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A simple model of a traveling-wave parametric amplifier is discussed in quantum-mechan-
ical terms. The amplifier consists of a slab of Haman-active material, illuminated on one face
by an intense laser beam that serves as the pump mode; an optical-phonon oscillation serves
as the idler mode, and the scattered Stokes light occupies the signal mode. With only a few sim-
plifying assumptions, it is possible to solve the equation of motion for the signal field operator
exactly. For large times, both an amplified steady signal and the quantum noise contributed
by the material assume simple steady states in an amplifier of finite length. The transient
and asymptotic behaviors of the signal and noise intensities are found, together with the cor-
responding first-order correlation functions. The quasiprobability distribution which spec-
ifies the complete density operator for the electric field strength of the amplified signal is
also derived.

I. INTRODUCTION

The development of lasers capable of producing
intense, steady, and highly coherent beams of light
has made possible the development of devices that
amplify light beams. Among these is the optical
parametric amplifier, whose microwave analog
has been in use for some time. ' Here we shall
consider a simple, but fairly realistic, model of an
optical parametric amplifier. Our discussion will
be aimed at providing a simple and quantum-me-
chanically complete description of the output of the
amplifier, including both the amplified signal and
the intrinsic noise.

In a parametric device, amplification is achieved
through the driven oscil)ations of one of the param-
eters describing the system. If a system has sever-
al modes of oscillation coupled through a nonlinear
interaction, then, under the appropriate conditions,
energy supplied to one of these modes may amplify
oscillations present in the other modes. If the
oscillations of the driven mode are strongly enough
excited by an external force, the reaction on it due
to coupling with the other modes may often be ne-
glected. The amplitude of the driven oscillations
may then be regarded as an externally specified
parameter of the system rather than a dynamical
variable. This approximation greatly simplifies
the analysis of the parametric amplifier.

Usually three modes of oscillation are involved
in a parametric amplifier. The driven mode is
called the pump mode; the mode whose excitation
carries the signal to be amplified is called the sig-
nal mode, and the remaining mode is called the
idler mode.

At optical frequencies, there are many nonlinear
interactions that can couple electromagnetic fields
at two different frequencies with a material oscilla-
tion or with a third mode of the radiation field.

Couplings oi these types may be regarded as gener-
ating scattering processes in which an incident pho-
ton is inelastically scattered by the material or by
another field mode undergoing a shift in frequency.
In an amplifying device, photons of some given fre-
quency are supplied by an external pump. These
photons are scattered into modes with a lower fre-
quency, the Stokes frequency; it is the light in the
latter modes that is amplified. W'e shall refer to
these modes as the signal modes since photons at
the Stokes frequency can be introduced from outside
the system as a species of signal; they then stim-
ulate further inelastic scattering so that the incident
signal is coherently amplified.

We shall consider below the particular case of
inelastic scattering from molecular vibrations in a
crystal, the coherent Raman effect. 3 When an os-
cillating electromagnetic field is applied to a Raman
active crystal, the resulting anharmonic molecular
vibrations are able to transfer energy between os-
cillation modes of the radiation field whose frequen-
cies differ by a resonant frequency of themolecules.
The molecular vibrations here serve as the idler
mode, while the two field modes are the pump and
signal modes. Although the properties of the idler
mode and the nature of nonlinear coupling may be
rather different in other types of scattering pro-
cesses, the corresponding amplification processes
can, in a number of cases, still be treated by tech-
niques similar to those we develop below.

At optical frequencies, photons have enough en-
ergy to be individually detectable. The spontaneous
emission of quanta, furthermore, is an important
source of noise which cannot be incorporated into
a classical discussion of the amplification process
in any wholly satisfactory way. Thus, any thorough
treatment of optical parametric amplification is
necessarily a quantum-mechanical one. The math-
ematical analysis is simplified considerably by the
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fact that only the signal and idler modes need be
treated quantum mechanically; the pump mode may
be assumed to be excited to classical intensities.

A simple model of the quantized parametric am-
plifier, which has been discussed in great detail in
the literature, ' considers the nonlinear process to
take place in a closed lossless cavity. Three of the
normal modes are coupled by the interaction; one
of them, the pump mode, is excited to a steady
classical amplitude of oscillation. The equations
of motion for the signal and idler modes are readily
solved, ' and lead to an exponential growth of the
signal- and idler-mode amplitudes. Such an ex-
ponential growth, however, cannot be sustained in-
definitely. If the amplifier is completely lossless,
the growth of the signal- and idler-mode amplitudes
eventually demands more power than can be sup-
plied by the pump, and the parametric approximation
that its amplitude is fixed becomes untenable. When
all three modes are treated as dynamical variables,
the equations of motion are, of course, nonlinear,
and energy supplied to the system oscillates back
and forth between the modes. '

In most experimental situations, however, the
amplifying system is neither closed nor lossless;
its physical behavior cannot be adequately repre-
sented by the discrete mode models mentioned
earlier. Open systems tend to achieve well-defined
steady states in which the power supplied by the
energy source is just equal to the power removed
by damping and by radiation loss. Thus in an opti-
cal parametric amplifier the propagation of the
amplified signal out of the active region carries
with it a large fraction of the energy removed from
the pump mode. The energy remaining behind as
increased excitation of the idler mode is rapidly
degraded to heat because of the strong damping ex-
perienced by phonon excitations.

Perhaps the simplest model that can take into ac-
count the effects of propagation and damping with
the parametric approximation is an infinite uniform
amplifying medium. In a semiclassical approxi-
mation the prob1. em of the propagation of wave
packets through the medium can readily be solved,
and leads to well-behaved field amplitudes. For
fully quantized field amplitudes, however, the
Stokes light emitted spontaneously at arbitrarily
large distances from the point of observation is
amplified indefinitely and leads, in the infinite
medium, to signal intensities that diverge as a
function of time. Only in a medium that is finite
in extent can the field intensity reach a steady state.

We shall therefore consider a parametric ampli-
fier consisting of a bounded Raman-active crystal
illuminated by a powerful and steady laser beam
which serves as the pump mode. In order to make
the geometrical considerations as simple as pos-
sible, we shall assume that the crystal is a plane

slab of material and that the laser beam is incident
normally on one face. Any of the field modes into
which Stokes scattering takes place can be consid-
ered to be a signal mode; thus there are signal
modes with propagation vectors at all angles rela-
tive to the surface of the amplifying slab.

In order to provide the proper context for a quan-
tum-mechanical description of the amplification,
we discuss first, in Sec. II, the Hamiltonian for the
system. Qe then construct, in Secs. III-V, the
Heisenberg equations of motion for the signal and
idler fields.

The interactions of the signal and idler fields
with other excitations of the medium lead to damping
of the fields; the optical phonons of the idler field,
in particular, are strongly damped. We discuss
this damping and the associated noise in Sec. VI;
we neglect any direct damping of the signal field.

The resulting equation of motion for the radiation
field is obtained in Sec. VII. This Heisenberg
equation of motion for the signal field is identical
in form to the classical equation in one spatial di-
mension x for an electric field E(x, t). In the
classical context the exponential solutions of the
initial value problem [E(x, 0) given] and of the
boundary value problem [E(0, t) given] are equiva-
lent; we discuss these solutions, which grow in
time and in space, respectively, in Sec. VIII.

The quantum-mechanical problem, however, con-
sidered in dynamical terms is intrinsically an ini-
tial-value problem. We thus solve first the initial-
value problem for the homogeneous equation for
arbitrary fields in Secs. IX and X, and then con-
struct solutions for the inhomogeneous equations,
using a Green's function, in Sec. XI. We finally
consider the effects of the boundaries of the medium
in Sec. XII. The solution for the signal field ob-
tained in Sec. XII contains explicitly all the tran-
sient effects that obtain only for small times. We
discuss the much simpler steady-state behavior of
the amplified signal in Sec. XIII, and of the ampli-
fied noise in Sec. XIV.

Finally, in Sec. XV, we discuss the statistical
properties of the output in terms of the quasiprob-
ability distribution for the amplified field.

II. INTERACTION

In the phenomenological model of the Raman ef-
fect, ' the molecular polarizability, which is in
general a tensor &,&, is regarded as a function of
the positions of the nuclei within a molecule or a
crystal unit cell. Since we shall be considering
only one Raman line, we shall need to consider only
one normal mode of molecular vibrations, i. e. , one
optical-phonon branch of the crystal. Thus, the
polarizability is a function of the single vibrational
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X&g(r ~) = X y+ X yaua(» ~)

~gy(r, ~) = ~)y+ X))guy(r, ~) .
(2, 1)

We are using Heaviside-Lorentz units (i. e. , ration-
alized Gaussian units) in which e = 1+X. Since
y„(r, t) is a symmetrical tensor, we have

Xgya= Xy&~ ~

The constant term e, &
of Eq. (2. 1) may well be

frequency dependent. We are, however, interested
in only two bands of optical frequencies: One is the
essentially monochromatic band of the pumping
light, presumably provided by a laser; the other
is the Raman line, centered about the Stokes fre-
quency, whose width is roughly the same as the
linewidth of the molecular vibrations.

It will therefore suffice to assume that c&& takes
on constant, though possibly different, values over
each of these frequency bands. We shall further
assume that the linear dielectric constant is a sca-
lar, eq) —&5')

The electric displacement within the crystal is

D,(r, t) = ~„(r, t) E,(~, t)

= e Eq(r, t) + X])~E)(r, t) uI,(r, t) .
In the absence of magnetic phenomena we have p, = 1,
so that the Hamiltonian density of the field within the
crystal is

coordinate u(r, t) which describes the oscillations
in that mode of the molecule at r.

The u dependence of &~& implies that the suscept-
ibility X&& and the dielectric constant e&& of the crys-
tal are also functions of u(r, t). Since the deviations
of o, lt, or e from their equilibrium (u =0) values
are quite small, it will suffice to retain only the
lowest-order nonvanishing term in a power-series
expansion. Thus, we consider only the linear con-
tribution to 0.':

(q(r, t) =,q+, q, u(r, t);
here i,j, k' are vector indices, and we use the sum-
mation convention, intending a sum over all repeated
indices.

In a crystal that has no center of inversion, the
lowest-order contributions to ](.'and e are again the
ones linear in u(r, t). In crystals that do have in-
version symmetry, the linear contribution to the
macroscopic parameters vanishes, and the lowest-
order contributions come from terms quadratic in
u(r, t) In the follo.wing, we shall consider only
crystals without a center of inversion, so that we
may take

The terms of this Hamiltonian density quadratic in
the fields describe the linear response of the medi-
um, which leads to reflection and refraction at the
boundaries. These effects can be eliminated ex-
perimentally by immersing the crystal in an inactive
medium with the same index of refraction. The lin-
ear response thus leads only to a phase velocity of
the light different from c, and need not concern us
further. The Hamiltonian density of Eq. (2. 2) can
thus be regarded as the sum of a Hamiltonian den-
sity for the "freely" propagating field:

3C& = 2 e[E(r, t)] + ~ [B(r, t)] (2. 3)

and a Hamiltonian density for the nonlinear inter-
action of the field and the crystal:

(2. 4)

In the operation of the Raman-active crystal as a
linear amplifier, the pump mode is strongly excited
by, say, a laser beam to classical intensities, while
the signal, i. e. , Stokes light, and idler, i. e. , pho-
non, modes remain weakly excited. Thus, all the
states of the radiation field that we need to consider
contain a strong coherent and nearly monochromatic
excitation

SI,(r, t)= 2$r, cos(kl, r- ~It)

due to the laser field, in addition to whatever other
excitations may be present. For a fairly wide range
of laser field strengths the dynamical variations in
the amplitude of the beam during its passage through
the medium may be neglected. It is thus an excel-
lent approximation, when the field modes occupied
by the laser beam are in quantum states having a
large coherent excitation, to regard the laser field
not as a dynamical variable but as an externally
given parameter of the system.

Since the behavior of the laser modes is predeter-
mined in this approximation, it is convenient to sep-
arate the states and operators that refer to them
from those that describe the dynamical behavior of
the other modes. We can write the electric field,
for example, as

E(r, t) = E'(r, t) + Ez(r, t), (2. 5a)

where E~(r, t) is that part of the field which operates
on states of the laser modes only, and E'(r, t) oper-
ates on the states of all other modes of the field.
It is the dynamics of the field E' which interest us
since it describes the scattered radiation. The laser
field El, may, for all practical purposes, be re-
placed by its expectation value

(El (r, t) ) = $1(r, t) . (2. 5b)

~D](r, t)E](r, t}+ gB ](r, t)B)(r, t)

= aeE&(r, t)B&(r, t) + ,B&(r, t)B&(r—,t)

+ a yuqE((r, t) E~(r, t) uq(r, t) (2. 2)

A corresponding separation may be made for the
magnetic field B as well.

The free-field Hamiltonian which corresponds to
the Hamiltonian density given in Eq. (2. 3) is
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It is this form of the free-field Hamiltonian we shall
use in Secs. IV and V to find the equation of motion
for E'(r, t).

It is, of course, also convenient to express the
interaction Hamiltonian density in reduced form.
From its definition, Eq. (2. 4), and by making use
of Eqs. (2. 5a} and (2. 5b) we see that this form is

Kr =p}(; ) $1,((rt)tpii(r t)up(r t)

+ }(;i,S~;(r, t)E)'(r, t)u p(r, t)

+-, }(;,~E';(r, t)E&(r, t)up(r, t) . (2. 7)

The first term of Eq. (2. 7) represents the forced
motion of u driven by the c-number laser field; the
dc component of the driving force, i. e. , of Sz, &SI,&,

serves merely to provide a trivial shift of the zero
point of molecular vibrations, while its remaining
component at twice the laser frequency is so far
from resonance that its effect is entirely negligible.
The third term of Eq. (2. 7) represents the nonlin-
ear behavior of the Stokes light, and provides, for
example, the generation of higher-order Stokes
lines. However, unless the first Stokes line is am-
plified to a very large intensity indeed, these pro-
cesses remain unimportant. That is, as long as
the amplification of the Stokes light is not too great,
it is true that

so that the magnitude of the third term in Xl is
small compared to that of the second. For our pur-
poses, then, we may take

ff, = f 50, d'r

= f d r (—,
' e[E'(r, t) ] + p[B'(r, t) ] )

+ f d r (—,'e[Ez(r, t}] + p[Bz,(r, t)] ],
where we have made use of the fact that the laser
modes are orthogonal to all other modes of the sys-
tern. Since we shall use the Hamiltonian only to es-
tablish the equations of motion for the operators E'
and B', it will suffice to make use of a reduced form
of the Hamiltonian that is the expectation value of

Hz taken with respect to the state of the laser mode

only. If the laser excitation is both large and co-
herent, as we have assumed, then in that expecta-
tion value we have, to an excellent approximation,

([E (r, t}] ) = [)() (r, t)]

( [B (, t) ]') = [(1) (, t) 1' .

The reduced Hamiltonian defined in this way differs
only by an additive c number from the Hamiltonian

ff,'= 5 X', d'r,
with

(2. 6)

X, =- }(;,, )(l~;(r, t)E,'(r, t)u, (r, t) . (2. 5)

Since we shall not need to refer further to the full
electric field of Eq. (2. 5), we shall in the following

drop the primes from the dynamical field.
The interaction Hamiltonian

&r f=&i d'r

given by Eq. (2. 8) contains, in addition to slowly
varying terms, terms that vary quite rapidly, os-
cillating at infrared, optical, and uv frequencies.
It is mell known that such rapidly oscillating terms
tend to contribute little to physical results, since
any contribution they make must come in higher or-
ders of perturbation theory via energy-nonconserv-
ing virtual processes. In order to eliminate these
terms from the Hamiltonian, it is convenient to
write each of the fields E, bl„and u as a sum of
positive- and negative-f requency components where
we define the positive-frequency parts E", Pl",
and u'" to be those which vary as e '"'. Since the
laser and phonon fields are nearly monochromatic,
i.e. ,

g(+) ( t) -i ill/) u (+)(r t) e-i P

the only terms of Xl that contain slowly varying,
or resonant, contributions are

Xz =}(;»S~ (r, t)E& '(r, t)u(), '(r, t)+H. c.

+}(;,,Sr,';(r, t)E', '(r, t)u,"(r,t) + H. c. , (2. 9)

where H. c. represents the Hermitian conjugate of
the previous term.

The first term of Xl describes the annihilation of
a laser photon with the creation of a phonon and of
a Stokes photon with frequency (d, (aside from tiny
line shifts associated with phonon damping &, =&I
—(dp); its Hermitian conjugate describes the inverse
process in which a Stokes photon and a phonon are
annihilated and a laser photon created. The second
pair of terms describes the anti-Stokes process in
which a laser photon and a phonon are annihilated
(or created) and an anti-Stokes photon is created
(or annihilated). Anti-Stokes light, of course, can
never be emitted spontaneously; the emission must
always be induced by the presence of optical pho-
nons. Thus, unless the molecular vibrations are
strongly excited, by, for instance, thermal pro-
cesses or the Stokes process, the anti-Stokes pro-
cess is unimportant. It is realistic then to ne-
glect the anti-Stokes process entirely and to con-
sider only the Hamiltonian density

50, =}(;»Sz,' (r, t)E& '(r, t)u~ '(r, t)+H. c. (2. 10)

for the interaction of Stokes light with optical pho-
nons.

In order to obtain a Hamiltonian density for the
molecular vibrations, it will suffice to consider a
simple phenomenological model of the crystal. At
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thus

H= J (Xq'+X +3C, ) d'r,

where the field Hamiltonian density K& is given by
Eq. (2. 6), the material Hamiltonian density X is
given by Eq. (2. 11), and the interaction Hamiltonian

density for Stokes-light generation X, is given by
Eq. (2. 10).

=q
~la

FIG. 1. Typical optical-phonon spectrum for a crystal
with lattice constant a. The resonance frequency of free
molecules is ~0, and X is an optical wavelength.

2

H =Q, —,'m —u(r„f) +(o', [u(r„f)]'et

where m is an effective reduced mass for the nor-
mal mode of molecular oscillations we are con-
sidering, and n is a running index for the unit cells.

On the scale of optical wavelengths, the lattice
may be regarded as a continuum, so that the sum
over lattice sites r can be replaced by an integral
of a Hamiltonian density over the volume of the
crystal:

with

2

K =&p —ur, t +(d~ ur, t, (2. 11)

The effective density p is simply the effective mass
m divided by the volume of a unit cell.

The total Hamiltonian for the Haman process is

the comparatively long wavelengths involved in op-
tical processes, the oscillations of molecules at
neighboring lattice sites are nearly in phase. The
intermolecular interactions that lead to a removal
of the degeneracy of the crystal vibration frequen-
cies for transverse oscillations are small in that
case, and can be neglected. The resonance fre-
quencies of all modes are then identical, and the
crystal frequencies are independent of wave number.
Optical phonon spectra, in other words, tend to be
quite flat near q=0 (see Fig. 1); since optical wave
vectors occupy only a very small volume about the
origin of the reciprocal lattice, the dispersion curve
can for all practical purposes be taken as flat.

Since we are neglecting the intermolecular inter-
actions, the Hamiltonian of the material is just the
sum of the free Hamiltonians for each unit cell:

III. REDUCTION TO A ONE-DIMENSIONAL PROBLEM

The considerations of Secs. I and II have served
to establish the energy density associated with the
interaction of the electric and phonon fields. Which

of the normal modes of oscillation of these fields
actually interact must be determined by the bound-

ary conditions imposed on the fields and nature of
the volume within which the fields interact.

In case the amplifying medium is unbounded,
translational symmetry requires that momentum be
conserved by the interaction, i. e. , that the sum of
the wave vectors k of the Stokes photon and q of the
phonon generated by the scattering be precisely
equal to the wave vector k~ of the laser light:

k+q =kr, . (3. 1)

Thus each electromagnetic propagation mode only
interacts strongly with phonons having a single wave
vector. If one further takes into account the fact
that oscillating terms in the Hamiltonian contribute
little to the observed scattering, i. e. , that energy
is conserved, one sees that the values of k are re-
stricted to those for which the frequency of the
Stokes photons, ru(k), the frequency of the molecu-
lar vibrations, &o, and the laser frequency, cdI. are
related by

(0 (k) + (d 0
= APE (3. 2)

The observed wave vectors for the Stokes light gen-
erated in an infinite medium thus lie on the surface
of constant &u(k) defined by Eq. (3. 2); we will call
this surface the Stokes sphere. The wave vectors
of the corresponding optical phonons are determined
by Eq. (3. 1) (see Fig. 2).

The introduction of boundaries destroys the trans-
lational invariance of the medium, and momentum
is no longer precisely conserved in the interaction.
Each plane wave of Stokes light generated in a finite
medium is thus coupled to a certain finite range of
optical phonons whose wave vectors may differ from
that given by Eq. (3. 1) by amounts of the order of
the reciprocal of the dimensions of the medium.

A typical experimental situation is shown in Fig.
3; the signal consists of Stokes light scattered in
the direction labeled S. As we have noted earlier,
we consider the amplifying medium to be a plane
slab which extends to infinity in the direction trans-
verse to the propagation of the laser beam, but only
extends for a finite distance along the direction of
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+H. c. , (3. 3)

where the function X(x) is the characteristic function
of the medium:

propagation of the beam.
Let us establish coordinates such that the laser

beam propagates in the +x direction, and that the
medium extends from x = 0 to x = l, and to y = + ~,
z = + ~. Further, let the laser beam be incident
normally on the slab, so that

S&'(r, t)=X,"(», t).
For this configuration, translational invariance

requires that the y and z components of momentum
be conserved exactly, while the x component need
only be conserved, crudely speaking, to terms of
0 (h/1). Thus, Stokes photons with wave vector k
are coupled to phonons whose wave vectors q have
the same transverse components as k (q, = —k„q,
= —k, ), but whose longitudinal components may lie
within a diffuse region around q„= kz, —k, + 0(1/l)
(see Fig. 4). Among the processes characterized
by these vectors the energy-conserving ones are
again those for which k satisfies Eq. (3. 2); that con-
dition and the precision with which it must be satis-
fied are, of course, in no way connected with the
size of the medium.

With our choice of coordinates, the Hamiltonian
of the interaction that leads to Raman scattering be-
comes

H, =f „, X,d'r

= f d r )i(x) )t,),S~,' (x, t) d~ ' (r, t) u, (r, t)

=L+S

(a) (b)

FIG. 3. Arrangements to investigate stimulated Raman
emission using (a) off-axis scattering and (b) forward
scattering; L represents the laser beam, S the signal, ,

and M~~2 a half-silvered mirror. In (b), the amplified
signal must be separated spectroscopically.

In order to make use of the fact that the trans-
verse components of momentum are conserved, we
express the electric and phonon fields in terms of
their transverse Fourier transforms. To simplify
later notation we consider the Fourier transform
of the electric field in terms of propagating waves
rather than stationary plane waves:

EI+) (r t) f [pK/(2 )2] E(+) (K. x t) ei()f'ir ~ri)
(3. 5)

u,"(r, t)= f [d'Q/(2 ))i]u", (Q; x, t)e'o'r

where

K = (k„kg ), Q = (q„q,), rr=(y, e) (3. 5)

&4 (k) = G)), + id r (3. 7)

are purely transverse vectors.
The frequencies ~e(k) which are improtant for the

amplification process all tend to lie close to the
Stokes frequency, and the corresponding wave vec-
tors k all lie close to the Stokes sphere (see Fig. 4).
As we shall show in more detail in Sec. V the fre-
quency function ie(k) can, in the vicinity of the
Stokes sphere, be written as the sum of two terms:

))(x)=1, 0&x&i

)).(»)=0, x&0 or x&l .
(3.4) The frequency to~ depends only on k, the longitudinal

component of k, while (d~ depends only on the con-
stant transverse wave vector K. The explicit func-
tional forms of these frequencies are derived in
Eqs. (5. 3)-(5.5). For the present we shall simply
use Eq. (3. 7) to make explicit the separation of the
longitudinal and transverse parts of the field.

By introducing the expressions for the fields from
Eqs. (3. 5) into Eq. (3. 3) and performing the inte-
gration over r~, we obtain

H, = f [d'H/)t„, 8,' (x, t)

)f [d'K/(2p)~][d'Q/(2v)2] Ei' (K; x, t) e '"r'

&&u)", (Q; x, t)(2)i) 5~(K+Q)+H. c.

fdx) (x)=)t„,8',' (x, t) f [d'Z/(2&)']

FIG. 2. Wave vector relationships in an infinite me-
dium: kI, is the laser wave vector, k the wave vector of
the generated Stokes light, and q the wave vector of the
optical phonon created by the Raman process.

&E&
' (K; x, t)u), ' ( —K; x, t) e '"r'+H. c.

The interaction Hamiltonian can thus be written
as a sum of independent terms

H, = fd KH, (K),
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IV. COMMUTATION RELATIONS

We now proceed to determine the equations of mo-
tion generated by the Hamiltonian of Eqs. (2. 2),
(2.4), and (3.9). Since the fields E and u are quan-
tized, it will be convenient to expand them in terms
of normalized boson operators. We shall suppose
that the electric field propagates in a region of to-
tal length I.» l whose ends impose periodic boundary
conditions. The amplifying medium, as we have
said, extends from x= 0 to x=/; we shall suppose
that its boundaries are such that the normal modes
of the phonon field are standing waves. The fields
E and u can then be written as

FIG. .4. Wave-vector relationships in a slab of thick-
ness l; notation as in Fig. 2. Stokes light with wave vec-
tor k is coupled to phonons whose wave vectors q start
anywhere within the diffuse segment centered around the
tip of k. Transverse components of k and q are equal in
magnitude and opposite in direction. The energy-conserv-
ing processes are those for which k terminates on the
surface given by ~(Q = &oz —~0.

where

H. (K) =(X„,/4") f d»X(x)S,' (», t}

(K; x, t)us'(-K; x, t) e ~r'+H. c.
(3. 3)

The three-dimensional problem specified by H,
can thus be separated into a set of independent one-
dimensional problems corresponding to precise val-
ues of the transverse wave vector K. The Hamilto-
nians for these one-dimensional problems, H, (K),
are all quite similar in structure, and it will suffice
to consider a single such one-dimensional problem
corresponding to a particular choice of K. We
shall in the following, therefore, drop all refer-
ence to the transverse wave vector K. It is pos-
sible at any stage to return to the consideration of
the full set of coupled modes by using, in effect, a
bundle of one-dimensional solutions to solve the
three-dimensional problem.

For purposes of quantization, it will be conven-
ient to consider the crystal to have a large but fin-
ite area A; the values of K are then not continuous
but discrete, and integrals over K must be re-
placed by (4vs/A) gr. The Hamiltonian then be
comes

H, =Q, H, (K),
where

H. (K)=A ~Xi~ f d»(x)C (x, t)E,"(x, t)

x u,"(x, t) e-~ r' + H. c.

In the absence of couplings, then, the operators a~
and b,„reatime independent. In writing Eq. (4. 1)
we have made use of Eq. (3.7). Since the factor
e '"~' has already been included in our definition of
E(K;x, t) [Eq. (3. 5)] itdoes not appear in Eq. (4. 1).
The boson operators of Eqs. (4. 1) and (4. 2) are the
canonical operators, so that we have

[os'(t) g ss'I' (t)] 5ss' 5xv )

[k,„(t),k,'.„,(t)] = 5,~ 5„, ,

(4. 3)

(4. 4)

while all other commutators vanish. The field com-
mutators can be computed directly from these. For
the electric field, we have

[E,"(x,t), E,' '(x', t)]

u~'(x, t) =Q ™g" (q)b„(t) sinqxe '"&'X(x) .
a~ ~~~0

(4. 2)

Here e"(k) and g" (q) are unit polarization vectors,
and their superscripts are polarization indices.
The allowed wave numbers k are

k = 2»n/f. , n = 0, + I, s 2, .. ..
The allowed values of q are

q= vn/I, n=0, +1, +2, ....
The factor gA, where A is the (large) transverse
area of the medium which appears in the normaliza-
tion factor in Eqs. (4. 1) and (4. 2) arises from the
definition of E(K; x, t), here written as E(x, t).

We have included explicitly in Eqs. (4. 1) and (4.2}
the time dependence of the free fields. That is,
E"'(x, t) and u" (x, t} are Heisenberg-picture oper-
ators, but the Heisenberg-picture boson amplitude
operators are written as

-lcd(|:)t e f(cdP+cdZ )t
&a)te —&aÃ

5 e-' "0'.
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1 p &( )5T»x(x-x')
2L~

(4. 5)

2

5»» = Q e,"(k)e,"(k) = 5„—k»k»/k
}l,~i

(4. 6)

where 6,&
is the transverse part of the Kronecker 6:

[u,"(x,t), H ] = ft~puI" (x, t) . (4. 14)

be found readily from the expressions above.

For the molecular vibrations, one may use either,
Eqs. (4. 12) and (4. 9) or Eqs. (3.9) and (4.8} to-

gether with the orthogonality of the functions sinqx

to obtain

which has the property

5(',e,'(k) = e', (k) .
For the phonon field, we find

[u,"(x,t},u,' '(x', t)]

&(x)&(x') Q 5»» sinqxsinqx',
)P4)O

(4. 7)

(4. 8)

For the electric field, the corresponding expression
is

[E,"(x, t), H,]

S~k A '"
tifg (p(k )

( } ex(k )a (t)»(»»x lllxt)
2Le

(4. 15)

(4. 12)H =A J,X dx=nZ, ~,5,'(t)b, (t)

%'e have dropped the zero-point contributions to
these Hamiltonians, and g,

' sums over all modes
other than the laser modes.

Since the functions e""and sinqx are in general
not orthogonal over the volume of the medium, the
interaction Hamiltonian of Eq. (3.9) assumes a
somewhat more complex form:

where, in analogy with 6~&,

5»» = &g'»(q) g» (q)', (4. 9)

5'~"(q}=g,"(q); (4. 1O)

since the phonon field u(x, t) describes only one op-
tical-phonon branch, and since longitudinal and

transverse optical phonons are, in general, not de-
generate, the sum of Eq. (4. 9) does not extend over
a complete set of polarizations, so that 6,

&
46&&.

Because of the orthogonality of the various mode
functions over their respective volumes, the free
Hamiltonians, given by the densities of Eqs. (2. 3)
and (2. 11), assume a simple form in terms of the
boson operators:

H& A' J K&dx=——fig (pkp)»at(t)a (t)x, (4. 11)

These commutators give rise to the free-field equa-

tions of motion.
The commutator of the electric field with the in-

teraction Hamiltonian is, from Eqs. (4. 5) and (3.9),

[E( (x, t), H, ]=(n/2e) J dx'~(x')X»'» &i'»'(x, t)

xu' '(x', -t)e'""2 (1/I )~(k)5»»e'"" * ' (4 16}

Now, as we have argued before, the only photon

modes which contribute appreciably to the emitted
Stokes light are those whose frequencies are within

a few Raman linewidths of the Stokes frequency ,
[apart from tiny line shifts to be considered in

Sec. VI, (p, = (p~ —p»p; see also Eq. (7. 6)]. Thus,
the factor p»(k) in Eq, (4. 16) is nearly a constant,
~~, for all those terms that contribute to the pro-
cess. Furthermore, for any given transverse wave

vector K the direction of the emitted Stokes light is
quite sharply defined by Eq. (3.2), so that the trans-
verse part of the Kronecker 6 may also be taken as
constant. The sum thus reduces to one that can be
performed using the completeness relationship

P, e»x(*-"' = f.5(x -x'),

/x/ & ,'I, , (x'/ & —'—f,. (4. 17}

The commutation relationship then becomes

[E'»'(x, t), H, ]

H, =W-' J X,dx

X»,. ~ ~(k) '"
(2f leP) p ~p

x e,"(k)g" (q)ax„(t)f»x„(t) f dx X(x) sinqx

&( g(-)( t)ek »(x »+u)»xx+p-»»»x+rH (4. 13}

= 8(~./2e)X&*, &';,'(x, t)u' '(x, t)~(x)e»"" (4 18}

where we have introduced the abbreviation
RT

Xf jm Xi pffft+)l '

The commutator of u with the interaction Hamil-
tonain is, from Eqs. (3.9) and (4. 8),

As we mentioned in Sec. III, the integral gives non-

vanishing contributions for a range of pairs of val-
ues for A and q, even when the laser field is per-

fectlyy

monochromatic.
The equations of motion of the fields are, of

course, determined by the commutators of the fields
with the total Hamiltonian. These commutators can

[u,"(x,t), H, ) = (&/»p~p)X»'» J dx'X(x)X(x )

x h~ (x', t)E» '(x', t)e'"&' Q, 5» sinqxsinqx'.

Now, just as 6,&
is a function of A, , 6,&

is a function
of q. However, the direction of the phonon wave
vectors is nearly as well defined as that of the pho-
ton wave vectors, so that 6,&

may be taken as con-
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stant for all those values of q that contribute to the
Stokes process. The sum can then be performed
using the completeness relationship

A (x)A (x') ~P, sinqx sinqx'= —,'lX(x) 5(x —x') . (4. IS)

Thus, by writing

Xf jk Xf jm~km y

we may express the commutator for the phonon field

[a,"(x,t), H, )

= (@/Ip&d, )X,"»8&'t'(x, t)E,' '(x,-t)~(x}e'"r'. (4. 20)

V. EQUATIONS OF MOTION

Tne equations of motion of the fields are deter-
mined by the commutators of Eqs. (4. 14), (4. 15),
(4. 18), and (4.20). For the phonon field, we have

—, a,"(x, t)= —. [a,"(x,t), H. +H, ]zk

= (&&«t2/c2 Km)1/2

If we expand &v(k) as given by Eq. (5. 3) to lowest
order in }k t -k„we obtain

&d(k) = &d, + (c'k, /c (u, ) (~ k
~

—k,}
= (c'/e) [P/&d, +

~

k
~
k, /&d, ] .

(5.4)

The constant term representing the transverse
propagation is thus

&dr = c K /6&xix,

while the term associated with the longitudinal
propagation is

~, =v/k(, (5. 5)

where we have denoted by

v = (c/~) (k,/~, )

vector k, and K is its fixed transverse component
from Eq. (3.8). For &u(k) very near &d„ the mag-
nitude of k is very nearly

2P'do

xE&-t(x t)e'"r' &(x) . (5. 1)

the r component of the wave velocity of Stokes light
in the crystal.

With the dispersion law of Eq. (5. 5), the sum
over k, & in Eq. (5. 2) becomes

Because of our separation of the factor e '"~', the
field Et"(x, t) is explicitly as well as implicitly time
dependent, so that

—„E,"(x,t) = —. [E,"(», t), H, +H, ] —t, E,"(x, t)

k&vkA '"
=Z &e(k) e,'

' (k)a,„(t)
OX 21.&

z co~i&xx- x t) ~ E& l( t) Xf

XS&,"(x, t)a' '(x, t)e'" '~(rx) .

—.„[E,"(x,t), H, ].

(t) i &ttx-ttXt l
tt &d(k)A

)t,'X 2L& j kX

V Q k
x I l&(k) (t) tX w&xt t

h&Q' X

r~~~k~A

0&o; X

(5.6)

Since &v(k) = &dr + «t„, this becomes

—E,"(x,t)= Z (u,
— e,"'(k)a,„(t)et j ',„' 2L~

The form of Eq. (5. 6) suggests a separation of the
electric field into a forward-traveling component

I~kA "'
Ee&' (x, t)= Q i ~ e "(k)a»(t)

k&o, x

~ a„' '(x, t) e'"r'&(x) . (5. 2)

y l&t&xmxt) x
X) g& t(X t}je Lf t')t (x-v t )

t

and a backward-traveling component

(5.7)

In order to simplify Eq. (5.2), it is necessary to
specify a dispersion law for the Stokes light. Since
the only frequencies of interest lie within a small
number of Raman linewidths of the Stokes frequency,
we may assume a linear relationship between the
frequency and the wave vector. Furthermore the
dielectric constant does not change over the range
of frequencies involved, so that

I&tt kEtt'(x, t) = Z t - e" (k)a„,(t)
~&o, )t

fk (x+v t )
(5.8)

The commutator of Eq. (5.6) can then be written

[E,"(x, t), Ht ] = —v —E", (x, t)

[ (u(k)]2 = (I/a) c2(k'+ K ), (5. 3)

where A is the longitudinal component of the wave
+v E,", (x, t) .

ax (5.8)
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by changing the sign of v and appropriately adjusting
the boundary conditions.

VI. PHONON DAMPING

Our equations of motion [Eqs. (5. 12) and (5. 13)]
are not yet complete. As we mentioned in the
Introduction, there are two important mechanisms
for removing energy from the interacting modes
and thus preventing an explosive growth of the
amplified fields: the radiation of Stokes light out
of the crystal, and phonon damping. The traveling
wave model we are considering treats the escape
of Stokes light quite naturally. Phonon excitations,
however, do not escape from the crystal; in the
absence of damping they tend to accumulate within
it. The increased scattering they stimulate pre-
vents a steady state from being reached, and we
must therefore include a damping mechanism for
the phonons in our model.

Molecular vibrations in a crystal are strongly
damped through their coupling to a vast number of
other crystal excitation modes; these may include
modes of acoustical vibrations, electronic ex-
citations, other species of molecular vibrations,
and so forth. We shall assume that these other
excitation modes serve as a thermal reservoir for
the optical-phonon modes described by the field
u(r, t) These .other excitations, we assume, are
in a state of thermal equilibrium; the strong in-
teraction of the optical phonons with these modes
tends to establish thermal equilibrium between
them, while the amplification process tends to
upset thermal equilibrium. One of our aims is to
describe the way in which a nonequilibrium steady
state is eventually reached. It will suffice for our
purposes to consider a thermal reservoir consisting
of any large number of modes of excitation of the
crystal, having a sufficiently dense spectrum of fre-
quencies that energy transferred to the heat bath
from the optical phonons is then shared among so
many excitation modes that it does not return to re-
excite the modes from which it originally came.
Detailed models having these properties have been
considered extensively in the literature. '2

However, no thermal reservoir can be an en-
tirely passive absorber. The statistical fluctuations
inherent in any large system themselves serve as
sources of excitation for the optical phonons. That
is, the damping mechanism can heat up the optical
phonon modes as well as cool them down; the in-
troduction of a damping mechanism inevitably in-
troduces fluctuations as well.

Thus, if the free phonon field u(x, t) satisfies the
Heisenberg equation of motion

8
+'C(do u (», t) = 0,

then the damped phonon field must satisfy a Lan-

= (6/A) F5,)5(x —x')5(t —t') . (6. 2)

The constant I' is a measure of the strength of the
fluctuating forces. Equation (6. 2) can, indeed, be
the exact one when the reservoir modes have non-

propagating boson excitations. By using the corn-
mutator of Eq. (6. 2) we are, in effect, using the
Markoffian or short-relaxation-time approximation
for the fluctuating forces.

Bnce the damping process is a linear one, its
effect can simply be added to those of the coupling
between phonons and Stokes light. The equations
of motion for the forward Stokes processes thus
are

—+icop+y ue;(x, t)(
8

= —i(1 /p2(u, ) X'„8~"(x, t) E~,' (x, t)l (x)e'"&'

+e", (x, t), (6. 2)

= —i~ X*, 8 "(x, t)u„','(x, t)X(x)e'"r', (6. 4)

where

(do= ~o+& ~

VII. REDUCED EQUATIONS OF MOTION

In practice, the dynamical behavior of the
phonons is not observed directly, and it is there-
fore convenient to rewrite the pair of coupled

gevin equation of motion of the form'~

(
—+ i(g, u'"(x, t) = —(y +i v)u" (x, t) + v" (», t) ~

8t
(6. 1)

Here p, is the real positive damping constant, v is
the associated small frequency shift, and v"(x, t)
is an operator representing the positive-frequency
part of the flu'ctuating forces exerted by the heat
bath on the optical phonons.

The dynamical properties of v(x, t) can, for our

purposes, be given by specifying the commutator
at unequal times:

[eI '(x, t), n,"( x', t')].
The thermal reservoir contains a vast number

of modes of excitation, and we shall assume that
its spectrum of frequencies and wave numbers is
essentially continuous and flat in the vicinity of

(do. The commutator tends then to be quite sharply
peaked in both the space and time coordinates. We

shall further assume that the commutator is a
c number and effectively takes the form

[VI '(», t), 5"(x', t')]
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equations for the electric and phonon fields as a
single equation for the dynamical behavior of the
electric field alone. To that end we assume that
the operator uz'(x, t) is known at some initial time
t= 0. We can then integrate Eq. (6.3) from t = 0
to find that

u)'('(x, t) =uei'(x, 0)e '"" 0" (i/-2p(do) gi(

~J dt'exp[ —(y+i(vo)(t —t')+i(d t'J

x X(x)8 (') (x, t') E,','(», t')

t dt( ()-'+i(so) it t'-) v(+)(x t) ) (7 1)
0

By using this expression for u)';(x, t) in the equa-

tion of motion for the electric field [Eq. (6. 4)] we

bring that equation into a closed form; it be-
comes the linear inhomogeneous integro-differen-
tial equation

+V Egf X t XmffX X 8 Jm Xy t Qy) X, 0 8

'
X i( X(x) Sz('„)(x, t) dt' exp[- (y —i(do)(t —t')+t(vr t]v,"(x, t')

+ ' X*„X„„X(x)8'"(x, t) dt' exp[- (y —i(vo i(v-r)(t —t')]8'„)(x, t') E",(x, t') .
0 (7. 2)

Now, the fourth-rank tensor g» X„„is a non-
linear susceptibility which couples fz', gz, ',
E&', and E~ '. In a homogeneous and isotropic
medium, such a tensor can have only three inde-
pendent components~3:

~mf f Xn« ~mn~f j + b cmf ~n j + ~m$~nf (V. 3)

In that case, if the laser field is linearly polarized,
the equations for the three components of E~" can
be decoupled by properly orienting the y and z
axes. When either of these axes is taken to lie in
the direction of polarization, the equation of motion
for E~'„' contains no terms in E~, or E~"„and the
equations for the other components are similarly
simplified. If the laser field is circularly or el-
liptically polarized, the situation is more complex,
but it is always possible to find elliptical polariza-
tions which again obey decoupled equations of
motion.

Let us for simplicity, then, assume that the
laser beam is linearly polarized in, say, the y
direction, and that, further,

8 (+)(x t) g y
e((klx ulzt)- (7. 4)

With Eqs. (7. 3) and (V. 4), the equations of motion
for the x and z components become identical, with
the tensor p~f, X„«replaced by the coefficient a of
Eq. (V. 3), while in the equation for the y component
the tensor is replaced by a+b+c.

Since the equations for the different components
are identical in form, it will suffice in the sequel
to consider only one component of the electric
field, say the jth component. To simplify Eq. (V. 2)
for that component, let

+(X i) X„i) I
&z

I
'(&./«p~O) (V. 6)

in which repeated indices are not summed except
as indicated. The coefficient K plays the role of a
coupling constant in Eq. (7.2); its dimensions

t

are (time) '. Further, let

CO~ = (dL, —(dp = Cdg —(00 —P,

P= y+i(~. ~r);—

(7. 6)

(7. 7)

E,')) (x, t) —E(x, t) . (V. 10)

With the abbreviations permitted by Eqs. (V. 4)-
(V. 10), the equation of motion for the jth component
of the positive-frequency part of the forward-prop-
agating electric field becomes

S—+ v E(x, t) =x2X(x) dt' e ~" "E(x,t')
9 t 9X

+ U (x)e ~'+
r dt V (x, t')e " ' '. (7. 11)

Of the three terms on the right-hand side of Eq.
(7. 11), the last two represent the contributions of
sources within the material; together they represent
the dielectric polarization (with frequency near (d, )
that is induced in the amplifying medium by the la-
ser beam. These terms are present whether the

here note that co& equals 0 in the forward direction
and increases until +~=-~, for Stokes light propa-
gating at a right angle to the laser beam. The con-
tributions from the initial states of the phonons and
from the heat bath can be expressed concisely by
defining the operators:

U(x) = —(i(v, /2e ) X„ihfe "z"u')',, (x, 0)~(x), (V. 6)

y(x, t) = —(t(d, /2e )X*,i) hz,

x exp[- it), x t((d, ——(v, )t]

x v,"(x,t)X(x) (V. 9)

(we are again using the summation convention).
And, finally, we shall deal exclusively below with
the single component Ez&'(x, t), and we shall simpli-
fy the notation yet further, dropping all subscripts
and superscripts:
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Stokes light is amplified or not, and they can serve
as sources of Stokes light even in the absence of
any excitation in the phonon modes or the thermal
reservoir due to the zero-point fluctuations of the
fields u and V.

The first term on the right-hand side of Eq. (V. 11)
describes the amplification of any Stokes light as it
passes through the medium and is amplified by the
radiation it stimulates. The source of the Stokes
light may be either an external source (signal) or
the spontaneous emission within the medium de-
scribed by the other two terms of Eq. (7. 11) (noise).
The amplification process itself, like the more
familiar ones of refraction and absorption, is not
an inherently quantum-mechanical process, and
can be described as well classically as quantum
mechanically. On the other hand, it is precisely
the quantum-mechanical properties of the noise
terms which are the most interesting; the spontane-
ous emission effects which they describe are not
present in any classical version of the theory.

By differentiating Eq. (V. 11) with respect to time,
we can reduce it to the simple differential equation

—+ p —+v —Z(x, t)=» Z(x, t)~(x),
8 8 8

Bt Bt Bx

Z(x, o) =Z,(x),

(8. 1)

(8. 2)

8—+v —Z(x, t)
Bt Bx gp

(8. 3)

In an infinite medium we have X(x) = 1 everywhere,
and the differential equation [Eq. (8. 1)] has an ex-
ponential solution

z(x t) z ei()x-)wt)

in which k and & are related by

vk = (v- i « /(P —iu)) .

(8. 4)

(8. 5)

The field of Eq. (8. 4) is, with k real and

(incomplex,

a solution to an initial-value problem with Z(x, 0)
= Epe"". If, on the other hand, (d is taken to be real
and k complex, the same field may be regarded as
the response of the medium to a disturbance at x
= 0 that oscillates with a frequency ~ and produces
there a field Z(0, t) =Zoe '"'.

Taking the latter point of view, we obtain a fre-
quency-dependent complex index o'f refraction

+p + v Ex)t

= «'Z(x, t)~(x)+ V'(x, t) . (V. 12)

n((v) = ek/(v

= n'((v)+in" ((v) . (s. 8)

To determine Z(x, t) completely, Eq. (7. 12) must,
of course, be supplemented by appropriate initial
conditions. The initial condition implied by Eq.
(V. 11) is

n =c/v,

so that we have

(s. 7)

Let us define an effective index of refraction at the
Stokes frequency as

8 8—+ v —Z(x, t)Bt Bx c o

= V'(x) . (7. 13)

The initial-value problem for the electric field is
defined by specifying the field at t = 0:

Z(x, t) ~, 0=z()(x), (7. 14)

and asking for the solution at later times. The elec-
tric field operator is completely determined for all
times t &0 by Eq. (V. 11) with Eq. (V. 14), or, equiv-
alently by Eq, (7. 12) with Eqs. (V. 13) and (7. 14).

SK

(p - )) (s. s)

Thus, the real and imaginary parts of the index of
refraction are (see Fig. 8)"

For frequencies near &, we may approximate the
slowly varying factor of 1/(d by a constant'4 so that

VIII. INDEX OF REFRACTION
K +CO

Pl ((d) =f2 1 + ~, (y +~~ (8. 8)

The amplification process itself, as we have ar-
gued, may be described as well classically asquan-
tum mechanically. The distinctly quantum-mechan-
ical aspect of the stimulated Raman effect, aside
from the general quantum properties of the fields,
lies in the production of noise. Once the noise has
been generated, however, it, too, is amplified in
an essentially classical manner. It is thus useful
to investigate first the classical process by which
any field is amplified, and to consider later the in-
troduction of quantum-mechanical souces of noise.

If we remove the noise sources from the equations
of motion Eqs. (7. 12)-(V. 14), they become

n "((v) = —n
(d. (r'+~(d') '

where

(8. 10)

+(d= (d + CO~ —C0 (8. 11)

Since the light is being amplified rather than ab-
sorbed, n "((()) is negative. That it is negative for
all frequencies, rather than just a narrow band, is
chiefly due to the fact that we have neglected ab-
sorption of Stokes light as it passes through the
medium.

It is well known that microcausality requires that
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n'(at )
J)

FIG. 6. Real and imaginary parts of the complex index
of refraction of an amplifying medium. Symbols are as
in text.

the real and imaginary parts of the index of refrac-
tion be Hilbert transforms of each other. Thus, the
fact that n "(td) is negative requires that the disper-
sion be anomalous (d[n(td )] /dry & 0] for all frequen-
cies except those close to the center of the line.
Since the group velocity v~ is related to the disper-
sion by

C dn((o)

Vg

—=n(td)+(u

the group velocity can exceed c in those regions
where the dispersion is anomalous. For the am-
plifying medium, this is in the wings rather than
in the center of the line.

IX. SOLUTION FOR INITIAL PLANE %AVES

Using the solution of the equations of motion given
by Eqs. (8.4) and (8.5), we may determine the be-
havior of the field if it has a known frequency or
is a known superposition of such fields. However,
a more common situation, particularly in quantum-
mechanical contexts, is that in which the spatial
behavior of the field is specified at a given time,
as in Eqs. (8. 2) and (8. 3), and the behavior of the
field at subsequent times is to be determined. Thus,
we will need to know the frequency associated with
a given wave number k.

Now, although the wave number k is a single-val-
ued function of the frequency, given by Eq. (8. 5):

vk = ~+ « /(~+tP);
the frequency is a double-valued function of the
wave number. The two solutions for as a function
of k from Eq. (8.5) are

td, (k) =k(vk —ip) + 2 (t)k+ip) [1 —4« /(vk+ ip) ]

(9. 1)

(u, (k) = vk «'/[—i-y+ (vk —)d, + ~r)], (9.2)

td (k)=- ~, —~r -iy+«'/[iy+ (vk —td, +k)r)] . (9.3)

Clearly, the growing solution ~,(k) is associated
with the propagating photonlike mode, while the de-
caying solution is associated with the stationary
phononlike mode.

In the case of strong coupling, i.e. ,

«&y, Ivk —td, + tdrl &«,

no such identification is possible: The two original
modes are thoroughly mixed by the coupling. In
fact, for

12«/(vk —~, + ~ +iy)l '&1

we have

&u, (k)=- ', (vk+ td, —td-r -iy)~i«) (9.4)

so that both normal modes partake equally of a pho-
tonlike and a phononlike character. This situation,
however, would be difficult to obtain, as the ob-
served values" of Stokes gain « /yv are on the or-
der of 10 ' cm ' for laser-beam intensities of 1
MW/cm, while vibrational linewidths y/v are on
the order of several cm . Thus, « /y -10 ' or
less for 1 MW/cm~, and even for laser power levels
of 100 MW/cm, we find « /y 10

Let us now assume that the material is permeated
at t = 0 by a plane-wave electric field

(9.5)

The field E ( t)ka)tt arbitrary times is then a super-
position of the two normal modes for that k:

( i) e-ikx [~ (k) e-tu&~(k )t +g (k) e-tra (k) t]

(9.8)

These frequencies can be characterized by the fact
that

1m~, (k) &0, 1m~ (k) &0 .
The frequencies ~,(k} and ~ (k) are the frequen-

cies of the two normal modes of oscillation that ex-
ist for each value of k. When the coupling between
photons and phonons is weak, these normal modes
are easily recognized to be photonlike and phonon-
like in their behavior. Thus, when either (i}phase
matching is poor, so that

I
vk —i))k+ tdrl » «,

or (ii) the coupling constant itself is small, so that

g((y

we have

12«/(vk —t)), + t))r+iy)1 «1 .
The radical of Eq. (9.1) may then be expanded to
give
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where, of course, from Eq. (9.5), we find

A, (k)+A (k)=1 . (9.7)

where we have made use of the, fact that

[((&, (k) —vk][&o (k) —vk] = x (9. 12)

The other boundary condition on the (classical)
electric field [Eq. (8.3)]

c
8 8—„+v, — z(x, o)=o,

determines the ratio of the constants to be

A, (k) vk —(d (k)
A (k) vk —(d, (k)

(9.8)

With the constants A, (k) determined by the initial
conditions [Eqs. (9.7) and (9.8)], the electric field
becomes

~ (k) -vk ((ee(»)Ek(x, t)=e "
(„) (k)

e

.(e) —ee .„„„)
(v, (k) —~ (k)

In order to facilitate the interpretation of Eq.
(9.9), let us again consider the case of weak cou-
pling between photons and phonons. In that case,
Eq. (9.9) can be written with Eqs. (9.2) and (9.3)

Ek(x, t) =e""-

+ v —Ex, t) .

For E,(x, t), as given by Eq. (9.9), that rate is
9 a—+ v —E, (x, t)Bt ex

f
xe(

k- e((k(etc)e-((e ( tk)&(9 I I)(d, (k) —(d (k)

(e ((ee(k)) --((e (k)))
X e-ftd+OI)C + &~ (. ....„„))

(9.1o)
Since (v, (k) is very nearly vk, the first term within
the large parentheses simply represents the propa-
gation of the initial field through the medium, with
a small correction in the index of refraction due to
the interaction with the phonons. The second term
vanishes at t = 0, and represents an additional con-
tribution to the field due to stimulated emission;
its amplitude is large only when k =-((d, —(dr)/v,
i. e. , when phase matching prevails approximately.

Such a separation into contributions from the sim-
ple forward propagation of the initial field on the
one hand, and from the amplification due to stimu-
lated emission on the other can be made in general.
The rate at which the electric field is amplified as
it passes through the medium is given by the co-
moving derivative

then, since the contribution made at the point x
must be made at t' = t —(x —x')/v to reach x at t,
that sum is

f' dt' ))(x-vt+vt', t') .
0

Thus, the total field at x is

Z,(x, t)=Z, (x-vt, O)+ f' dt' ))(x-vt+vt', t') .

With )) (x, t) given by Eq. (9. 11), this becomes

x (* () = e"" ""
C)

' ee'
(d, (k) —(0 (k) J

0

(9. 14)X(e lee) (k)te - (e-((e))('k)

It is worth noting that the terms of Eq. (9. 14) are
not completely analogous to those of Eq. (9.10):
The first term of Eq. (9. 14) represents a freely
propagating wave without correction to the index of
refraction, in contrast to that of Eq. (9. 10).

X. SOLUTION FOR ARBITRARY INITIAL FIELDS

In order to find the electric field E(x, t) for gen-
eral initial fields E,(x), we use a superposition of
the solutions for initial plane waves. The Fourier
component of E,(x) which varies as exp(tkx) be-
comes, at later times, the solution Ek(x, t) of Eq.
(9.14}. Thus, the electric field which satisfies
the initial conditions of

Z(x, O) = Z, (x), (8.2)
8 8—+v—E(x, t) =0,
&t &x

(8. 3)

The form of Eq. (9. 11) may be interpreted in part
through the following considerations. First, the
two normal modes must contribute with equal mag-
nitude and opposite sign, since the initial condition
[Eq. (8. 3)] requires that there be no amplification
at t = 0. Second, the combination

(u, (k) —(u (k) =[(vk —(d, +(dr+ty)' —4x']"' (9. 13)

has a zero near phase matching; thus, the factor
(('/[(d, (k) —((& (k)] takes into account the enhance-
ment of the coupling between photons and phonons
that exists near phase matching.

The total electric field at x and t is the sum of
the initially given field that has propagated to x,
E,(x —vt, 0), andthe further contribution from the
radiation stimulated at all points between x and
x —nt. That contribution is just the sum of all the
contributions to each constant phase point, as given
by Eq. (9. 11}. If
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En (x, t) = J (dk/2w) E~(x) t), (10.2)

in other words, satisfies the classical equation of
motion, Eq. (8. 1), together with the initial condi-
tions

E, (», O) = 6(x),

I'8 8
I

—+v —E, (x, t) =0.
&x ', t o

(10.3)

In order to write E5 (x, t) in a more useful form,
it is most convenient to start with Eq. (9. 14} for
E„(x,t). In that expression, the integrand can be
written as a contour integral:

-jo) (k)t' -ja)i(k)t'

~,(k) —~ (k)

ls
E(x, t) = f (dk/2w)[ f d»'e-'"E, (x')]E,(x, t)

= f dx'Eo(x') J (dk/2w)E, (x- x', t) . (10.I}

If, as we have assumed, the field Eo contains only

waves propagating in the x direction, and, indeed
only Fourier components with wave numbers near
+ k„ the solutions E, for k& 0 make no contribution
to Eq. (10.1). It is quite convenient to introduce a
compact notation for the kernel in Eq. (10.1) that
transfers the initial value of the field at x to a
later value at x at time t'. In a formal sense the

kernel is just the field which evolves according to
Eqs. (8. 1)-(8.3) from an initial 6-function pulse.
The field defined by

It is worth noting that the unmodified response
of the medium, 6(x —vt), and, indeed, the entire
solution (10.6), propagates in the +xdirection,
rather than showing the behavior symmetrical be-
tween the +x and —x directions which is physically
to be expected when the initial field is a 5 function.
This spatial asymmetry has been introduced by
our use of approximations which are accurate only

for waves propagating in the forward direction,
with wave numbers near + k,. The solution is not

therefore the actual physical field which follows
from an initial 5 function; it is simply a field
which has the correct Fourier components in the
neighborhood of k = k,. That fact alone would make
it a useful result, but as we shall see it is also
useful in finding the Green's function for Eq. (7. 11).
If on the other hand we desire a symmetrical form
for the field which ensues from an initial 5 function,
we can find it from Eq. (10.6) by restricting the
integration to positive values of k and adding to that
solution the terms which represent an identical solu-
tion for waves propagating in the negative direction.

The integral over wave numbers in Eq. (10. 6)
can now be performed as a contour integral in the
complex plane. When x —vt+vt'&0, the path of
integration can be closed in the lower half-plane;
since there are no singularities there, the integral
vanishes. When x —vt+et'&0, the contour can be
closed in the upper half-plane; there is a simple
pole at

ivk= —s+ x'/(s+P),
dv +f eo
dS K 82 st'

J, ,„2wi [s+i~,(k)][s+i~ (k)] ' (10.4) and there are no other singularities. Thus, with
a change of variables from t' to t —t', we have

where the value of the real constant c is such as
to place the contour to the right of both poles in
the integrand. Since Im(o (k) & 0, and since

Imm. (k) & Im(o, (~,/v) = —z y+ 2 (z + y )

it will suffice if
1C& 2K.

The denominator of the integrand in Eq. (10.3) can
also be written as

E, (x, t) = 6(x, —vt)+ — dt' ds q(x —vt ')
v 0 r 2wi s+p

~exp —sx v —t- »'(x/v —t ')
s+P

(10.7)

the function q(x) is the Heaviside unit step function,

q(x) =0 for x&0

[s+i&u,(k)][s+iv (k)]= (s+ P)(s+ivk) —w .
(10.5)

=1 for x&0.

Thus, using Eqs. (9.14), (10.4), and (10.5), we
can write the response of the medium to an initial
5-function pulse as

E, (», t) = 6(x - vt)+ + dt' dk

2'

~ ~" ds exp[ik(x —vt+vt')+st']
2wi (s + p}(s + ivk) —w

10. 6

It may be worth noting that Eq. (10.7) can also
be obtained by using Laplace-transform techniques
to solve the equation of motion, Eq. (8.1), with
the initial conditions of Eq. (10.3).

The remaining contour integral can be simpli-
fied by a change of variables from s to s' = s+ P.
The only singularity of the integrand is then at
the origin, and a deformation of the path of inte-
gration transforms the integral into a well-known
representation of a modified Bessel function':
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&0,~

d '
tt(u)IO(2(uv) "')= . , e"""'" .

w QQ

(10.8)

The path of integration extends from —~, around

the origin in the positive sense, and returns to
—~. By using Eq. (10.8) we find that the response
of the medium to a pulsed initial field can be
written as

Ee(x, t) =5(x —vt)+(v /v) fo dt'q(x v—t')q(vt x)-e~" !"'Io(2g [(t x/—v)(x/v t'—)]"2)

=5(x —vt)+(e'/v)q(vt x)-q(x)e '" '"' f,
* "dt'Io(2~ [t'(t- x/v)]'")

= 5(x- vt) + (x/v)q(vt x)!i-(x)e~" '"' [x/(vt x)]'"-I, (2(x/v) [x(vt x)]'"-). (10.9)

Thus, each pulse that travels through the medium
generates a delayed response field which propagates
with a phase velocity v. The electric field E,e' ~'

has, according to Eq. (7. 7), a narrow spectrum of
frequencies near co, as long as the coupling con-
stant v is not too large. The modulus of the de-
layed-response field is

f(x, t) =(K/v)e""

& [x/(vt x)]"'1,(2—(x/v) [x(vt —x)] '"),

which extends from the current position of the
pulse to its initial position. For small times
zt«1, we find

f(x, t) =(x'/v') xe"" "'"'

For large times the behavior is considerably more
complicated. In Fig. 7, we show a few examples
of the modulus of the delayed response field f(x, t)

as a function of the dimensionless parameters

'1 =Kt, $ =K»/v, o=p/K;

in terms of these variables the modulus is given by

f(, t) = "' "[h/(~ 8] i,-(2[&( —$)]'").
Using Eq. (10.9), we can now write a general

solution for the noise-free equation of motion [Eq.
(8. 1)] as

E(x, t) = f dx'E, (x')E, (x x', t).— (10. 10)

After changing variables of integration from x to
t = t (x —x -)/v, we obtain

E(x, t) =Eo(» —vt)+x f dt Eo(x vt+vt )e-' [(t —t )/t ]"I,(2»[t (t —t )]' )

=Eo(x —vt) +K f dt f dt Eo(x —vt+vt )e ' Io(2x(t t )' ), (10. 11)

where the two forms arise from the last two of the
alternate expressions for E,(x, t) in Eq. (10.9).

It is to be emphasized that Eq. (10. 11) describes
the propagation of fields in an infinite and noise-
free medium. The solution of Eq. (10. 11) will
require some modification before it describes the
propagation of fields through a finite and noisy
medium as determined by the equations of motion,
Eqs. (7. 12)-(7. 14).

XI. GREEN'S FUNCTION FOR AMPLIFIED FIELD

The distinctly quantum-mechanical contributions
to the equation of motion, represented by the terms
in U~(x) and V~(x, t) in Eq. (7. 15), can be consid-
ered as inhomogeneous additions to the homoge-
neous equation of motion

g(x, t) =q(t)E,(x, t). (il. 2)

To show that it is a Green's function, let us first
note that its derivatives satisfy

9 8—+ v —g (x, t) = 5(t) E,(x, t)

+q(t) —+v —E (x t).at ax

Since E,(x, t) satisfies Eq. (11.1) and since q(t)
vanishes for t & 0, we find that

8
—,—+v —g(x, t) =5(t)E,(x, t)

tion for Eq. (11.1) can be found.
It is easy to see that such a function is given by

et ex
+v —E(x t) =K f dt E(x t )e ~

~(ii. 1)

The general solution of Eq. (11.1) is, of course,
given by Eq. (10.11). The inhomogeneous equa-
tion, Eq. (7. 11), can be solved if a Green's func-

+x f dt's(x t)e

In order to simplify the first term on the right-
hand side of this equation, we make use of Eq.
(10.9) for E~(x, t) Since.
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5(t) q(x) q(v t x—}= ~j(x) q( x)-5(t}

the delayed response contributes nothing to the
first term, and we find

5(t}E,(x, t) = 5(t) 5(x- vt)

= 5(t) 5(x).

Thus, 8(x, t) as defined by Eq. (11.2) satisfies

(
—+v —g(», t) =5(x)5(t}
&t ex

+ x' f,'dt'8(x, t')e "'-", (ll. 3)

and can serve as a Green's function for Eq. (11.1).
The inhomogeneous counterpart of the equation

of motion Eq. (1.1.1) takes the general form

—+ v —Z(x, t) = F(x, t)q(t}
a 8

at e&

+v f dtE(x t)e "'' (114)

where we have included a factor of tt(t) in the in-
homogeneous term to indicate explicitly that the
interaction is only turned on at t = 0. In particular,
the inhomogeneous term of Eq. (7. 11) is

F(x, t)=U(x)e '+ f dt V(x, t )e "''. (11.5)

To solve the inhomogeneous equation it is con-
venient to find a particular solution of Eq. (11.4)
which vanishes at t=0. %'e can do that by making

use of the Green's function given by Eq. (11.2).
The particular solution is

E (x, t) = f dx f dt F(x, t )q(t')B(x —x', t t')-

= f dx' f 'dt F(x x, t——t )E (x', t').
(1l. 8)

Since Ez(x, 0) vanishes, the initial conditions on

the field can be met by adding to E~(x, t) a solution
of the homogeneous equation which satisfies the
initial conditions. The general solution of Eq.
(11.4) for which

Z(x, o) =E,(x)

thus is

Z(x, t) = f dx'Z, (x x'—)Z,(»', t)

+ f dx f dt F(x —x, t —t )E6(x, t ), (11.7)

where E,(x, t) is given by Eq. (10.9).
Equation (11.7) can be simplified somewhat after

the full expressions for E~(x, t) and F(x, t) are in-
serted by making use of the fact that

l,(2x(t, t, )"')= I+ x' f, '~ dt, f, 'dt, I,(2K(t, t,') '")

= 1+K f '& dt,
'
(t,/t,')"'I, (2»(tf ta)"')

(11.8)

which can readily be proved by using the integral
representation of Eq. (10.8) for the modified Bes-
sel function. After inserting the expressions for
E,(x, t) and F(x, t) from Eqs. (10.9) and (11.7),
using Eq. (11.8), and simplifying, we obtain

E(x, t) = ED(x —vt) + f dt~ F(x —vt+ vt„ t, ) + x f dt f dt e~' Io(2K(t'I")~~a)

ge par

&&[E,(x vt+ vt") +-f, dt, F(x- vt+ vt" + vt„ t, )]

=E,(x- vt)+x' f, dt' f,
' ' dt"Z, (x- vt+vt")I, (2»(t't")"')e ""+f,'dt'U'(x- vt')

&Io(2x[t (t- t )j }e ' ' '+ f dt f dt V (x —vt, t —t —t )Io(2K(t t ) )e 6', t11.9)

This is the correct quantum field in an infinite noisy
medium; it exhibits no steady-state behavior since
the amplification process continues indefinitely as
the field propagates further through the medium.

XII. SOLUTIONS FOR SEMI-INFINITE AND FINITE MEDIA

The infinite-medium solutions we have discussed
above exhibit no steady-state behavior. Any par-
ticular point within the medium receives, as time
goes on, the amplified field from more and more
distant points, and the medium is stimulated to ra-
diate ever increa. sing amounts. Even if the signal
has a finite extent initially, the noise sources as-
sociated with the medium extend to arbitrarily large
distances, and could thus provide for arbitrarily

large fields at the point of interest. It is only when

the medium has boundaries that a steady-state am-
plification process becomes possible.

The simplest such situation for forward-propa-
gating waves occurs for a semi-infinite medium
occupying the region x & 0. [The function A(x) of
Eq. (3.4) thus becomes a Heaviside function rt(x)j.
The steady state arises in the following way. Let
us suppose a plane wave of Stokes light illuminates
the plane surface of the medium beginning at time
t = 0. The wave need not be normally incident —we
are still dealing with the field E(K; x, t), defined by
Eq. (3.5), which has a well-defined transverse wave
vector K —but the front of the wave must be paral-
lel to the surface of the medium. For times t & 0
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f(x,t)

Vsl t= 2 ts3

FIG. V. Propagation of a &-function pulse through the
amplifJJfing medium. The amplitude of the delayed re-
sponse field, f(x, t), is given as a function of the dimen-
sionlesS parameters v = Kt, $ = Kx/8, and o =y/v; solid
curves e =0, dotted curves 0. =2, dashed curves e =20.

the wave penetrates the medium. That portion of
the wave which has penetrated the medium most
deeply, i.e. , that nearest the front of the wave,
will have undergone the greatest amplification; but
as time increases that portion recedes to infinity.
At finite distances within the medium, the field will
have undergone only finite amplification. We shall
show below that the field amplitude at any finite
position is not only bounded but approaches a steady
value if the initial field is steady.

When the amplifying medium takes the form of a
slab of finite thickness extending from x = 0 to x =l,
say, the field ceases to be amplified once it has
left the medium. Within the medium the same ar-
guments as we have used for the semi-infinite me-
dium indicate that the field amplitude is bounded
and may achieve a steady state. Since we are only
dealing with forward-propagating waves [see Eqs.
(5. 12) and (5.13)j, the boundary at x = l can have no
effect on the field at positions with x &/. Beyond
the boundary, the field is just what is radiated from
the boundary and propagates freely with the speed
v, so that for x &E

Z(x, t) = Z(l, t —(x -t )/v) . (12.1)

For positions x &l, Qe field in the finite medium is
precisely the same as the field at the position x
within the semi-infinite medium. It will therefore
suffice in the following to consider the results for
the semi-infinite medium; the results for the finite
medium can always be generated from them and
Eq. (12.1).

Let us then consider the initial-value problem for
a semi-infinite medium. %'e can construct a solu-
tion for the semi-infinite medium from that for
the infinite medium since the introduction of the

Z(x, t)= J dx'Z, (x')Z, (x';x, t), (12.3)

which is the analog of Eq. (10.10) for the infinite
medium. When we introduce the explicit expression
Eq. (12.2) for Z, , rearrange the arguments of the
Heaviside functions, and make a change of variables
of integration from x ' to t "=t —(x —x ')/v, Eq.
(12.3) becomes

t t'
Z(x, t)=Z (x-vt)+ a J dt'$ dt "q(x-vt ')

ye-~'"fo (x(t't ")"~)Z,(x vt+vt ") . —

(12.4)

The factor of g(x —vt ') in Eq. (12.4) guarantees
that Z(x, t)=ZO(x vt) for x&0. We thus h-ave a
solution for the initial-value problem for the homo-
geneous equations analogous to that of Eq. (10.11)
for the infinite medium. It remains to find a par-
ticular solution to the inhomogeneous equations anal-
ogous to that of Eq. (11.6).

Since the only noise sources are associated with
the amplifying medium, the particular solution of
the inhomogeneous equations given by Eq. ($1.6)

boundary involves essentially no new dynamical
considerations. As we showed, in Sec. K, Eq.
(10.10), the general initial value problem is solved
once the behavior of an initial 6-function pulse is
known. Since we shall need to consider initial con-
ditions which specify the field inside as well as out-
side the medium, we must consider the behavior of
6-function pulses that originate in both regions.
Within the medium, of course, the amplification of
the field is unaffected by the boundary at x=0; for
x & 0 the field propagates as in infinite medium.

Let us consider first a 6-function pulse that is
outside the medium at, say, x'&0, at /=0. Itprop-
agates freely until it reaches the boundary of the
medium at t = —x '/v. From there it propagates
precisely as a pulse that was at x=0 at the "initial"
time t = —x '/v in an infinite medium. A pulse which
starts within the medium (x ' & 0) is amplified as in
an infinite medium from the instant it appears.
Thus, the field due to an initial 6-function pulse at
the position x' is

Z, (x', x, t)=q(-x')q( t-x'/v)5(-x-x'-vt)

+q(-x')q(t+x'/v)Z, (x, t+x'/v)

+q(x')Z, (x-x', t) . (12.2)

The first term of Eq. (12.2) represents the free
propagation of the pulse outside the medium; the
second term, the amplification V~ithin the medium
of a pulse initially outside the medium; and the last
term, the amplification of a pulse that starts within
the medium.

Using Eq. (12.2), we can now write the solution
of the homogeneous equations of motion Eqs. (8.1)-
(8. 3) for the semi-infinite medium as
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needs no change in structure. The fact that F(x, t)
vanishes for x & 0 takes complete account of the fact
that no amplification takes place for x & 0. Since we
have

q(x) E, (x '; x, t)=q(x)E, (x —x', t),
we can write the analog «Eq. (11.6) for the semi-
infinite medium as

E (x, t)= J dx'J dt 'F(x', t ')E (x'; x, t —t') .

The complete solution for the electric field analogous
to Eq. (11.7) thus becomes

E(x, t) = J dx 'E,(x') E,(x '; x, t)

+ J dx ' J dt 'F(x ', t ') E,(x '; x, t t') . -
0

Using Eqs. (12.2) and (10.9) for E&„we obtain
~ f

E(x', t)=EO(x-vt)+ J dt)F(x —vt+vtg, tf)
I

+K J dt 'J dt "q(x -vt ')e ~'"

x I (o2 «(t't")' t) [Eo(x —vt +vt ")
g-t'-t"

+ J dtiF(x vt+vt "-+vtie t&)]

(12.5)

as the complete solution for the inhomogeneous
equations of motion for the semi-infinite medium.

It may be noted that other methods of solving Eq.
(V. 11) for a semi-infinite medium, vtz. , by using
Laplace-transform techniques on Eq. (V. 11) directly
or by transforming Eq. ('I. 11) to a pure integral
equation and finding a power-series solution by iter-
ation, lead directly to Eq. (12.5). The power-
series solution, can, in fact, be summed in closed
form for the finite medium as well as for the semi-

inite medium. "
The fact that the semi-infinite medium has a

boundary makes it possible to consider problems in
which time varying fields are incident from the out-
side. Let us consider, for example, a semi-infinite
medium illuminated by a steady monochromatic
beam of light which is switched on at t = 0. We as-
sume that the frequency of the beam is not far from
the Stokes frequency. As we have mentioned earli-
er, we are dealing with beams having a transverse
wave vector K, so that the beam is a plane wave
which need not be propagating normally to the sur-
face of the medium. The assumption that the field
is switched on at t = 0, however, corresponds to the
assumption that the wave front is parallel to the
surface of the medium. The illumination can be
achieved by filling the half-space outside the medi-
um with an electric field such that

E,(x) = E,q(- x)e"";
the frequency associated with the longitudinal propa-

y[1 y K J dt' f dt" I (2«(t't")'~')e-'('-'~"']
(12.6)

within the medium, i. e. , for x &0. The Bessel
function can be integrated over t', as in Eq. (11.8),
so that

E(x, t) = Ep(vt —x) e' """[1+«g dt"

x(x/ t")' 'I,(2«(t"x/v)"')e" """ ]. (12.7)

This field shows a complex transient behavior,
but assumes a simple steady-state value for large
times. As t-~ and for finite g, the integral of
Eq. (12.6) becomes a familiar Laplace transform, '9

and we have

E(v, t(= Ze exe((k(v —vt(
K x/v
P-ike (12. 8)

As is to be expected, once the transient effects of
the passage of the initial wave front have died out,
the field assumes the same form as in the infinite
medium, i.e. , the exponential solution given by
Eq. (8. 4) with the complex propagation constant
k given by Eq. (8. 5).

In order to illustrate the transient behavior of
the solution given in Eq. (12.7) we have evaluated
the required integral numerically for several
cases. In Fig. 8 we have plotted the behavior
of the normalized field amplitude I E(x, t) I /Eo as
a function of the distance parameter g = «x/v for
several values of the parameters v=«t, o(=y/«,
and 5 = ((o, —kv)/«.

In spite of the formal similarity, however, the
physical contexts of Eq. (12.8) and Eqs. (8. 4) and
(8. 5) are quite different. The latter, in the
classical context of Sec. VIII, represent the normal
modes of the infinite amplifying medium; for real
values of the frequency these are spatially growing.
Equations (8. 4) and (8. 5) may also, of course, be
interpreted as representing the growth in time of
the amplitude of a spatially homogeneous plane
wave; it is this approach we followed in our sub-

gation of the light is ~= vk; the total frequency of
the electric field is (v+ (dr. The field E(x, t) then

propagates in the +x direction and penetrates the
medium for t &0. An alternative way of generating
the incident field is to place a plane source at x=0
which oscillates steadily with a frequency co = kv
beginning at t= 0, so that the inhomogeneous term of

Eq. (12.5) becomes

F(x, t)=E,5(x)e-' '(7(t) .
Both methods of generating the incident field lead
to identical responses within the medium. If we
neglect the contribution from the noise sources in

Eq. (12.5), the time-dependent field becomes

E(x, t) =E,n(vt x) e"—" ""
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sequent analysis. This latter approach is the
more natural one in a quantum-mechanical context
where dynamical problems must usually be re-
garded as initial-value problems (real )'t) rather
than time-dependent boundary-value problems
(real ~). Although the Solution to the boundary-
value problem for a steady incident wave achieves
a steady state for all finite x even in the infinite
medium, the solution of the initial-value problem
for a spatially homogeneous plane wave does so
only in a finite or semi-infinite medium.

Sommerfeld and Brillouin have treated the response
of a dispersive medium to a semi-infinite plane
wave in classic papers. ' Since their model in-
volves a rather more complex form of dispersion
than our Eq. (8. 8), their results differ in several

5

I EI/E

4

x/v
Zy

t-x/v t

FIG. 9, Region of integration for the electric field of
Eq. {13.1), t&x/v.

details from those presented here. However,
Sommerfeld and Brillouin also find that an initial
wave propagates through the medium with a speed
unaffected by the interaction of the field with the
medium. The initial wave is followed by a transi-
tion field, also given in terms of integrals of
Bessel functions. Ultimately the field assumes
the steady-state behavior determined by the index
of refraction in a manner analogous to our Eq.
(12. 8).

XIII. ASYMPTOTIC BEHAVIOR OF THE AMPLIFIED FIELD

5

IEI/E,

(a)

r=S

Let us now consider the behavior of the homo-
geneous terms of the amplified field, given by
Eq. (12.4), for more general values of the initial
field. In the operation of the medium as an ampli-
fier, these terms represent the amplified signal,
while the inhomogeneous terms E~(x, t) represent
noise.

For times sufficiently large that the field that
was initially within the medium has propagated
past the point of observation, i. e. , for t &x/n, the
amplified signal at the point x is, from Eq. (12. 4),
for arbitrary initial fields

E(x, t) =ED(x —vt)+x'g dt' f dt" e ~'

(b)

FIG. 8. Propagation of a semi-infinite plane wave
through the amplifying medium. The normalized ampli-
tude tE I/Eo is given as a function of the dimensionless
parameters ~=Kt, $ =&@/v, & =y/ff:, &={u~—Kv)/&.
Graph {a) shows the envelope of the field amplitude me-
dium; the curves are drawn for 6 = 0, for weak damping,
n =1 {solid curves), and for strong damping, @=10
{dashed curves). The vertical steps at f =7, which are
common to both sets of curves, represent the onset of the
field. The field is seen to reach its asymptotic value
more rapidly for strong damping. In {b) the field ampli-
tude is shown for n =1 and several values of the frequency
mismatch 4 at the fixed time v =5.

The region of integration is shown in Fig. 9.
In many cases the initial field Eo(x) has a rea-

sonably well-defined wavelength, and can thus be
expressed as a slowly varying amplitude multiply-
ing a rapidly oscillating factor e' ". Now, the
dominant time dependence of the kernel of the
integral in Eq. (13.1) is given by the exponential
factor

e-g t" + -yt" - j(u -cy )t' '

Since, in general, the phonon damping & is large
compared to the coupling ~, the major contributions
to the double integral come for t" & I/y. If the
amplitude does not vary appreciably over that time,
it may be factored out of the integral. The remain-
ing integrals are precisely the same as in Eq.
(12. 6) and lead to the asymptotic result of Eq.
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In order to examine this asymptotic form in some-
what more detail, let us expand the initial field in
terms of normal modes, as in Eq. (4. 1). To
simplify the notation, let

Ak =Zkt [Iu(k)A/2I t']'I
e&

' (k) akk(0), (13.3)

and let Q' denote sums over positive values of k
only. The initial field then becomes

E,(x) =Z',"A, e"" . (is. 4)

Thus, from Eqs. (13.1) and (13.2), we obtain

E(x, t)-Z,"A, e"'" ""[1+v'f dt'

xf dt" -" """ I( 2x(t't")"')] (iS 5)

E„(x,t) =Z'A, exp[tk(x —vt)]exp . , (13.6)
P —tkv

where we have again used a known Laplace trans-
form' to simplify the asymptotic result.

For large times, it can be shown (see the Appen-
dix) that a negligible contribution is added to the
double integral of Eq. (13.5) by increasing the
limit of the t" integration to t. Thus, for yt» 1,
we have

E(x, t):-Z„"A,e'"'" ""[I+zk f dt'
0

(12. 8). Thus, if the signal amplitude varies slowly
over distances of the order of v/y, the signal is
amplified as if it were monochromatic; asymptot-
ically it approaches a form, similar to that of
Eq. (12.8), but with the factor

exp ik x —vt +
x' x/v
P —ikv

multiplied by the slowly varying amplitude.
For more general values of the initial field, the

fact that y» z still ensures that the major contri-
butions to the integral come from small values of
t". Thus, for large times the upper limit of inte-
gration may be taken to be infinite, and the ampli-
fied signal approaches the asymptotic form

E„(x, t) = EB(x —vt)+ z J dt' $ dt" e

&I B(2v(t't") ) EB(x-vt+vt") . (13.2)

Since the major contribution to the contour inte-
grals comes in the vicinity of the pole at s = —ikv,
it is clear that there is only a small difference be-
tween the coefficients of Ak in Eqs. (13.7) and
(13.8). The expression for E„(x, t) thus furnishes
a good description of measurements involving
the strength or amplitude of the field at large
times. It should be noted, however, that the as-
yrnptotic approximation does make some sacrifice
with respect to the commutation properties of the
field. The correct value for the field commutator
can only be obtained from the full expression for
the field, Eq. (12. 5). The contributions added to
the correct expression for the homogeneous part
of the field, Eq. (13.1), in order to obtain the
asymptotic expression Eq. (13.8) lead to a diver-
gence of the field commutator; they do not, how-
ever, lead to significant errors in the description
of properties of the amplified field that have
classical or semiclassical analogs.

The intensity of the field is a particular case
of the first-order correlation function~~

G'" (x„t„x,t, ) =(E'(x„ t, ) E(x,, t,)); (is. 8)

kk( ) k'k ( )) kk6kk'5kk' (is. is)
then the steady-state correlation function becomes

G„'"(x, t+ 7'; x, t)

it is just the particular value G'"(x, t; x, t) For.
stationary fields the power spectrum is, from
the Wiener-Khinchine theorem, the Fourier trans-
form of O'". For the steady-state amplified sig-
nal, the correlation function becomes asymptot-
ically

G'„'(x„ t, ; xk, tk) =(E„(xg, t, ) E„(xk, tk)) . (13.10)

We shall, for the moment, consider only the contri-
butions to these correlation functions from the
homogeneous parts of the field, Eqs. (13.1) and
(13.2), and shall defer to Sec. XIV considers. tion
of the contributions to G'" and G'„' due to the noise
sources.

If the field is initially, i. e. , at t=0, in a sta-
tionary state for which

y J dtII e-&'B- Ak)t''I (P&(tati z)1/ k)]

The fields E(x, t) and E„(x, t) can then easily be
written as similar inverse Laplace transforms:

~C+ku
2

2gi s+ikv P+ s

(is. 7)

~C+ f'xk

( ) p„A „, ds e" x'x/v
„c i~ 2&$ s + skv P —zkv

(13.8)

where

&&(~&+kv) =Z,
~ e,'(k) ~'Ank/4vkv, (13.12)

so that KuN&(kB) is the power spectrum of the field

Aco (d @pal'
—kv .

Since the wave vectors are extremely dense, the
sum can be well approximated by an integral. If
we further let
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N(~) = Na((o) exp
2»ay x/v (13.14)

Thus, we see that each Fourier component is am-
plified independently of the others; the steady-state
gain constant of the amplitude is just given by the
imaginary part of the index of refraction n" (&u)

of Eq. (8.10).
XP'. QUANTUM NOISE

Although classical theory would allow, in princi-
ple, the possibility of constructing a noise-free
amplifier, that is not true for the quantum-mechan-
ical case. The fluctuations necessarily associated
with the phonon damping always provide, in the
presence of the incident laser field, a source of
spontaneously emitted Stokes light; these contribu-
tions are also amplified, and appear as noise in
the output of the medium.

The contribution of the noise sources is, from
Eqs. (11.5) and (12. 5), for the semi-infinite medi-
um,

E,(x, t) = f, dt'rI(x-vt')e""-"

x I,(2» ft'(t t')] "')II'(x —v t—')

+ f,
'

dt f,
' ' dt" q(x-vt') e-""

present initially, then we have

G (x, t+ r» x, t) = d(u )f(oNa((u) exp aar r+(n t . 2»'yx/v
+ Eco

(13.13)
where we have written

4) = (d Z + kacy QGP = (0~ —CO

The power spectrum of the amplified signal is of the
form Its&N(v), where

we have used Eq. (11.8) to simplify this expression,
and have explicitly included factors of g(» —vt') to
emphasize the cutoff of the integration due to the
boundary of the medium at x=0. After any excita-
tions initially present within the medium have

propagated past the point x, that is for t &x/v, the
field becomes

E (, t) = f,
"'"dt' e-"' "'I,-(2»[t'(t t')]—"')&'(» —vt)

f&l»» dt» f~ ~ dttt aa»»I (2 (tltt»)1/a)
Q

x V'(» —vt', I —I' —I") . (14.2)

This field must be added to the solution of the ho-
mogeneous (classical) equations given by, say,
Eq. (13.1).

In order to compute the contribution due to noise
to measured quantities such as the correlation func-
tions, we note that the fields tJ, V, and EQ all refer
to different dynamical systems. Since there is in
general no phase coherence between the initial
states (the Heisenberg-picture states) of the noise
sources and the electric field, the intensities con-
tributed by the signal and the noise sources are
additive. More generally, the corresponding cor-
relation functions are additive as well, so that

G (»1» t1» xa» ta) Gg (»1» t»» xa» ta)

+ G„'(x„t„xa, ta)
Here 6,"' is the signal correlation function

Gg (xl» tl»»a» a) (E (»1» t1) E(xa» a))

with E(x, t) the homogeneous solution of, say Eq.
(13.1); and G„"' is the noise correlation function

G»n (xz» tt» xa» ta) = (E»(xs» ti) E»(xa» ta))

The intensity of the noise is the particular value
of the correlation function

&&I (2»(t»t") ~~a) V (x —vt', t —t' —t")
(14. 1)

I

al «(x, t) = G» (», t; x, t)

For t &x/v, the intensity becomes

(14.3)

s»(x, t) = e a"' f "dt's f dt'a exp[y(t', + ta) —t(&o, u&r)(t', —t'a)]la (2»[t', (t —t', )]' )ta

XIa (2»[ta (t —ta)]'") (fr(x- vt', ) Ir'(x —vt', ))

+ f dt', f dta f ' dt[' f ' dta' exp[y(t,"+ta') —t((o, (ur)(t[' ——t )]Ia(2»a(t(t~") )

xIa(2»(tata ) )(V(x- vt» t —t, —t~ ) Y"(x —vta» t —ta —ta )) (14.4)

Like the amplified signal, the noise exhibits a com-
plicated transient behavior after the laser beam is
turned on at t=0. In actual practice, however, the
laser beam is presumably turned on some time be-
fore the signal to be amplified reaches the medium.
The noise output would then have already reached
its steady-state value when its contribution is of
interest.

Even for fairly small times t, the contribution
to the noise due to the initial phonon excitation be-
comes negligible since the phonons initially present
decay rapidly. In the Appendix, we present a more
detailed argument that the first term of Eq. (14.4)
is dominated by the factor e 2"' and can be neglected
for large times. Thus, only the radiation trans-
ferred from the thermal reservoir through the
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phonon modes contributes to the steady-state noise.
In order to determine the contribution of the

thermal reservoir to e„(x, t), it is necessary to
compute the expectation value

(V(xi, ti}V (x~, t~))

In case the reservoir is at a temperature of abso-
lute zero, so that

(V (x~, t~} V(xa, ta})=0

we have

(V(x1» tl) V (x2» t2}) ( [ (x1» t1}» V (xa» t2}]&

Using the definition of V in terms of v" [Eq. (7. 9)]
and the commutator given by Eq. (6. 2), we have

(V(xf» tg} V (xz» tz}) = Fur, K F5(x~ —x2}5(t,—ta)

d(uhcoNO exP 2 2 (14. 6)

For a signal at the Stokes frequency, with

No(m) = N, 5(&o —m, ),

formly distributed source of broad-band incoherent
noise.

When the medium is functioning as an amplifier,
the noise intensity'„must be added to the signal
intensity given by the homogeneous contribution to
G'"(x, t; x, t). If the signal varies sufficiently
slowly that the output is always in a steady state,
then the intensity of the amplified signal is given
by Eq. (13.13) to be

e, (x, )=G„'"(x, t; x, t)

where
(14. 5) the amplified signal intensity is

%2m / yve, (x, ~) =$&u, N, e (14.9)
K vN= (&uJ4eag) I'~ g

I p, X*,X„,
using the definition of K~ [Eq. (7. 5)] we see that
N has a magnitude given by

N pAI (d—o/ev,

and represents an effective volume density of pho-
nons in the reservoir. In case the system is not at
a temperature of absolute zero, each of the Fourier
components of the 5 function, 6(t, —t2), of Eq. (14.5)
must be multiplied by the appropriate factor for the
thermal excitation of that mode, 1+n,h(~). Since,
however, we are chiefly interested in the frequency
components of the correlation function near the
Stokes frequency, the thermal correction can be
assumed constant. Thus, the antinormal correla-
tion function ( V(x, t&) V~ (xa t2)) assumes, to a good
approximation, the form of Eq. (14. 5), but with

N= (pl'(uP/~v) [I+n,„(~,) ] .

For times sufficiently large that the contribution
of the initial phonon excitation can be neglected, the
noise intensity becomes

eg(x, t) —g(0 K N f dt' f dt" e "'
I 0(2K (t't") )

(14.6)
For very large times, the noise intensity thus

approaches the steady-state value2'

eg(x, ~) =I(0 K N f dt' f dt" e ~ I (2K(t't")' )

2 x/v

dt' d' ""I(K't'/y)

K X(o& e" *' [I, (K'x/vv) I,(K'x/yv)] . -
yv

(14.7)
This result represents the intensity radiated from
the medium due to the presence within it of a uni-

The signal-to-noise ratio for the amplifier thus is
-1e. (, -),N y.

e„(x,~) N K x yv
'

yv/

(14.10)

For small values of the gain parameter K x/yv, this
ratio is a decreasing function of the gain. However,
for K x/yv greater than roughly 0. 77, the signal-to-
noise ratio increases with increasing gain (see
Fig 10). .

For signals that are not precisely at the Stokes
frequency, the amplification drops off rapidly, and
the signal-to-noise ratio decreases appreciably.
If the unamplified signal is monochromatic with fre-
quency ~, + h~, so that its spectrum is given by

N~(&u) = N, 5(ru —&u, —h&u),

then the signal-to-noise ratio is

e, (x, ~) N~ yv K2x y —aIu'
e„(x, ~) N Kx yv y +h&u

(14. 11)

Clearly, for I b~ I & y, the signal-to-noise ratio is
a decreasing function of the gain parameter K x/yv
for all values of the parameter. Thus, although the
medium amplifies signals of all frequencies to
some extent, it does not usefully amplify signals
outside the bandwidth of the spontaneous Stokes
radiation.

The power spectrum of the noise output of the
amplifier is the Fourier transform of the steady-
state correlation function

G„"'(x,~, 7') =-limG„' '(x, t+ ~; x, t) as t -~;
with Eq. (14.5) this correlation function becomes
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distribution of field strengths.
The expectation value of a normally ordered op-

erator function —or functional —of the electric
field, (5(E(x, t))f„, can be expressed as

((s (z(x, t))]„)
=j d'8 S„($)((S("(E(x,t) -8}f„).

Here d 8 =d(ReS)d(ImS ) is the real element of
area in the complex 8 plane; 5' & (z) = 6(Rez)S(Imz)
is the two-dimensional 5 function, and (5' '(E))„
is the normally ordered 6 function. The function
5'&((8 } is obtained by writing the c numbers Ss
and 8 for E (x, t) 2nd E(x, t), respectively, in the
normally ordered expression ((P(E(x, t)})„.If we

define a quasiprobability distribution

W($; x, t) =((5'"(E(x, t) —8}),) (15.1)

1.0

FIG. 10. Signal intensity 8, noise intensity N, and sig-
nal-to-noise ratio S/N for a signal precisely at the Stokes
frequency (d = ~, as a function of the dimensionless gain
parameter y = &2x/yv. Vertical scale is arbitrary.

G„"'(x, ~, & ) = tt(d J('ht exp[ —y[ &
[

+ i(~, —(vr)T]

x J dt J dt e

xI2(2(((t t )' }I(&(2&([t (t + ~& ~)] ) .
(14. 12}

The observed correlation function also includes a
factor of e'~' due to the transverse propagation of
the field. For negligible amplification ((( x/yv=0),
the observed noise correlation function is

G(1& (X ss &
)etwrt t

h (d+(t(2X/yV)e-xltl+fusx

The corresponding spectrum is Lorentzian in char-
acter with center at ('d, and half-width y. For ap-
preciable amplifications, the double integral of
Eq. (14. 12) is an increasing function of )1 (. The
1ine is thus no longer precisely Lorentzian in shape,
and its half-width may be shown to be less than y.
The line narrowing arises from the fact that noise
at the Stokes frequency is more strongly amplified
as it propagates through the medium than noise at
other frequencies.

XV. QUASIPROBABILITY DISTRIBUTION FOR
ELECTRIC FIELD

In order to compute the expectation values of
more general functions of the electric field than
those we have discussed, it is convenient to in-
troduce a quasiprobability distribution for the elec-
tric field strength so that the quantum-mechanical
averages can be represented as integrals over the

225(2&(h) J d28 he -h h'
(15.4)

The operator analog of Eq. (15.4) for the normally
ordered 6 function is

&S(2&(E(x, t) —$})h(= (I/((2) J dzh exp([zt(x, t) —Ss]hj

xe~([z(x, t) —8]h'), (iS. S)

so that the characteristic function may also be writ-
ten as

(h. t) ( 2 (x t&h w (x t&h (is. 5)

To compute a distribution function for 8, let us
suppose, for example, that initially the phonon sys-
tem and the heat bath are at a temperature of ab-
solute zero, i.e. , totally unexcited, and that the
fie1.d is in a coherent state:

U(x) i S„o,o) = o,
v(x)i S„o,o) =o,

E,(x)i S„o,o) =8,(x)i S„o,o),
(15, 7)

where 18(&, 0, 0) is the state of the entire system.

for normally ordered operators, then

((F(E(x, t)})„)= j d'$5'st($)W($;x, t) . (15.2)

The operator (5' &(E(x, t) —8)}„is, of course,
highly singular, ' so that its expectation value
W(8; x, t) may be difficult to define for some states
of the field; we shall see below, however, that it
is a well-behaved and familiar function for the
usual states of the amplified field.

The Fourier transform of the quasiprobability
distribution of Eq. (15.1) is called the normally
ordered characteristic function. We shall write
it, using complex notation, as

(h&(;(tx) = J d 8 e W($;x, t) . (Is. 3)

With this notation, the Fourier representation of
the 5 function is
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If we let
't t'

$(x, t)=8,(x —()t)+K' J dt' J dt"ti(x —vt')

[[A, E],A] = [[A, 8],8]= 0,

to write

exp[AE~(x, t)] exp[- A'EF (x, t)]

= exp[- A'E, (x, t)] exp[AE', (x, t)]

«mE-
I AI '[E~gx, t), E, (x, t)] t.

Furthermore, since

E, (x, t)I 8„0,o}= o,
the expectation values of antinormally ordered func-
tions of EF(x, t) vanish. Thus, we may write the
characteristic function as

(exp[AE'(x, t)] exp[- A*E (x, t)])

= e~(-
I
AI'[E'(x, t), E (x, t)]),

and the commutator as

[Egx, t), E,(x, t)] = (E', (x, t), E, (x, t) )

(15.10)

xe ' I, (2x(t't")'t )h, (x —at+ t")
i15.8)

be the amplified classical signal, then we find

i(„(A; x, t) = exp[$*(x, t)A S(x,—t) A*]

& (exp[E', (x, t)A] exp[- E, (x, t)A~ ] &,
(15.9)

where E~(x, t) is defined by Eq. (14.1).
To simplify Eq. (15.9), we note that the commu-

tator s

[U'(x), U(x')],

given by Eqs. (4. 8) and (7. 8), and

[V'(x), v(x')]

given by Eqs. (6.2) and (7. 9) are both c numbers.
Thus, the commutator of EF(x, t) with its adjoint is
also a c number, and we may use the identity

A B B A [A B]

Thus, for purposes of computing normally ordered
expectation values, the (positive-frequency) elec-
tric field at r and t has a Gaussian distribution about

the "classical" amplified signal, with a variance

just equal to the noise intensity.
Of course, the quasiprobability distribution of

field values at any point changes with time. For
large times, the distribution approaches the steady-
state value

i
8- 8 (x, t) i'

w ((,;., ~)=„,„„). —,(„„)*],
(15.14}

where s„(x, ~) is given by Eq. (14.9), and h (x, t)
is given by the c-number equivalent of Eqs. (13.2)
or (13.6}:

8 (x, t)= 8 (x —vt)+K dt' dt "e
0 0

x fo (2/c (t 't ")'")b, (x —at + ~t ")

=Q„&„exp ik x- vI' + . . 15. 15
P —ikv

Thus, the distribution W ((('; x, t) is, for fixed x,
a Gaussian distribution with a constant standard
deviation whose center follows the oscillatory be-
havior of 6 (x, t).

In particular, if the signal has a well-defined fre-
quency, 8 (x, t) varies only in phase as t increases,
not in amplitude, and the Gaussian hump of W (h;
x, t) circles the origin of the 8 plane at a constant
radius of I S (x, t) I and with an angular frequency
equal to the signal frequency.

In case the Stokes frequency field is initially not
in a coherent state, it is still often true that the
density operator for the field can be written as a
superposition of coherent states in terms of a P
representation, 6 and that the density operator for
the system can be written in terms of a super-
position of the states defined by Eqs. (15.7). The
distribution function for the field is then given by
the corresponding superposition of the distribution
functions for the coherent field, Eq. (15. 13) or
(15.14).

The P representation is generally given in terms
of the eigenvalues (x» of the mode operators a»(0).
The initial density operator of the system is thus
written as

= & ))((x, t) .
The characteristic function thus becomes

(15.11)
p= J' P({&))I ((lo(x), 0, 0)(h (x), 0, OIIId

y„(A; x, t) = exp[$*(x, t)A —S(x, t)A» —&)(r(x, t)
I

AI ],
(15.12)

whose Fourier transform is, from Eq. (15.4),

($W; t}x=(l/ )fvd'Aq„(A;x, t)e' ' "
ih -h(x, t) i'

( )
exp —

( t)
~ 1 . 13

where the states are functions of all &» via

(() (x) =Q [8(()(k)A/2eL] t2 e~(A)(x
k)t

The quasiprobability distribution

W($; x, t) = tr[p[5'(E(x, t) —8))„]
is then
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W($;x, t)= j P(((r))W(S;x, t)g d &, , (15.18}

where W(b; x, t) is given by Eq. (15.13}and is a
function of all the &» through the amplified signal
of Eq. (15.8).

AppENDIx

We wish to evaluate two integrals for large times.
The first, from Eq. (13.5), is

(( -(B iku)t "-I (2x(tater)ll2)

the region of integration is the small triangular re-
gion shown in Fig. 8. The second, from Eq. (14.4),
is

Z, =(8(o,A/2e)(('(1+n, „)j* dt'e '"""
0

&I~ (2(([t'(t —t')] v2)

where we have made use of the fact that, from Eqs.
(4. 8) and (7. 8),

(II(x)II'(x')) =- (8'(v, A/2e)(('(1+n(„)5(x —x'),

where n,„ is the number of thermal phonons in each
mode.

Using the mean-value theorem to evaluate the in-
tegrals, we have

Ic, = a'-,' (x/v)' e '" ' "'"'I,(2(([(t(x/v)(t —1'x/v)] v'),

If, = (K(v, A/2e)(( (1+n,„)(x/v)e

I ~ (2K [(kx/v)(t - 1' x/ v)] V~),

where & and p. are dimensionless numbers between

0 and 1 and are, of course, functions of x and t.
We obtain upper bounds for these integrals by taking
&= p. =1, so that

le(l & '(('(x/-v)'e "" '"Io(2(( [x(vt —x)/v'] '),

Ij, ~& (if~, A/2e)(('(1+n, „)(x/v)e

&& I,'(2(( [x(vt —x)/v'] v').

For very large times, we make use of the asymp-
totic expression for the modified Bessel function

I,(e)- [1/gve) V'] e',

and obtain, with vt —x=vt,
1/2

IIf(l'&-'(«/v)4e '"(v/4")(xt) """'*""'
Ifa& (I+,A/2e)x (1+n,„)e

1/2
x(x/4s(()(xt) 'I e4"'"'"'

Thus, as t-~ for fixed x, both lK, l
and %mare

bounded by

(const/ v t )exp[- 2yt + 4(((xt/v )"'],
which becomes negligibly small for large times.
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