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Many-body perturbation theory is used to calculate the correlation energy of an atom with an
inner-shell vacancy. Numerical calculations are given for neon with either a 1s or a 2s vacancy.
For the case of the 1s vacancy, the energy has an imaginary part which is proportional to the
Auger rate. Our results are compared with semiempirical determinations of the correlation
energy and with experimental results for the fluorescence yield.

I. INTRODUCTION

The many-body perturbation theory of Brueckner'
and Goldstone2 is used to calculate the correlation
energy of a neon atom in which there is a 1s or 2s
electronic vacancy. The problem is, in principle,
the same as that treated by Kohler in calculating
nucleon separation energies by Ã-matrix theory.
However, rather than using the spectrum of single-
particle states for the N-particle system, ' we cal-
culate the single-particle states for the (N 1) sys--
tem in which the vacancy is already present. In the
calculations, we use methods discussed previously '
for applying many-body perturbation theory to
atoms. We have found it convenient to employ the
Silverstone- Yin~ and Huzinaga-Arnauv potential,
which has the desirable property that our unexcited
states are represented by Hartree-Fock orbitals,
while the excited states are calculated in a V" '
potential. '

In Sec. II, we discuss the basic theory and con-
siderations in the choice of potential. In Sec. III,
we present numerical results for the correlation
energy, Auger rates, and fluorescence yield when
there is an initial 1s vacancy. Numerical results
are also presented for the case where there is an
initial 2s vacancy. Section IV contains the discus-
sion and conclusions.

II. THEORY

A. Singularities in Diagrams

Consider the second-order energy diagram shown

in Fig. 1(a). The expression for this diagram is

~ I
&kk'Ivlpq&

I
D ' (1)

where

D = E'p+ fq —fk —E'ke

Hole lines p and q refer to unexcited bound states,
and k and k refer to excited single-particle states.
The usual two-body interaction is represented by v.

If one of the excited states is a state which nor-
mally would have been occupied in the ground state
of the atom, the denominator of Eq. (1) may vanish.
In this paper, we consider the neon atom with a 1s
vacancy, and, as a separate case, with a 2s vacancy.

In evaluating Eq. (1), sums over bound states are
carried out explicitly up to n = 13, and the n rule'
is used to obtain the contribution from the rest of
the bound states. Sums over continuum states are
carried out by numerical integration according to

dk,2
7T

where our continuum states are normalized ac-
cording to

P»(r) = cos[kr+6, + (q/k) ln2kr —(I + 1) 2v], (3)

as r-~. The logarithmic term in Eq. (3) arises
from the fact that V(r)-q/r as r

When excited state Ik) is an inner-shell vacancy,
D of Eq. (2) may vanish for a particular excited
state Ik ). In such a case, the singularity in D '
is treated in the usual manner by introducing a
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FIG. 1. Second-order energy diagrams. (a) Direct

correlation diagram. (b) Exchange. (c)—{e) Single-
excitation diagrams. The diagram of (d) with direct and
exchange interactions interchanged is also allowed.
There are also diagrams like (c)-(e) which contain inter-
actions with the potential V. These single excitation
diagrams add to zero when completely unrestricted
Hartree-Fock potential is used.

electrons. This difficulty is avoided by the choice
of a V" '-type potential where the sum in Eq. (8)
runs from 1 to N- 1. Further details are given in
Ref. 8. The disadvantage of the V" ' potential is
that in general, not all single-particle occupied
states are Hartree-Fock orbitals, although they
are found to be very close. '9

An even better potential has been proposed by
Silverstone and Yin, and by Huzinaga and Arnau.
In this potential, which we denote by Vs„, the oc-
cupied orbitals are Hartree-Fock solutions, and
the excited states have the desirable property of
being calculated in the field of N —1 other electrons.
Following the notation of Huzinaga and Arnau, the
potential may be written

V „=R+(1—P)A(1 —P),
where R is the Hartree-Fock potential defined in
Eq. (8), fl is an arbitrary Hermitian operator, and
P is a projection operator

D-D+iq (4)
(10)

(D+iq} '=PD ' —is5(D), (5)

where P represents a principal-value integration.
We then obtain the following result for Eq. (1) when
state Ik) is restricted to an excited state which is
an inner-shell vacancy:

z"'(pz)=- 2QPI&kk I~Ipq&I'[(k k,)(k'+k, )]-'

—(»/ko}
I
&kko

I
~

I pq& I', (6)

where

ko[2(ep+ e, —e,)]'",

B. Choice of Potential

In order to carry out perturbation calculations,
it is necessary to start with a complete se. of
single-particle states appropriate to the physical
problem. It has been shown that the usual defini-
tion of the Hartree-Fock potential, written here in
terms of its matrix elements,

« I var I» = Z(&«
I
~

I
kn& —&«I ~ Is»)

is not desirable since excited states are calculated
in the field of N electrons rather than N- 1 other

and state Ik ) has an energy of ~k . Atomic units
are used throughout this paper. We then obtain a
decay rate 41&kkolv Ipq) I'/ko, corresponding to Auger
processes. The excited atomic state may also de-
cay by radiative transitions. The real part of the
energy contributes to the correlation energy.

In the higher-order diagrams, we may encounter
two or more singularities, and each is treated ac-
cording to Eqs. (4) and (5).

It is readily seen that

VSH I &,& =R
I &,&

for i & N, and that

V, I4,) =(R+fl - Pfl)
I ei& (12)

J„",P, (r) = f dr (r&/r&')P„*, (r )P„,(r')P, (r), (14)

K„,P&(r) = f dr'(r&/r&')P„*, (r')P, (r')P„,(r), (15)

where r& refers to the lesser of r and r, and r&
refers to the greater of r and r . With R given by
Eq. (13}, we choose

fl(i = 0) =d'„- (2J'„—Z'„} . (16)

We also note that when we use Eq. (13) to solve for
the 1s state, J„—K„equals zero.

For the 2p states, we have

for j & N. Since all the single-particle states are
calculated in the same Hermitian potential, they
are orthogonal. The choice of 0 depends on the
physical problem under consideration.

Consider the case of the neon atom with an initial
1s vacancy. After an Auger transition has taken
place, one possible resulting configuration is
(ls) (2P} ks, where ks is a continuum state with
l =0. The potential Vs„may then be used to gen-
erate the excited l =0 orbitals in the presence of
the (ls)'(2p)' core.

The potential R for the l =0 occupied orbitals is

R(l =0) =J„—K„+M,—A, +6J —K', (13)

where the J„, and K„', are defined according to their
operation on the radial wave function P,(r):
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fl(i = 1) =Jj.—5 Kl, —Ja. + 5 Ka. ~ (16}

The excited l =2 states may be calculated assum-
ingapost-transitionconfigurationof (ls) (2s) (2jjj) kd.
No ~ is needed in this case since the ground state
of the neon atom contains no orbitals with l'& 1.

III. NUMERICAL RESULTS

A. Vacancy in 1s Subshell

Cal cul ation Frame&cork

The ground state of the neon atom with a 1s va-
cancy is a S state, and the unperturbed ground
state is a single determinant with orbitals 1s,
2s', 2jjj(+1'), and 2p(0'), where the missing 1s or-
bital has arbitrarily been assigned m, =+ &. Ini-
tially, Hartree-Fock orbitals were calculated using
the parameters given by Bagus. ' These orbitals
were then iterated for self-consistency using the
potentials of Eq. (13) and (lV), in addition to the
nuclear attraction. In the self-consistency calcu-
lation, the largest difference in the single-particle
energies between the last iteration and the previous
one was 9 F10 ', while the largest difference in the
wave functions was 3 x 10

The excited states were calculated with the po-
tentials

VSH lns& =~2Jl, —K, +6JSP KSP

+
I
ls& &ls

I
[(2J'„—K'„) J'„]-

+ I2s&&2s I[(2J'„-K'„)-J'„]]lns)

for n& 2; (19)

~sH inn) = [~is 3 Kjs ++2@ 5 K2g+ 6+Rp

25 J2P 25 K2P+ I »& &» I

x[JS.—5 KS. -Jj.+ 5 Kj.Blnf»

for n& 2; (20)

R(l =1}= Jj, —
5 Klp+2Jap —5 Ka, + 5Jap —QKap

(17)

We choose the 0 for the excited l = 1 states to be

the continuum states were calculated in a manner
described previously. The potential V» was used
in calculating both the bound and the continuum
states. All states were orthogonal to better than
10

Completeness tests of the form

(22)

were carried out for the sets of single-particle
states calculated with the above potentials. Equa-
tion (22) was evaluated by summing the bound-state
contributions and integrating over the continuum
states as previously discussed. Results are given
in Table I.

The correlation energy E„„is defined as the
difference between the exact nonrelativistic energy
and the restricted Hartree-Fock value for the en-
ergy. When the Hartree-Fock potential is used,
E„„is given by the sum of all second- and higher-
order diagrams. In this calculation we determined
the additionnl correlation energy introduced by the
inner-shell vacancy. For this reason, all many-
body diagrams are restricted to the case where
one of the particle lines is a vacant inner-shell
state. For neon, the denominators of the many-
body diagrams may vanish when there is a 1s va-
cancy. When there is a 2s vacancy, the denomina-
tors do not vanish.

2. Pair Diagrams

The lowest-order contributions to both the cor-
relation energy and the Auger rate come from the
second-order diagrams shown in Figs. 1(a) and 1(b).
Third-order diagrams involving only one pair of
excited states p and q are shown in Fig. 2. When
we consider the bound excited states, the largest
contribution comes from the diagonal interactions,
those in which k =k and k =k . Again, state k
is restricted to the 1s' state. These diagonal in-
teractions are repeated in higher orders and may
be summed geometrically to give the second-order

and

~sH ln & (~jp 5 Klp+ ~ap TK2s+ 4+ap 555J2p

-+2'5 Kap -
2'jjVS Kaap] lnd &

for n& 2. (21)

p. k k'

(a)

pV i=(jj&

pI 1---I Ia

(b)

The 0(i =0) of Eq. (16) corresponds to calculating
the excited l =0 states in a (1s)'(2p)' core, while the
Q(1 = 1) of Eq. (18}corresponds to a (1s) 2s(2P) core.
The choice of D(l =1) is unique since the angular
momentum selection rules prevent any other process
from yielding an excited l =1 orbital.

The bound states were calculated using a computer
program similar to that described in Ref. 11, and

p &«'I Iq pI t-5&2' ~a

(g)
FIG. 2. Third-order contributions to the correlation

energy of the pair p, q. Hole-particle interaction in (e)
also occurs between states q and O'. Intermediate inter-
action of (f) and (g) is also included on hole lines p and q
and on particle line O'. Exchange diagrams should also
be included when states p and q have parallel spin.
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term with a shifted denominator":

l&pqlvlkk )I
&err(P&q' =e +e e e +k (23)

where we have defined E„„(p,q: k) as the correla-
tion energy of the pair p, q where one of the excita-
tions is restricted to state k. The quantity ~ is
defined as

n= —&pqI vI (pq).*&
—&"k'IvI (kk'}.*&+&p"'Iv

I
(pk')e*&+&qkI vI (qk).*&

- (E & a
I I &n&».. - &a

I

&'I && — 5 & &, 'I
I

&
'».&. -

&
'i &v[&. "&}

nP&f

~ r & pl I&«'»., —
&& I

vl&'& ~ z & ql 1&&q»„ —
&ql vlq&)

n n
(24)

TABLE I. Completeness tests for single-particle
states calculated in the neon core minus one 1s electron.

gb

lg
2g
2g

2p

1g
2s
ls
2p

1, 0024
1.0002
0. 0011
1.0001

~See Eqs. (13) and (17).
~S=Z &v&, t1/rlk) & kl&r In).

where

(ablvl(cd)„ ) =&ablvlcd) -(ablvldc) . (25)

The potential used to calculate the functions is de-
noted by V. Since k is in general a continuum
state, diagrams involving interactions with k were
not summed geometrically. The state k is the 1s
state and thus all other interactions of Fig. 2 may
be summed geometrically to give a "modified"
second-order result. Inclusion of the correlation
energy shift ' into the denominators did not ap-
preciably affect either the real or imaginary parts
of the energy.

The second-order "modified" results are shown
in Table II. The total result for the pair-correla-
tion energy due to excitations into the vacant 1s
state is E„„(p,q: 1s}= —0.009 6V a. u. , and the re-
sult for the Auger rate is A„=0.008 97 atu ' (1 atu
= 2. 42& 10 ' sec). The largest contributions to
E„„(p,q:ls) come from the ls, 2s' and, the ls,
2P' paris. It is interesting to note that while the
2p(+ 1'), 2p(+ 1 ) and the 2p(- 1'}, 2p(- 1 ) pairs
give a small contribution to the correlation energy,
they give the largest contribution to the Auger
rate. Note that only correlations between 2p elec-
trons of opposite spin are shown. This is because
diagrams of the type shown in Fig. 1(a) with the 2p
electrons having parallel spin are exactly cancelled
by the exchange diagram of Fig. 1(b).

We must also consider the second-order single
excitation diagrams of Figs. 1(c}-1(e). The only

difference between our solution and a restricted
Hartree-Fock solution is that we have included an
additional one-half of an exchange term with the 1s
electron in both the 2s and 2p potentials. For this
reason only the diagram of Fig. 1(e}contributes,
where the state labeled p is either a 2s or a 2p, and
state n is the 1s state. The state k represents al-
lowed excited states, including the 1s'. Figure
1(e) gave a contribution to the correlation energy
of —0. 003 13 a. u. Figure 1(e) does not contribute
to the Auger rate.

3. Third- and Higher-Order Diagrams

4. Fluorescence Yield

The fluorescence yield from the K shell co~ is
defined as

«&@=as& ( s+~ (26)

The third-order three-body diagrams of Figs.
3(a)-3(e) were also evaluated. There are additional
three-body diagrams of the type shown in Fig. 3,
but these were calculated or estimated to be small.
A complete listing of the third-order three-body
diagrams is given in Fig. 4 of Ref. 9. The three-
body diagrams were calculated using the previously
discussed technique of introducing denominator
shifts to sum certain classes of diagrams to all
orders. These diagrams gave a result of 0.00067
a. u. for the contribution to the correlation energy,
and a 0.00079-atu ' contribution to the Auger rate.
The three-body results are given in Table III.

The sum of the two-body and three-body correla-
tion energy terms in which there is an excitation
into the 1s' state is then —0.0128 a. u. , and the
total Auger rate from these terms is 0.00975 atu '.

The contribution to the Auger rate from the
fourth-order diagram of Fig. 3(f) with three imag-
inary parts was calculated and gave a result of
—6x10 atu

An estimate of the fourth- and higher-order con-
tributions to the correlation energy was made based
on a geometric series. '3 This estimate was 10 '
a. u. and so was neglected.



1554 CHASE, KELLY, AND KOH LE R

where 4„is the Auger rate, and A„ is the radiative
rate given by the standard expression for spontane-
ous emission:

(2'f)

TABLE II. Pair contributions to E,~(p, q: 1s) and
to the Auger rate in Ne with a 1s vacancy. ~

Electrons b

1s, 2s'
1s", 2p'
2s', 2s
2s ~ 2p
2s, 2p
2s ~2p
2p(+ 1'), 2p(+1 )
2p(-1'), 2p(-1 )

2p(+1 ), 2p(0-)
2p(- 1'), 2p(0-)
2p (+ 1'), 2p (- 1 )
2p(-1+), 2p(+ 1 )
2p(0'), 2p(+1 )

2p(0'), 2p(-1-)
2p(0'), 2p(0-)

Total

Contribution to
E~~(p, q: ls) in a. u.

—0. 005 23
—0. 007 58
—0. 00003
+0. 00083
+0. 00019
—0. 00011
+0. 00038
+0.00038
+0. 00019
+0. 00019
+0. 00013
+ 0. 00013
+ 0. 00019
+ 0. 00019
+ 0. 00036

—0 ~ 009 66

Auger rate
in atu

0.000 00
0. 00000
0. 000 82
0. 00054
0. 00165
0. 00030
0. 001 04
0. 001 04
0. 00052
0. 00052
0. 00032
0. 00032
0. 00052
0. 00052
0. 00084

0. 008 97

~See Eq. (23).
Terms involving 2p states with no m

&
designation

indicate that each m& contribution is identical, and the
sum is quoted.' Contributions from second-order diagrams in which
one of the excited states is the 1s'. These results in-
clude modified denominators. See Eqs. (23)-(25).

in atomic units. Since &E for our problem is to be
the difference between the energies of the atomic
state with a 1s vacancy and the atomic state with a
2p vacancy, we have used the energies for these
states calculated by Bagus. " Our calculated value
for the radiative rate of the 2p-1s transition in neon
is 1.1413&&10 atu '. This rate was determined by
a first-order calculation. We are investigating the
effects of correlations on the radiative rate, and
preliminary results indicate that these may con-
siderably reduce our calculated radiative rate.

Using our first-order value for the radiative
rate we obtain a value for the fluorescence yield
of (dg= 0. 0143.

5. Correlation Energy Aelative to Ne

The quantity of interest: in this calculation is
E„„(Ne'; ls hole) —E „(Ne), which is defined as
the total correlation energy of neon with a 1s va-
cancy minus the total correlation energy of neutral
neon. In order to calculate this difference, not
only must we calculate the new correlations involv-
ing excitations into single-particle states which are
occupied in the atom and not in the ion, but also
must we include the removal of correlations which

I) 7l

()

(c)

(e)

(b)

FIG. 3. Higher-
order diagrams,
Diagrams (a)-(e)
are the three-body
diagrams included
in this calculation.
Additional third-
order three-body
diagrams are dis-
cussed in Ref. 9.
Xhagram (f) xs the
fourth-order ring
diagram.

were present in the parent atom.
We must consider the breaking of pair correla-

tions involving the electron which was removed.
Using previously reported values of the pair cor-
relations in neon, ' ' this contribution of pair cor-
relations involving the 1s' electron in the parent
atom is calculated to be -0.05115 a. u.

We have also included the breaking of correla-
tions in the three-body terms. Based on previous
estimates of the total three-body contributions to
the correlation energy of neon, ' '" we estimate the
three-body correlations in neon involving the 1s'
electron to be 0. 0062 a. u.

A third contribution to E, ,(Ne'; is hole) E, (N-e)

arises from the fact that the outer electrons in
Ne'(ls hole) feels more of the nuclear charge than
do the outer electrons in neutral Ne. This is due
to the removal of one of the 1s electrons. The
magnitude of this effect may be estimated by con-
sidering the correlation energy of Na' since this
also takes into account the action of an additional
positive charge on the outer electrons. Using re-
sults reported by Clementi, '6 we estimate that this
effect adds —0. 003 a. u. to the correlation energy
of Ne'(ls hole).

Combining all of the effects which contribute to
the difference in correlation energies of Ne'(ls hole)
and neutral Ne, we calculate E„„(Ne'; is hole)
—E„,„(Ne) = 0. 029 82 a. u. The detailed results are
summarized in Table IV.

B. Vacancy in 2s Subshell

1. Potential Choice

The ground state of the neon atom with a vacancy
in the 2s subshell is a S state, and the unperturbed
ground state is a single determinant with orbitals
ls', 2s, 2p(+1'), and 2P(0'). The missing orbital
has again arbitrarily been assigned m, =+ ~. The
same diagrams used for the case of a 1s vacancy
were evaluated for the case of a 2s vacancy, with
the difference that now one of the excited states is
restricted to the 2s' state. In the case of the 2s
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TABLE III. Three-body contributions to E,~ (Ne',
1s hole) and to the Auger rate.

Figure~

3 (a)
3 (b) -3 (c)

3 (d)
3 (e)

Total

E0~ in a. u.

0. 000725
—0. 000 133
+ 0, 000 158
—0. 000 081

0.000 669

Auger rate in atu

0. 000 909
—0. 000 247
—0. 000 006

0. 000 133

0. 000 790

Refers to diagrams of Fig. 3.
Contributions from three-body diagrams in whichone

of the excited states is the 1s'.

2p:

V= 2ji, —Ki, +JP, +5J@,—2 K2P,

~1@ 2 +ls++2s 6 2@+ ~22 %+22

(23}

New, low-lying bound excited states with l =0
and l =2 were calculated in the presence of a
(1s)'(2s}'(2p}' core. The rest of the excited states
used were those calculated for the case of the 1s
vacancy. Various matrix elements mere calculated
in order to compare results from the case of a 1s
vacancy and those from the case of a 2s vacancy.
It was found that the above choice of functions was
acceptable.

2. Correlation Energy Relative to Ne

A "modified" second-order result was obtained
by evaluating the diagrams of Figs. 1(a) and 1(b),

TABLE IV. Contributions to E,~, (Ne', 1s hole) -E,~(Ne).

Type of contribution

Pair correlations
Three-body correlations~
One-body corrections b

Reduction in shielding'
Pair breaking
Three-body breakingd

Total

Value in a. u.

—0. 00967
0. 000 67

—0. 003 13
—0. 003 00

0. 051 15
—0. 006 20

0. 02982

Terms involving excitations into 1s'.
Terms which correct for the difference between our

potential and a restricted Hartree-Fock potential.' Energy added due to a reduction in shielding of the
nuclear charge introduced by the removal of a ls elec-
tron.

d Correlations involving the 1s' electron which were
present in Ne and absent in Ne' (1s hole).

vacancy, however, the denominators of the correla-
tion energy diagrams do not vanish and so there is
no imaginary part to our calculated energies.

In order to improve the accuracy of our calcula-
tion we recalculated our 2s and 2p states with the

following potentials:

2s

TABLE V. Second-order contributions to E,~, (Ne',
2s hole) arising from excitations into the excited 2s' state.

Electrons ~

1s', 1s
1s', 2s
162

2 2p
1~ 22p
1g, 2p'
2$'

2 2p

2p (+1'), 2p(+1-)
2p(- 1'), 2p(- 1-)
2p(+1 ), 2p(0-)
2p(-1)', 2p(0-)
2p(+ 1'), 2p(-1 )
2p(-1'), 2p(+1 )

2p(0'), 2p(+1 )

2p(0'), 2p {-1-)
2p(0'), 2p(0-)

Total

Contributions to
E~~ in a. u.

—0. 001 21
—0. 001 80
—0. 00215
—0. 00036
—0. 00080
-0.00645
—0. 01678
—0. 01678
—0. 008 64
-0.008 64
—0. 007 09
—0. 007 09
—0. 008 64
—0. 008 64
—0. 012 78

—0. 101 95

Terms involving 2p states with no m& designation
indicate that each m, contribution is identical and the
sum is quoted.

Includes modified denominators. See Eqs. (23)-(25) ~

together with geometrically summed higher-order
diagrams of Fig. 2, as explained previously in con-
nection with Eqs. (23) and (24). The correlation
energy denominator shifts, '9 which did not affect
the results for the case of a 1s vacancy, were in-
cluded here.

The correlation shift ~„„was evaluated for the
case in which both hole lines of Fig. 1(a) were 2p
states:

&„„=E„,„(P,q) + E„„(P,r 4 q) +E„„(r4 P, q),
(30)

where E „„(p,q) is the correlation energy of the

p-q pair; E, (p, r4q) is the correlation energy
of electron p with all unexcited electrons except q;
and E„„(rwp, q} is the correlation energy of elec-
tron q with all unexcited electrons except p. The
quantity 6„„(p= 2p, q = 2p) was evaluated using
previously reported pair-correlation energies in

neon, "and had the value &„„=-0.1734 a. u. This
correlation shift brought the energy denominators
into reasonable agreement with experiment. "

The second-order "modified" results are shown

in Table V, and had a total value of —0. 1019 a. u.
The largest pair correlations were those involving

2p electrons. Figure 1(e) was calculated for the
state I n), the 2s' state, and gave a value of —0. 0034
a. u.

The three-body third-order diagrams of Fig. 3
were evaluated with the denominator shifts pre-
viously discussed. These diagrams gave a result
of +0.0228 a. u. The detailed results are shown in
Table VI.
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TABLE VI. Three-body contributions to

E,~(Ne', 2s bole).
TABLE VII. Contributions to E,~(Ne'

Type of contribution

; 2s hole) -E,~(Ne).

Value in a. u.

Figure

3 (a)
3 (b)-3 (c)

3 (d)

3(e)

Contributions to
E,~(Ne', 2s hole) in a. u.

0. 0427
—0. 0188
—0. 0006
—0. 0003

0. 0228

Pair correlations
Three-body correlations
Fourth- and higher-order
One-body corrections
Pair breaking'
Three-body breakingc

Total

—0.1019
0. 0228

—0. 0042
—0. 0034

0.4530
—0.0050

—0. 0464

~Refers to diagrams of Fig. 3.
Contributions from excitations into the 2s' state.

An estimate of the fourth and higher-order ef-
fects was made via a geometric sum, '3 with the
result of -0.0042 a. u.

As in the case of a 1s vacancy, certain effects
must be calculated in order to obtain a value for
E„„(Ne'; 2s hole) -E „(Ne). The breaking of pair
correlations involving the 2s' hole state is calcu-
lated to be —0.0453 a. u. , and the breaking of three-
body correlations involving the 2s' state is 0.005
a. u. The reduction in screening of the nuclear
charge due to the 2s vacancy was estimated to be
negligible.

Our total result for E,„(Ne'; 2s hole) —E„„(Ne)
is then -0.0464 a. u. These results are summa-
rized in Table VII.

IV. DISCUSSION AND CONCLUSIONS

In this calculation, we have used many-body per-
turbation theory to calculate both the Auger rate
and the additional correlation energy introduced in

neon when an inner-shell vacancy exists. In order
to calculate accurate values for the Auger rate, we

calculated the excited single-particle states of the
ion with a potential which corresponded to the con-
figuration of the ion after the Auger transition had
occurred. This was accomplished through the use
of the Silverstone- Yin and Huzinaga-Arnau poten-
tial~' which allows us to use restricted Hartree-
Fock orbitals for the ground state of the atom yet
has the desirable property that the excited states
may be calculated with a V" '-type potential and
still remain orthogonal to the ground-state orbitals.

Our results for the additional correlation energy
arising from an inner-shell vacancy agree favor-
ably with those reported by Bagus, ' who used ex-
perimental results for the total energy, and per-
formed a restricted Hartree-Fock calculation for
the Hartree-Fock energy. We calculate E„,„(Ne';
ls hole) —E „(Ne) =0.61 eV, and E„„(Ne'; 2s hole)
-E „(Ne) = —1.26 eV, while Bagus quotes 0.65

Terms involving excitations into 2s'.
b Terms which correct for the difference between our

potential and a restricted Hartree-Fock potential.
'Correlations involving the 2s' electron which were

present in Ne and absent in Ne' (2s hole).

and —0. 84 eV, respectively. The differences in
the two separate calculations may partially be at-
tributed to our estimates of the three-body correla-
tion breaking.

A first-order calculation of the fluorescence
yield of neon was carried out by McGuire, "who

used radial wave functions generated with a poten-
tial consisting of straight-line approximations to
a Herman-Skillman potential. His value for the
fluorescence yield, co~ =0.0185, is somewhat larger
than our value of (d~= 0.0143. This discrepancy
may be entirely attributed to the values used for
the radiative rates, since McGuire's value for the
Auger rate of 0.00948 atu ' is very nearly the same
as our value of 0.00975 atu '. Our value for the
radiative rate for the 2p-1s transition in neon of
1.413x10 atu ' is a first-order result, i.e. , it
includes neither initial-state correlations nor final-
state correlations. An investigation of the correla-
tion corrections to the matrix element (1s Irl2p)
using previously described methods' is being car-
ried out. Preliminary results indicated that our
value for the radiative rate reported above will be
somewhat reduced.

In experimental determinations of the fluorescence
yield of neon, Frey et al. report a value of wE
= 0.043, while Heinz ' reports a value of cgz = 0.018.
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The zero-field level crossing and optical double-resonance techniques have been used to
measure the lifetimes and g factors of several rotational substates in the A Z' excited state
of the OH and OD free radicals. Optical excitation was provided by a molecular lamp and in-
dividual emission transitions were observed through a monochromator in the beam of resonant-
ly scattered light. The measured g factors are in agreement with the results expected from
pure case b coupling for this state. The measured lifetimes are 660 + 22 and 598 + 20 nsec
for OH and OD, respectively; the mean value 629 + 22 nsec is suggested. The optical double-
resonance experiments allow a tentative lower limit to be placed on the excited-state hyperfine
interac tion.

I. INTRODUCTION

Over the past decade, the Hanle effect (also called
the zero-field level-crossing technique)' has been
used to obtain precision values for lifetimes, g fac-
tors, and hyperfine splittings in the electronic ex-
cited states of a large variety of atoms. More re-
cently, attention has turned to the extension of this
technique, along with the older optical double-reso-
nance (ODR) technique, to obtain molecular param-
eters and lifetimes of excited molecular states.
This paper discusses these techniques as we have
applied them to a study of the A~Z' state of the OH
and OD free radicals. Some of the work included
here has been previously reported. 3

From the theoretical point of view, the extension
of level crossing to molecular systems is quite
straightforward. However, molecules can present
rather formidable experimental problems, most of
which arise from the rotational and vibrational
structure of the electronic states. In particular,
because of the rotational structure, single elec-
tronic transitions in a typical diatomic molecule
give rise to the familiar bands of closely spaced
lines, separated by no more than a few tenths of an

angstrom, which connect different rotational sub-
levels between various electronic states. Since the
detailed nature of a level-crossing signal depends
strongly on the total angular momentum of the ini-
tial, excited, and final states, it is necessary to
resolve single lines i~ the band structure in order
to fully interpret an experiment. For example, in
order to measure the dependence of properties such
as g factors on the rotational quantum number of the
excited state, it is clearly desirable to isolate sin-
gle rotational-vibrational transitions.

German and Zare, in experiments similar to
ours, surmounted this problem by taking advantage
of the fortuitous overlap of an atomic line with one
rotational transition in the A Z-X II band of QH.
Using the atomic line to excite the molecules, they
were able to measure the g factor and lifetime of
the K' = 2, J' = —', rotational level of the OH molecule,
but this method does not permit a systematic study
over rotational levels. In a different approach
Isler and Wellse used the entire 1-0 band in a CQ
discharge lamp to provide resonance excitation for
a zero-field level-crossing experiment in CQ. They
attempted to take into account the contributions of
the numerous different rotational levels theoretical-


