\bullet_{2})} + e^{-i(\bullet_{1}-\bullet_{2})}}{2}\right] \\ &\times \left[(\xi^{2}-1)(1-\eta_{2}^{2})(\xi_{1}^{2}-1)(1-\eta_{1}^{2})\right]^{1/2} + m_{a}(\xi_{1}^{2}-\eta_{1}^{2}) \left[\frac{(\xi_{2}^{2}-1)(1-\eta_{2}^{2})}{(\xi_{1}^{2}-1)(1-\eta_{1}^{2})}\right]^{1/2} \left[e^{i(\bullet_{1}-\bullet_{2})} - e^{-i(\bullet_{1}-\bullet_{2})}\right]. \end{aligned}$$
(49)

For l = l' = 0, the kinetic energy integral [Eq. (48)] over electron 1 is the sum of $-\frac{l}{2}\pi RH_{\mu,\mu,\sigma}^{\sigma}(\infty)$ terms. For l=0 and l'=1, the integral is a sum of $\langle r_{12} \rangle$ terms [Eq. (15)], evaluated using $H_{\mu,\mu',\sigma}^{\sigma}(z)$ [Eq. (47)] for electron 1 and the usual $K_{\mu,\mu',f}^{\sigma}(z)$ [Eq. (7)] for electron 2. For l=0 and l'=2, use Eq. (4) for $\langle r_{12}^2 \rangle$ with $H_{\mu,\mu',\sigma}^{\sigma}(z)$ for electron 1. For l=1 and l'=0, use the usual $\langle 1/r_{12} \rangle$ [Eq. (10)] and $\langle r_{12} \rangle$ [Eq. (15)] with Eq. (47) instead of Eq. (7) for electron 1. For l=l'=1, use $\langle r_{13}/r_{12} \rangle$ [Eq. (26)] and $\langle r_{12} r_{13} \rangle$ [Eq. (18)] with Eq. (47) instead of Eq. (7) for electron 1. For l=2 and l'=0, Eq. (48) is a sum of

$$-\frac{3}{4}\pi R^{3}(\frac{1}{4}\pi R^{3})^{2}K^{\sigma}_{\mu,\mu,e}(\infty)K^{\sigma'}_{\mu',\mu',f}(\infty)K^{\sigma''}_{\mu'',\mu'',f}(\infty)$$

terms,

$$-\frac{1}{2}\pi K K^{\sigma}_{\mu,\mu,g}(\infty) \langle \gamma^2_{12} \rangle$$

terms, and

$$-\frac{1}{2}\pi R^{3}(\frac{1}{4}\pi R^{3})^{2}H^{\sigma}_{\mu,\mu,e}(\infty)K^{\sigma'}_{\mu',\mu',f}(\infty)K^{\sigma''}_{\mu'',\mu'',f}(\infty)$$

terms. The $\langle r_{12}^2 \rangle$ are evaluated using Eq. (47) instead of Eq. (7) for electron 1. The case of the kinetic energy integral in which the Laplacian operates on r_{12} and this is multiplied by r_{12} is represented in Eq. (50):

$$-\frac{1}{2}\int d\tau \Phi_{s}(1)\Phi_{t}(2)r_{12}^{\prime\prime}\nabla_{1}^{2}[r_{12}^{\prime}\Phi_{a}(1)\Phi_{x}(2)].$$
 (50)

For l = l' = 1, (50) equals

$$(\frac{1}{4}\pi R^3)^2 \delta(m_s + m_a; 0) \delta(m_t + m_x; 0) K_{0,0,s}^0(\infty) K_{0,0,s}^0(\infty))$$

$$-\frac{1}{2}\int d\tau \,\frac{\Phi_f(2)r_{12}^2[D_a(1)+D_s(1)]\Phi_e(1)}{(\frac{1}{2}R)^2(\xi_1^2-\eta_1^2)}$$

NUCLEAR-ELECTRON ATTRACTION AND OVERLAP INTEGRALS

We have

$$-\frac{2}{R}\int d\tau \left[\frac{(Z_{a}+Z_{b})\xi_{1}+(Z_{a}-Z_{b})\eta_{1}}{(\xi_{1}^{2}-\eta_{1}^{2})}\right] \Phi_{e}(1)\Phi_{f}(2)\Phi_{e}(3)r_{12}^{I}r_{13}^{I'}.$$
(51)

For l = l' = 0, the integral over electron 1 is

 $-\frac{1}{2}\pi R\delta(m_e; 0)[(Z_a + Z_b) H^0_{1,0,e}(\infty) + (Z_a - Z_b) H^0_{0,1,e}(\infty)]$ For l' = 0 and l = 1, use $\langle r_{12} \rangle$ [Eq. (15)] and Eq. (47) instead of Eq. (7) for electron 1. For l' = 0 and l=2, use $\langle r_{12}^2 \rangle$ [Eq. (4)] without the $(\xi_1^2 - \eta_1^2)$ term. For l' = l = 1, use $\langle r_{12}r_{13} \rangle$ [Eq. (18)] with Eq. (47) instead of Eq. (7) for electron 1. The nuclear-nuclear repulsion integral is $Z_a Z_b / R$ times the overlap integral:

$$\langle r_{12}^{l} r_{13}^{l'} \rangle = \int d\tau \Phi_{e}(1) \Phi_{f}(2) \Phi_{e}(3) r_{12}^{l} r_{13}^{l'} .$$
 (52)

For l' = l = 0, the integral over electron 1 is $\frac{1}{4}\pi R^3 \delta(m_e; 0) K_{0,0,e}^0(\infty)$. For l' = 0 and l = 1, the integral is $\langle r_{12} \rangle$ [Eq. (15)]. For l' = 0 and l = 2, the integral is $\langle r_{12}^2 \rangle$ [Eq. (4)]. For l' = l = 1, the overlap is $\langle r_{12}r_{13} \rangle$ [Eq. (18)].

ADDITIONAL INTEGRALS

Some integrals can be generated from previously given integrals by raising or lowering the r_{12} index in even or odd steps [Eqs. (53) and (54)], using Eqs. (1), (5), (12), and (59). If the Hamiltonian contains the term $1/r_{ij}^3$, for the evaluation of spinspin magnetic coupling or the relativistic effects of an external electric field, then $\langle 1/r_{ij}^3 \rangle$ [Eq. (55)] and $\langle 1/r_{ij}^2 \rangle$ [Eq. (56)] are some of the integrals needed. These results are based on a generalization of the Neumann expansion [Eq. (59)].^{23,31,36,37} The $C_n^i(x)$ [Eq. (58)] are Gegenbauer polynomials. For $l = \frac{1}{2}$, the Gegenbauer polynomials are the same as Legendre polynomials. If the wave function [Eq. (3)] is modified to be

$$\begin{pmatrix} (10) & & & & (15) \\ & & & & & \\ (26) & & & & \\ & & & & \\ (18) & & & & \\ & & & & \\ & & & & \\ (19) & & & & \\ & & & & \\ (15) & & & & \\ (15) & & & & \\ (54) & & & & \\ & & & & \\ \end{pmatrix}$$

FIG. 1. Graphs for $r_{ij}r_{kl}^{-1}r_{mn}$. Numbers in parentheses correspond to the integral for that graph.

 $\Psi_{\text{tot}} = \tilde{a} \left\{ \left[\prod_{j} \sum_{s} a_{sj} \Phi_{s}(j) \right] \left[1 + \sum_{j < i < k} \sum_{v \in k} w_{jik} \gamma_{ji}^{v} \gamma_{ik}^{v} \right] \right\},$

then terms $\langle 1/r_{12}r_{13}\rangle$ [Eq. (60)] will occur in the kinetic energy integrals:

$$\langle r_{12}^{3} \rangle = \int d\tau \, \Phi_{e}(1) \Phi_{f}(2) r_{12}^{3} = \frac{1}{4} R^{2} [\langle \Phi_{b_{e}+2}, \dots(1)r_{12} \Phi_{f}(2) \rangle + \langle \Phi_{e}(1)r_{12} \Phi_{b_{f}+2}, \dots(1)r_{12} \Phi_{f}(2) \rangle \\ - 2 \langle \Phi_{e}(1)r_{12} \Phi_{f}(2) \rangle + \langle \Phi_{e}(1)r_{12} \Phi_{b_{f}+2}, \dots(2) \rangle + \langle \Phi_{e}(1)r_{12} \Phi_{b_{f},q_{f}+2}, \dots(2) \rangle \\ - 2 \langle \Phi_{b_{e}+1,q_{e}+1}, \dots(1)r_{12} \Phi_{b_{f}+1,q_{f}+1}, \dots(2) \rangle - \langle \Phi_{e_{+}}(1)r_{12} \Phi_{f_{-}}(2) \rangle - \langle \Phi_{e_{-}}(1)r_{12} \Phi_{f_{+}}(2) \rangle] , \\ e_{*} = (p_{e}, q_{e}, \gamma_{e}+1, \nu_{e}+1, \alpha_{e}, \beta_{e}, m_{e}+1), e_{-} = (p_{e}, q_{e}, \gamma_{e}+1, \nu_{e}+1, \alpha_{e}, \beta_{e}, m_{e}-1)$$
(53)
$$\langle r_{13}^{2}/r_{12} \rangle = \int d\tau \Phi_{a}(1) \Phi_{s}(2) \Phi_{t}(3) r_{13}^{2}/r_{12} = \frac{R^{2}}{4} \{ \langle \Phi_{t}(3) \rangle [\langle \Phi_{b_{a}+2}, \dots(1)(1/r_{12}) \Phi_{s}(2) \rangle \\ + \langle \Phi_{b_{a},q_{e}+2}, \dots(1)(1/r_{12}) \Phi_{s}(2) \rangle - \langle \Phi_{a}(1)(1/r_{12}) \Phi_{s}(2) \rangle] + \langle \Phi_{a}(1)(1/r_{12}) \Phi_{s}(2) \rangle \\ \times [\langle \Phi_{b_{t}+2}, \dots(3) \rangle + \langle \Phi_{b_{t},q_{t}+2}, \dots(3) \rangle - \langle \Phi_{t}(3) \rangle] - \langle \Phi_{t_{-}}(3) \rangle \\ \times \langle \Phi_{a_{+}}(1)(1/r_{12}) \Phi_{s}(2) \rangle - \langle \Phi_{t_{+}}(3) \rangle \langle \Phi_{a_{-}}(1)(1/r_{12}) \Phi_{s}(2) \rangle] ,$$
(54)

Г

$$\langle 1/r_{12}^{3} \rangle = \int d\tau \, \Phi_{a}(1) \, \Phi_{b}(2) \, 1/r_{12}^{3} = \pi^{2} R^{3} \, \delta(m_{a} + m_{b}; 0)$$

$$\times \sum_{l=0}^{\infty} \sum_{m=l,m_{a}|+1}^{l} \frac{1}{2} \left| (-1)^{m_{a}+1} + (-1)^{m} \right| m(2l+1)$$

$$\times Z_{l}^{m} \int_{1}^{\infty} F_{l}^{m}(z) \, K_{l,l,a}^{m}(z) \, K_{l,l,b}^{m}(z) \, dz, \qquad (55)$$

$$\begin{split} \langle 1/r_{12}^2 \rangle &= \int d\tau \, \Phi_a(1) \, \Phi_b(2) \, (1/r_{12}^2) = \frac{1}{2} \, \pi^2 R^4 \\ &\times \sum_{n=0}^{\infty} \sum_{l=1m_a}^n \delta(m_a + m_b; 0) \bigg[\frac{1 + (-1)^{l+m_a}}{2} \bigg] \\ &\times \frac{(l!)^2 \, (n-l)! \, (n+1) \, (2l+1) \, (l-m_a)! \, (l+m_a)!}{(n+l)! \{ [\frac{1}{2}(l-m_a)]! \}^2 \, \{ [\frac{1}{2}(l+m_a)]! \}^2 \\ &\times \int_1^\infty \frac{dz}{(z^2 - 1)^{l+3/2} \, [C_{n-l}^{l+1}(z)]^2} \\ &\times L_{n-l,n-l,a(l)}^{l+1}(z) \, L_{n-l,n-l,b(l)}^{l+1}(z) \,, \\ a(l) = (p_a, \, q_a, \, \gamma_a + l, \, \nu_a + l, \, \alpha_a, \, \beta_a, \, m_a) \,, \end{split}$$
(56)

$$b(l) = (p_b, q_b, \gamma_b + l, \nu_b + l, \alpha_b, \beta_b, m_b),$$

$$L_{n,n',s}^{I}(z) = \int_{1}^{z} \int_{-1}^{1} d\xi \, d\eta \, \xi^{p_{s}} \eta^{q_{s}} (\xi^{2} - 1)^{\gamma_{s}/2} \\ \times (1 - \eta^{2})^{\nu_{s}/2} e^{-\alpha_{s}\xi} e^{\beta_{s}\eta} C_{n}^{I}(\xi) C_{n'}^{I}(\eta) , \qquad (57)$$

$$C_n^{l}(x) = \sum_{j=0}^{\lfloor n/2 \rfloor} \frac{2^{n-2j}(-1)^j (l+n-j-1)!}{j! (n-2j)! (l-1)!} x^{n-2j} .$$
 (58)

The upper limit of the sum over j is $\frac{1}{2}n$ or $\frac{1}{2}(n-1)$,

whichever is integral. We have 36,37

$$\left(\frac{2r_{12}}{R}\right)^{-2p} = \sum_{n=0}^{\infty} \sum_{l=0}^{n} d_{nl}(p) \left[(1 - \eta_{1}^{2}) \times (1 - \eta_{2}^{2}) (\xi_{1}^{2} - 1) (\xi_{2}^{2} - 1) \right]^{1/2} D_{n-l}^{l+p}(\xi_{1>2}) \times C_{n-l}^{p+l}(\xi_{2<1}) C_{n-l}^{p+l}(\eta_{1}) C_{n-l}^{p+l}(\eta_{2}) \times C_{n-l}^{p-1/2} \left[\cos(\phi_{1} - \phi_{2}) \right], \quad p > 0, \ p \neq \frac{1}{2}$$

$$d_{nl}(p) = \frac{-2^{2l+1} \Gamma(2p-1) \left[\Gamma(p+l) \right]^{2}}{\left[\Gamma(p) \right]^{2} \Gamma(2p+n+l)} \times (n-l) ! (n+p) (2p+2 \ l-1),$$

$$D_{m}^{\mu}(\xi) = -C_{m}^{u}(\xi) \int_{\xi}^{\infty} \frac{(x^{2} - 1)^{-u-1/2} dx}{\left[C_{m}^{u}(x) \right]^{2}} , \qquad (59)$$

$$\langle 1/r_{12}r_{13}\rangle = \int d\tau \Phi_{a}(1) \Phi_{b}(2) \Phi_{c}(3) 1/r_{12}r_{13}$$

$$=\frac{1}{16}\pi^{3}R^{7}\delta(m_{a}+m_{b}+m_{c};0)$$

$$\times\left[1+O_{per}\begin{pmatrix}b\\c\end{pmatrix}\right]\delta(\sigma;|m_{b}|)\delta(\sigma';|m_{c}|)$$

$$\times\sum_{l=\sigma}^{\infty}\sum_{j=\sigma'}^{\infty}(2l+1)(2j+1)Z_{l}^{\sigma}Z_{j}^{\sigma'}$$

$$\times\int_{1}^{\infty}dz N_{l,j,a}^{\sigma,\sigma'}(z)K_{l,l,b}^{\sigma}(z)\Re_{j,j,c}^{\sigma'}(z)F_{l}^{\sigma}(z).$$
(60)

ACKNOWLEDGMENTS

This work was begun when the author was a graduate student at the University of California, Berkeley. The author thanks Professor F. E.

*Work done under the auspices of the U. S. Atomic Energy Commission.

[†]Present address: Laboratoire de Physique Molécularie Théorique, Faculté des Sciences, 9 Quai Saint-Bernard, Paris 5^e, France.

¹C. L. Pekeris, Phys. Rev. <u>115</u>, 1217 (1959).

²E. A. Burke, Phys. Rev. <u>130</u>, 187 (1963).

³W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 205 (1960). ⁴L. Szasz, Z. Naturforsch. <u>15a</u>, 909 (1960).

⁵F. E. Harris, J. Chem. Phys. <u>32</u>, 3 (1960).

⁶M. Kotani, Table of Molecular Integrals (Maruzen, Tokyo, 1955), Chap. I.

⁷P. M. Morse and H. Feschbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Vol. 1, p. 655.

⁸I. Shavitt, in Methods In Computational Physics, edited by B. J. Alder, S. Fernbach, and M. Rotenberg (Aca-

demic, New York, 1963), Vol. 2, p. 1.

⁹M. P. Barnett, in Ref. 8, p. 95.

¹⁰C. Berge, Théorie des Graphes et Ses Applications (Dunod, Paris, 1963), p. 153.

¹¹G. Polya, Am. Math. Monthly <u>63</u>, 689 (1956).

¹²F. E. Neumann, J. Reine Angew. Math. (Crelle) <u>37</u>, 21 (1848); Vorlesungen Über die Theorie des Potentials

und der Kugelfunktionen (Teubner, Leipzig, 1878), Chap. 13.

¹³E. Jahnke and F. Emde, Tables of Functions (Dover, New York, 1945).

¹⁴Higher Transcendental Functions, edited by A. Erdelyi W. Magnus, F. Oberhettinger, and F. G. Tricomi

(McGraw-Hill, New York, 1954), Vol. 2.

¹⁵C. S. Meijer, Proc. Nederl. Akad. Wetensch. <u>42</u>, 930 (1939).

¹⁶G. Frobenius, J. Reine Angew. Math. (Crelle) <u>73</u>, 1 (1871).

¹⁷E. W. Hobson, Spherical and Ellipsoidal Harmonics

Harris for his willingness to discuss this problem and for checking some of the integrals. The author thanks Professor B. Kirtman for discussions on the correlation problem, and Professor K. Street and Dr. A. Hebert for their encouragement.

(Cambridge U. P., London, 1931).

¹⁸L. W. Thomé, J. Reine Angew. Math. (Crelle) 66, 337 (1866).

¹⁹W. E. Byerly, An Elementary Treatise on Fourier's Series and Spherical, Cylindrical and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (Ginn, Boston, 1893).

²⁰J. A. Gaunt, Phil. Trans. Roy. Soc. London <u>A228</u>, 151 (1928).

²¹C. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

²²J. C. Adams, Proc. Roy. Soc. (London) 27, 63 (1878). ²³J. D. Talman, Special Functions Based on Lectures

By E. P. Wigner (Benjamin, New York, 1968).

²⁴F. E. Harris and H. H. Michels, in Advances In Chemical Physics, edited by I. Prigogine (Interscience,

New York, 1967), Vol. 13, p. 205. ²⁵K. Rüdenberg, J. Chem. Phys. <u>22</u>, 765 (1954).

²⁶K. Rüdenberg, J. Chem. Phys. <u>19</u>, 1459 (1951).

²⁷F. E. Harris (unpublished).

²⁸Reference 24, Appendix B.

²⁹U. Fano and G. Racah, Irreducible Tensorial Sets (Academic, New York, 1959), p. 36.

³⁰E. U. Condon and G. Shortley, The Theory of Atomic Spectra (Cambridge U. P., London, 1935).

³¹N. Ja. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical

Society, Providence, R. I., 1968).

³²E. P. Wigner (unpublished).

³³G. Racah, Phys. Rev. <u>62</u>, 438 (1942).

³⁴B. R. Judd, Operator Technique in Atomic Spectroscopy (McGraw-Hill, New York, 1963).

³⁵M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).

³⁶L. Wolniewicz, Acta Phys. Polon. Suppl. 22, 3 (1962). ³⁷W. Kolos and L. Wolniewicz, Acta Phys. Polon. 20, 129 (1961).