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improves agreement between the theoretical profile
and the experimental data, while in the case of the
measurements of Boldt and Cooper" (Lya, n,
= 8.4&&10~~ cm ', T, =12200 K) the agreement be-
comes worse.

The main effect of time ordering, as discussed
above, appears to be a decrease in intensity at the
line center with a corresponding increase in the
wings. This behavior was obtained in the S-matrix

limit~' 7 for both Ly& and Hn. Qne may therefore
expect a similar behavior for other hydrogen lines
(in the case of the recent measurements by Wiese,
Kelleher, and Paquette" the correction from time
ordering improves agreement between the theoretical
and experimental profiles).

The authors would like to thank Dr. D. Stacey for
providing the predictor-corrector subroutine used
in solving the differential equations.
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The radial wave functions of hydrogen are put into such a form that they form bases for
irreducible unitary representations of an algebra isomorphic to that of 0(2, 1). Operators
proportional to r~ are found which form bases for the adjoint representations of this algebra.
Matrix elements of these operators are evaluated, and selection rules are determined by
considering Kronecker products of representations of 0(2, 1). Differences between this
approach and one previously suggested are discussed.

I, INTRODUCTION

Following Racah, ' the angular portion of the
atomic wave function has been analyzed using the
powerful techniques of group theory. The radial
atomic function has, on the other hand, been con-
sidered simply to be a solution to a differential
equation. As a result, calculations involving the
radial function lack, in general, the elegance and
essential simplicity of calculations involving the
angular functions.

The possibility has recently been raised of ex-
tending the use of group theory to studies of the
radial wave function. Because the techniques nec-
essary for such studies are largely unknown (or un-
recognized), work has been centered on the sim-
pler quantum-mechanical systems —the hydrogen-
atom (both nonrelativistic~' and relativistic' ), the
harmonic-oscillator, ' and the generalized Kepler
problem. 4 The radial functions of these systems
must certainly be completely understood before
any significant progress can be made in more com-
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plex systems.
In a previous paper, the hydrogenic radial wave

functions were analyzed by studying a closely re-
lated set of functions. These functions were shown
to form bases for representations of the noncom-
pact group O(2, 1). On the basis of a study of the
transformation properties of these functions, con-
siderable insight was gained into the properties of
the hydrogenic functions. It is felt, however, that
more information concerning the general group
properties of radial parameters would be obtained
if this previous work could be related directly to
the hydrogenic functions, rather than to this simi-
lar set of functions. It is the purpose of this paper
to describe the previous work directly in terms of
hydrogenic functions.

II. CHOICE OF ALGEBRA

A dynamical group' of the H atom is O(4, 2}. Of
interest to us here is not this group, but rather a
O(2, 1) x O(3) subgroup of O(4, 2). The O(3) group
is, in this case, the ordinary rotation group in
three dimensions; the O(2, 1), called the transition
group by Barut and Kleinert, 6 is closely related to
the group of interest to us. The three generators
of this O(2, 1) (B', B, and N) affect only the prin-
cipal quantum number of the total wave function
for hydrogen, Inlm}:

NI «m) = nl n&m) B'1«m) —
I
n+ 1 fm).

f,„(z„)= e'"'[(2l+ 1}(2n)/2v]' (n/2Z)R«(z„}, (4)

where z„=2Zr/n, Ze = nuclear charge. The pro-
portionality factors in (4) a.re chosen such that

(f~„If;~)= f f f,„*f;„.dtdr=6(l, l')6(n, n').

(6)

We can also construct an O(2, 1) algebra which acts
in the space of the f,„(z„):

aN= —i —,
at

'

(6}

with z„=2Zr/N; D((N +1)/Ã) is a dilatation opera-
tors with the property

we wish to study the radial wave function separate-
ly. We can, however, obtain the desired algebra
by combining the properties of this algebra with
those of the algebra discussed in the previous
paper. ~ We first introduce a new variable t, and
a new function f,„(z„}.The function f,„(z„)is sim-
ply related to the hydrogenic radial wave function
by

Barut and Kleinerte have given explicit forms for
J3' and B in the position representation, but not
for ¹ A consideration of the properties of this
O(2, 1) reveals certain characteristics of N, how-
ever. Foremost among these properties is the
requirement that N must not be defined in the space
of the radial function alone. If it were, equations
such as

D((Nv 1)/N)[e'"g(r)] = e'eg((q vl}r/q}

for any g(r). This dilatation operator can be ex-
pressed in a position representation as
[(Nvl)/N]" @~. The operators of Eq. (6) satisfy
the appropriate commutation relations for the com-
plexification of an O(2, 1}algebra:

NR„,= nR„,, CR„,= f(l+ l)R„, (2) [N, N, ] = + N, , [N„N]= 2N,

would result, where C is the Casimir operator for
O(2, 1), and R„,is the radial wave function of hy-
drogen. Since both C and N are Hermitian, this
indicates that

and, in the space defined by the j,„,satisfy the
equations

fR„.&.R„&dA= 6(n', n)&(l', f) (3)
Ã, f,„(z„)= + [(n el) (n+ l + 1}]'~f,„,,(z„„),

(8)

for some dQ, i.e. , that the states diagonalizing
the Hermitian operators are orthonormal. As is
well known, however, no relationship such as (3)
exists. We must conclude, therefore, that al-
though N satisfies Eq. (1), it does not satisfy Eq.
(2)

The O(2, 1) subgroup of Barut and Kleinerte is
therefore not exactly the one of interest to us if

Nf, „(z„)= nf,„(z„).

The operators (6) differ from those of the previous
paper~ by introduction of the dilatation operator
and through replacement of z„byz„.Equation (8)
indicates that the representation formed by the f,„

has a lower bound, since Ng„„=0; there is clearly
no upper bound. Equation (8) also indicates that
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(N, }~=—(N,), and that both N~ and N N, are real
and negative definite. The representations of O(2, 1)
formed using the f,„asbases are therefore unitary. '
They are obviously irreducible. We conclude then,
that the f,„(z„)with l fixed, n & l, form bases for
positive discrete unitary irreducible representa-
tions of O(2, 1). These representations are denoted
by D

III. OPERATORS

We now wish to search for operators in the radial
space which transform like "tensors" with respect
to the algebra of Eq. (6). One such operator is

T' ', = e"(D(N/(N+ q)) (r/N) ~, k & 0.

To evaluate [N, , T"',] we consider

[II., I'",)/, .(*.)=Iq, q'4D( )(
—

) /, (*„)-„'"ll( )(
—
) II./ (*). .

=D e"' z„„+i—v ""+1e'+,„z„~

or

[N„T' ', ) = —(k vq)T'~), » . (10)

Clearly, we also have

[N T(21) ] T(2()

This operator is obviously the extension of the
operator T' ' of the previous papers ' to the new
Hilbert space defined on the f,„(z„).

Matrix elements of the operators T' ', can be

evaluated easily by considering the matrix elements

(f;; I

[N„T'".) I f .);
in this way, recursion relations for the desired
matrix elements can be obtained. ' ' One finds
in a straightforward manner that

(f;; I

T" '.
I f(.) = ~(kq, «I l ")

x(fr ('q(l T' '(' (I f((»)-I

where the coefficient A(kq, ln! l n ) is given by'

(2 I ~ I) ! (2 1
'
~ I) ! (I ) !( —I —I) !( —I —I ) !

)
'

(i2}

In the definition of A, the binomial coefficients are
defined as

if n&0

= (- 1)"(r —n —1}!/(- n —1)!(r)! if n & 0.
A second operator in the radial space which

transforms like a "tensor" is given by

P ', = e'"D(N/(N+ q)) (r/N} "(, k & 0.

(f, ,„,lP'", lf,„)=W(-k iq, lnll'.n')-
(f(' ('+(I

' '('-(I f( (+(}

The matrix elements appearing on the right-hand
sides of Eqs. (11) and (15) can easily be evaluated
since

f (z ) [22 /(f ~ )1]
l+ (2/e I + (r2(

&; [2&(21}( ]-(/2 e-zr/ ((q(I

ThusA simple calculation yields

[N„P' ',) = (k+q+ 1)P' '~(,
[N, P ")=qP ', ,

and

(14)

and

(f(' ('+(I T' '( ~ (I f((+()= (2+) (l +1)(l+ 1 k)(

x [(2l)!(2l )!(l+1)(l +1)] (16)
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(f,. r „ i

P' '.. . i fg „i)= (I /2Z) ' (I + I) (I+ I '+ k+ 1) !

x [(2l)!(2l ')!(I+ I) (I '+ 1)] '~~ . (17)

IV. SELECTION RULES

As in the previous papers~' selection rules can
be obtained on the matrix elements of Sec. III by
considering Kronecker products of representations
of O(2, 1). If the matrix element is not to vanish,
the Kronecker product of the representation of the
ket and the representation of the operator must
contain the representation of the bra.

The representation labels which describe the
operators are easily found. ' The operators T ~',
with IqI & k form bases for finite dimensional ir-
reducible adjoint representation of O(2, I) which
we call D(k). The operators P'"', with q&k form
bases for infinite-dimensional irreducible adj oint
representations of the type D~; the operators P'~',
with —q & k form bases for infinite-dimensional ir-

reducible adjoint representation of the negative
discrete type D, . All other operators form bases
for not fully reducible adjoint representations of
O(2, 1}. Kronecker products can easily be evaluated
between these irreducible representations and the
representations D; which describe the ket. ' The
following selection rules result from consideration
of this product': (i) Matrix elements of T ",vanish
if lql & k and k, l, and l do not satisfy the triangu-
lar condition. (ii) Matrix elements of P'", vanish
if q & k and I & l + k+ 1. (iii) Matrix elements of
P'~', vanish if —q& k and E'& l —k —1. Other selec-
tion rules may exist, of course, for the operators
which form bases for the not fully reducible adjoint
representations.

V. DISCUSSION

Matrix elements of T ' and P" can be rewritten
in the form

and

(2ZP'R„...D —, — R„,dr=, A(kn' n, fn~ I n -)n' n "' nn'

x (I + 1)(l+ I'-k)! 2[(2l+ 2)!(2l + 2)!(2n)(2n')] (18)

Rn'l'D z R„,dr= —,A —k —1n —n, Ln l n

x (I '+ I) (I + I '+ k+ 1)!2 [(2l + 2)!(2l '+ 2)!(2n) (2n ')]-'~2 . (19)

When n = n, Eg. (18}, in conjunction with the selec-
tion rules of Sec. IV, explains immediately the
selection rules on matrix elements of r ~ noted by
Pasternack and Sternl;eimer. 9

We have described an algebra which has as basis
functions the hydrogenic radial functions times e'"'.
Introduction of the variable t is an essential charac-
teristic of this approach, and enables us to study
the hydrogenic radial wave function separately from
the angular function. Unfortunately, it is somewhat
difficult to obtain radial operators which transform
as tensors with respect to this algebra. Equations
(9) and (13) describe two such operators. Essen-
tially, however, these operators seem to be of in-
terest only when q= 0. Thus this approach provides
no advantage over the previous work~ in so far as
the evaluation of matrix elements or r is con-
cerned.

The importance of the present approach is that,
since it deals directly with the radial function, it

more clearly suggests the types of problems which
may be encountered in future studies in which more
complicated potentials are used. For example,
even if the algebra can be found for which the radial
functions of interest form bases, there still re-
mains the significant problem of expressing useful
radial operators in a fashion such that they trans-
form as tensors with respect to this algebra. The
case of hydrogen demonstrates that expressing even
such a simple operator as r" in the proper form
is a quite difficult problem, and one which has not
yet been solved in a manner which allows matrix
elements off-diagonal in n to be evaluated.
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Many-body perturbation theory is used to calculate the correlation energy of an atom with an
inner-shell vacancy. Numerical calculations are given for neon with either a 1s or a 2s vacancy.
For the case of the 1s vacancy, the energy has an imaginary part which is proportional to the
Auger rate. Our results are compared with semiempirical determinations of the correlation
energy and with experimental results for the fluorescence yield.

I. INTRODUCTION

The many-body perturbation theory of Brueckner'
and Goldstone2 is used to calculate the correlation
energy of a neon atom in which there is a 1s or 2s
electronic vacancy. The problem is, in principle,
the same as that treated by Kohler in calculating
nucleon separation energies by Ã-matrix theory.
However, rather than using the spectrum of single-
particle states for the N-particle system, ' we cal-
culate the single-particle states for the (N 1) sys--
tem in which the vacancy is already present. In the
calculations, we use methods discussed previously '
for applying many-body perturbation theory to
atoms. We have found it convenient to employ the
Silverstone- Yin~ and Huzinaga-Arnauv potential,
which has the desirable property that our unexcited
states are represented by Hartree-Fock orbitals,
while the excited states are calculated in a V" '
potential. '

In Sec. II, we discuss the basic theory and con-
siderations in the choice of potential. In Sec. III,
we present numerical results for the correlation
energy, Auger rates, and fluorescence yield when
there is an initial 1s vacancy. Numerical results
are also presented for the case where there is an
initial 2s vacancy. Section IV contains the discus-
sion and conclusions.

II. THEORY

A. Singularities in Diagrams

Consider the second-order energy diagram shown

in Fig. 1(a). The expression for this diagram is

~ I
&kk'Ivlpq&

I
D ' (1)

where

D = E'p+ fq —fk —E'ke

Hole lines p and q refer to unexcited bound states,
and k and k refer to excited single-particle states.
The usual two-body interaction is represented by v.

If one of the excited states is a state which nor-
mally would have been occupied in the ground state
of the atom, the denominator of Eq. (1) may vanish.
In this paper, we consider the neon atom with a 1s
vacancy, and, as a separate case, with a 2s vacancy.

In evaluating Eq. (1), sums over bound states are
carried out explicitly up to n = 13, and the n rule'
is used to obtain the contribution from the rest of
the bound states. Sums over continuum states are
carried out by numerical integration according to

dk,2
7T

where our continuum states are normalized ac-
cording to

P»(r) = cos[kr+6, + (q/k) ln2kr —(I + 1) 2v], (3)

as r-~. The logarithmic term in Eq. (3) arises
from the fact that V(r)-q/r as r

When excited state Ik) is an inner-shell vacancy,
D of Eq. (2) may vanish for a particular excited
state Ik ). In such a case, the singularity in D '
is treated in the usual manner by introducing a


