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Recent light-scattering experiments which have investigated the splittings in the depolarized
Rayleigh spectrum of certain nonassociated liquids are discussed in the context of generalized
hydrodynamics. It is shown that a purely hydrodynamic or viscoelastic theory does not account
for important features of the observed spectrum. However, if angular momentum fluctuations
are considered, many of the features of the observed spectra can be accounted for. Moreover,
a theory due to Rytov is discussed and studied in the context of generalized hydrodynamics.

I. INTRODUCTION

Recently, laser-light- scattering experiments'
have been performed on a number of nonassociated
liquids of relatively high viscosity (2 cP). In these
liquids the depolarized spectrum contains, besides
a broad background (of width 10 cm '), a sharp
central peak (of width -0. 1 cm ') that accounts for
as much as 80% of the total depolarized spectrum
This narrow component sometimes shows a splitting
into two components which are symmetrically dis-
placed with respect to the incident light frequency.
As in Brillouin scattering, this splitting varies di-
rectly as sin-,'8, where 8 is the scattering angle
(i.e. , the angle between the propagation directions
of the incident and scattered light). The observed
splitting occurs at frequencies which are roughly
20% of the Brillouin splittings, and therefore can-
not be attributed to ordinary longitudinal sound as
can the Brillouin splitting. It is the purpose of this
article to review some of the explanations that have
been offered for this phenomenon, and to offer yet
another explanation.

Any theory of light scattering must proceed in
two steps: (a) First it must be decided which fluc-
tuations can couple to the radiation field; (b) second,
a dynamical theory of the mechanism by which these
fluctuations arise and regress must be developed.

Generally speaking, an isotropic fluid can support
both longitudinal and transverse modes. These
modes are specified by their frequency 0 and wave
vectors q. For small wave numbers q, the longitu-
dinal modes are long-lived propagating modes
(longitudinal sound) and the transverse modes are
purely diffusive modes (shear modes). As the
wave number q is increased, the lifetime of the

longitudinal modes decreases, whereas the trans-
verse modes may change from purely diffusive to
propagating modes with short lifetimes. In this
limit the transverse modes may be regarded as
"shear waves. " They then correspond to trans-
verse phonons {transverse sound) in glasses. The
small-q modes in a fluid are adequately described
by hydrodynamics, whereas the larger-q modes
must be treated by other methods such as the theory
of generalized hydrodynamics.

In Sec. II we discuss which modes in a liquid can
couple to the radiation field. Let us assume here
for the sake of argument that both longitudinal and
transverse modes can couple to the light, Since
light scattering probes modes of intermediate wave
number (q-105 cm '), it is impossible to say
whether or not the transverse modes corresponding
to this value of q are propagating modes, without a
detailed analysis.

If a fluid can support propagating transverse
modes at the q of a light-scattering experiment,
and if these transverse fluctuations couple to the
radiation field, then it is expected that the depolar-
ized spectrum will split. In this case the depolar-
ized scattering can be regarded as a "Raman scat-
tering" process in which a photon suffers an energy
change 0 and a momentum change q, and thus
"creates" or "annihilates" a transverse "phonon, "
thereby suffering a negative (Stokes) or positive
(anti-Stokes} frequency shift as the case may be.
The widths of these lines are determined by the
lifetimes of the propagating transverse modes. If
the only transverse modes occurring at q are purely
diffusive modes, no splitting will be observed.

A split depolarized line has been observed in
some molecular liquids. This has led some inves-
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tigators to conclude that these liquids can support
shear waves at even the low wave numbers probed
by light scattering. ' This interpretation is sup-
posedly supported by the fact that the splitting is
observed in nonassociated liquids of high viscosity
since the higher the viscosity, the more "glasslike"
the liquid will be. Moreover, these investigators
claim that ordinary viscoelastic theory ' predicts
the precise line shape and geometrical characteris-
tics observed in the experiments. In Secs. V and VI
we comment on certain weaknesses in this approach.

In Sec. III we consider an alternative explanation
of these observations which, as far as we know, is
entirely new. We investigate the effect of angular-
momentum fluctuations on light- scattering spectros-
copy.

In ordinary hydrodynamics acentral role is played
by the constants of the motion: mass, linear mo-
mentum, and energy. As we have shown else-
where, "when a fluid contains structured molecules
(polyatomic molecules), the angular momentum can
be considered in addition to the above constants of
the motion. When this is done it is found that the
transverse velocity field in the fluid couples to the
angular momentum of the individual molecules. "
In fact, if a molecule is set in rotational motion in
an otherwise stationary fluid it will slow down by
creating a vortex (transverse) field around itseU.
This vortex field will then diffuse away on a very
long time scale. This introduces a very long time
tail in the decay of a molecule's angular momentum. '
Although at exceedingly long times the effects of
angular momentum disappear and ordinary hydro-
dynamics pertain, at short times the angular mo-
mentum must be considered. In this article we
consider the consequences of this modified hydro-
dynamics on light scattering. This theory accounts
for the major characteristics of the experiments.

tions of the polarizer and the analyzer in the ex-
periment), and &oo is the frequency of the (monochro-

matic) incident light, then f«(q, 0), the suitably
normalized intensity of the scattered light of fre-
quency (do+0, is proportional to the power spectrum
of the dielectric fluctuations 5e«(q, t) at the frequen-

cy 0 so that

I«(q, 0) = —,
'

J
™

dt e '"'(5e,~&(q, O)5e «(q, t)), (I)

where ( ) indicates an equilibrium ensemble aver-

agey and

5e«(q, t)=i ~ 5e(q, t) ~ f.= 5' i,5e,e(q, t)f~ . (2)

Three different polarization directions are consid-
ered. These are defined in Fig. 2.

The specific components of the dielectric fluctua-
tions that are responsible for each of these spectral
components are from Eq. (2) and the geometry given

in Fig. 1:

5e «„(q, t) = 5e„,(q, t)

5e»(q, t) = 5e„,(q, t)sin-8 —5e„,(q, t)cos —,8

5e„„(q,t) = 5e,„(q, t)sin 28- 5e„(q, t)cos &8

(Sa)

(sb)

5e««(q, t) = 5e,„(q, t)

5e «„(q, t) = 2 ' '[5e,„(q, t) —5e„,(q, t)],
5e«(q, t) = —,'[5e„(q, t) —5e„(q, t)

+ 56 (q, t) —56„(q, t)]

(4a)

(4b)

(4c)

+[5e„(q, t) —5e„(q, t)]sin28 cosp8 .(Sc)

For 90 and 180' scattering these formulas reduce
considerably:

II. LIGHT SCATTERING AND DIELECTRIC FLUCTUATIONS
IN FLUIDS

It is well known' that when light with a wave
vector k passes through an isotropic fluid, the
component scattered with wave vector k' is due to
a fluctuation of the dielectric tensor 5 E, which has
a Fourier component 5Y(q, t), where q=k' -k.
Since Rayleigh scattering produces an almost neg-
ligible change in the wavelength of the light
lk I = lk' t, q bisects the angle (k, k') and moreover
has a magnitude Iql =2k sin&8, where 8 is the scat-
tering angle. In what follows we consider the geom-
etry shown in Fig. 1. Given this geometry and the
subsequent remarks, we are only interested in di-
electric fluctuations that have a spatial dependence
&

&a&

Pa

If s and f are unit vectors specifying the direction
of polarization of the incident and scattered light
(E,, E&) (or more precisely specifying the orienta-

FIG. 1. Scattering geometry adopted in this paper.
x-z plane is called the scattering plane since the vec-
tors % and % hpecifying the propagation directions of
the incident and observed beams) lie entirely within this
plane.
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For 90 scattering only I« is nonzero, whereas for
180' scattering I«=IHH are both observed.

So far we only know that those thermal fluctuations
in the medium which give rise to fluctuations in the
dielectric tensor can scatter light. Thus the first
thing that we must discuss is just what kinds of
fluctuations in a medium can produce dielectric
fluctuations.

In this paper we explore a phenomenological
model for the dielectric fluctuations and the mechan-
ical collective motions in the liquid from which they
arise. Let us review a little background here. It
is well known that the macroscopic dielectric con-
stant of a one-component isotropic fluid in equilib-
rium is a scalar function of the density and the tem-
perature:

6 = e(pa T)

The actual density and temperature dependence of
& has been measured in a number of systems. It
is obvious, therefore, that long-wavelength fluctua-
tions 5p and 5T of density and temperature will
produce only scalar fluctuations in the dielectric
constant, and thereby give rise only to I«and I»
and not to IvH components in the scattered light
spectrum. If these are the only fluctuations consid-
ered, then we have

~E' ~E'
5e z(q, t) = — 5p(q, t)+ — 5T(q, t) 5 z~P r() ~P

po

(7)
Usually, temperature fluctuations can be ignored
compared with density fluctuations and Eq. (l) be-
comes

FIG. 2. Four different pairs of polarization directions
considered: {a) fully polarized scattering; {b) depolarized
scattering with either the initial or scattered polarization
perpendicular to the scattering plane, IvH =IHv, {c)de-
polarized scattering with both i and f in the scattering
plane.

I ta, ii) =ti —ai '8)(—)
SIq, ia),

fvs(q, fl) -=0
,

where

S(q, 0) = -,' J dt e '"'(5p~(q, 0)5p(q, t))

(8)

5evv(q, t) = 5e„~(q, t)

5e «(q, t) = 5e„(q, t)

5e„„(q,t) = 5e,„(q, t)

(5a)

(Sb)

(5c)

&&vv(0 t) =5&0(q, t)

~~vH

(5a)

(&b)

5e»(q, t) =[sin —,'8 —cos g ]5e8o= c so85(eoqt).
(6c)

Thus we see that if the dielectric fluctuation is a
scalar (5e z =5e05 g, as is usually assumed for
monatomic fluids, the scattering is determined by
the terms

is the spectrum of density fluctuations of wave
vector q. These equations have been very success-
ful in describing the isotropic Brillouin spectrum
observed in many simple liquids. '

Similar arguments can be developed to provide a
reasonable guess at the form of the off-diagonal
elements in the dielectric tensor. It is well known'
that a fluid in steady flow possesses an anisotropic
macroscopic dielectric constant which depends lin-
early on the velocity flow gradients:

e z--e' '(p, T)5 ziX (p, T0)v z' '+X2(p, T)v &N'

(Sa)
where
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v s = V~ vs+ Vsv~ —s (V ~ v)5~s

"as =-( ' v)5ns

(9b)

(gc)

are the symmetric irreducible parts of the velocity
flow gradient Vv. This represents the first terms
in the expansion of e B in derivatives of the velocity.
Equations (9a)-(9c) have often been used to analyze
flow birefringence experiments. For a system in
local equilibrium, Eqs. (9a)-(9c) are presumably
also applicable if v = v(q, t} is (the Fourier trans-
form of) the local velocity.

However, as we shall see below (Sec. V), Eqs.
(9a)-(9c}are not yet sufficient to explain the ob-
served spectra. Apparently, depolarized light scat-
tering probes at least some fluctuations which de-
scribe the approach toward, but vanish at, local
equilibrium. We suggest that the relevant fluctua-
tions are those of (Vxv —2 u), where ~(rt) is the
local average density of the molecular angular ve-
locity at the space-time point (r, t). In local equilib-
rium, the liquid rotates locally like a rigid body so
that V&&v- 2&=0. Away from local equilibrium,
this quantity produces frictional torques, and thus
presumably also an antisymmetric contribution to
the dielectric tensor of the form

(1)
6oB Xf VOB

where we have

v "s =e s„(Vxv —2(u)„

(10a)

(lob)

where X~'s represent coupling coefficients. While
there is room for letting these coefficients depend
on q and ~, we assume them to be constant. The
dynamics is then fully contained in the explicitly
treated fluctuation spectrum.

ill. ANGULAR MOMENTUM FLUCTUATIONS: A NEW
MECHANISM FOR LIGHT SCATTERING

and & B„ is the Levi-Civita symbol. Thus we expect
that

(0) 0) (2) 1
B

= CfgB gpss Tt V eB y
V f}tB, V&B

Consequently, we expect that in an equilibrium sys-
tem containing polyatomic molecules, fluctuations
in {p, &, v„'~z'(j = 0, 1, 2)j will produce anisotropic
fluctuations in the dielectric constant and thereby
produce depolarized spectra. Thus in analogy with
the theory of isotropic scattering we write

~E'
5e~s= s 5p5~s+ Q X)v„~q' (12)

g*0,1,2

asap
~t + p0V~v~=0 (14a)

~V~
mps -—- V 5P+ Vsr sy f (14b)

velocity field (velocity gradients are nonzero).
Moreover, this form of the dielectric fluctuation is
the simplest form that can be assumed consistent
with small gradients, with small departures from
equilibrium, and with rotational invariance.

We have shown elsewhere" that when a fluid
contains structured molecules, the angular mo-
mentum should be considered in addition to mass,
linear momentum, and energy appearing in ordinary
hydrodynamics. In this section we consider the
consequences of this modified hydrodynamics on

light scattering.
The stress tensor 7~B in a fluid of structured

molecules contains, in addition to the usual sym-
metric (Newtonian) part, an antisymmetric part

s--'g [V vs+ Vsv~ —s (V' v)5~s]+ t}„(V~ v)5~s

+r}„e s„[(Vxv)„-2(u„] (13)

Comparison with the Newtonian stress tensor of
hydrodynamics shows that the shear and volume
viscosity parts are unchanged. The new feature is
the antisymmetric part of the stress tensor

s'- 5„e,s„[(Vxv)„- 2~„],
where g„ is a new transport coefficient called the
rotational viscosity, and &u(r, t) is the angular-veloc-
ity field. Consider the intrinsic angular momentum
of a molecule (i.e. , the angular momentum of a
molecule due to its rotation about its own center of
mass}. If all the intrinsic angular momenta of the
molecules in a small fluid element (centered on r)
are added, and the resultant is divided by the scalar
part of the molecular moment of inertia tensor,
the result is ~(r, t). This term in the stress tensor
gives rise to a kind of Lenz's law for angular mo-
menta: Intrinsic angular momentum density will
always appear in such a way as to reduce vorticity
(Vxv) and vice versa. We will now discuss briefly
the consequences of angular momentum on light
scattering.

The linearized equations of hydrodynamic-fluc-
tuation theory suitably modified to account for angu-
lar-momentum fluctuations are used to compute the
spectra. These equations are'

In Sec. II we adopted the point of view that only
Qucutations in the density, temperature, and
velocity gradients couple to the radiation field. In
fact, we adopted a specific form for this coupling
given by Eq. (12). This form is based on the ob-
servation that a structured molecule experiences
an aligning torque when placed in an inhomogeneous

8$$
p0T0 ——KV 5 T+g

I p = 2q„[(Vxv) —2e ]+n,0

t)p+ —, 5T

(~4c)

(14d)

(15a)
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5p+ — 5T (15b)

where & ~ is given by Eq. (13). Here [5p, 5P, v, &o,

5T, 58}are fluctuations in the density, pressure,
velocity, angular velocity, temperature, and en-
tropy at the space-time point (r, t) T. he subscript
0 indicates an equilibrium value, i.e. , the number
density is pa+ 5p( r, t). Equations (14a)-(14d) are
closed by the local-equilibrium assumption expressed
in Eqs. (15a)and (15b). Theterms f, , g, andn, are
the "random" forces, force density, heat flow, and
torque density acting on a fluid element at the space-
time point {r,t). These are just the "random
forces" that appear in the Mori formalism. ' The
product of any of these random forces with the
hydrodynamic variables averages to zero in an
equilibrium ensemble; thus, for example, we have

(v.' (q, 0)f,(q, t)) -=0 .
According to the second fluctuation-dissipation the-
orem, the transport coefficients in Eqs. (14a)-(14d)
are related to the time-correlation functions of these
"random forces, " and moreover, for Eqs. (14a}-
(14d) to be valid these "forces" must have white
spectra. A most important consequence of this the-
orem is that the random forces do not couple any of
the variables together that would not ordinarily be
coupled in the usual linear phenomenological equa-
tions. Thus, for example, the presence of random
forces does not destroy the dynamical independence
of v„v„and v,.

Let us now use hydrodynamic fluctuation theory
to derive expressions for the components I«, I«,
and l„s of the spectrum based on Eq. (12) for the
dielectric fluctuations. It should be noted that the
space-time transforms of the components of the
stress tensor are

r,"z' (q, A) = q„e,8„(-t [q x v(q, A) ]„-2 ~„(q, A)} .
{16c)

We investigate some of the consequences of these
equations, without introducing viscoelastic effects,
i.e. , frequency dependence in the transport coeffi-
cients. In the first place, let us see whether or
not these equations predict backscattering in the
I~0 spectrum as observed experimentally. It is
easy to show for 8 = m that

Iv„(q, A} = ~X, ~'CI '(q, A) (17)

where C,', '(q, A) is the spectral density of the longi-
tudinal angular-velocity correlation function

'„"'(q, ) =
& J d e '"'( *, (q, o),(q, t)), (18)

and X, is the coupling coefficient in Eq. (12). From
Eq. (14d) it follows that

(loa)
where

1/r = 4q„/Ipo (19b)
is the relaxation rate for the collective angular mo-
mentum. Thus we see that at least one feature of
the observed spectrum is accounted for. Similarly,
it can be shown that there will be also a central line
in the I«scattering at 8 =

& m which is observed in
the laboratory.

The addition of angular momentum variables to
the linear hydrodynamic equations will have abso-
lutely no effect on the fully polarized spectrum
I„v(q, A), which will still be correctly determined by
S(q, A), as in Eq. (8). They will, however, have an
enormous effect on the characteristics of the depo-
larized spectra. Since the tensor 5e z is Hermitian
(5e,e=5e~ ) it follows that the spectrum I„s is al-
ways equal to I«. In order to treat the data sys-
tematically we define a constant ~ such that

r.",'(q, A) = tp„q -v(q, A) 5.,
&"g'(q, A) = —tt},[q, v, (q, A}+q,t, (q, A)

—3q ~ v(q, A)5 z] (16b)

X( ——Mp

From Eqs. (4), (13), {14a)-(14d), and (15a) and
(15b), we can write down expressions for the scat-
tered intensities for arbitrary scattering angle e.
For 90' scattering in particular, we find that

C 1 Ar [rvq' (X/+~~)) A[+1+ 3X + (X/K )rvq ]
1+A'r (A —A ) 2+A (1+v'vq )

7
{20a)

Ar(vs +X)3+ (A1-2X+&7'vq ) (~/v ) C'„"'(q, A)
(A —Ar) T +A (1+ Tvq ) r C" (, t= 0)

(2ob)

where
C= 4~ X2~ '~'r/Iti, X=Iq'/4m,

r =Ipo/4g„, v=g, /mpo,

A'r= (4t},g„/Imp', )q'= vq'/~.

C,', "'(q, A) is the spectral density of the longitudinal
current- correlation function

C,', "'(q, A) = —,
' J dt e '"'(v,*(q, 0)v,(q, t))

and is related to the dynamic structure factor
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S(q, Q} by

q~CI"&(q, Q) =QSS(q, Q) (20c)

Now C,',"'(q, Q) can be calculated, as in Ref. 15,
from ordinary hydrodynamics (there is no coupling
with "intrinsic" angular momentum), and is given
by

C&"&(q, Q)
C'„"'(q, t= 0)

We have computed Iv„(q, Q) and I»(q, Q) at 90'
scattering for quinoline at T=22. 3 'C, and com-
pared with the experimental results. The value of

q is 1.4x10 cm, and the numerical values of the
various parameters in Eqs. (20a)-(20d} were
chosen to be

(a) I=373 amu A2

mp0=1. 1 g cm

J. = 6. 2 GHz

g, =7. 2x10 'P,
(b) r=3. 47x10" sec, Qr=0. 95 GHz,

g„=2.3x106 P .
The parameters in group (a) are those which are
independently known. w determines Q& and p„,

'
and has been chosen so as to give the correct width
for the diffuse peak observed in I«backscattering,
cf. Eqs. (19a) and (19b}. Suitable approximate
values for )„&dathne thermal conductivity K were
chosen to compute C,',"'(q, Q); these values are not
very critical and were estimated such that aq~/Qz,
=10~ and bq'/Qz=4x10~ [Eq. (2M)].

This leaves the coupling-constant ratio x =X,/Xz
as an adjustable parameter. The results are plotted

aq Q~(Qz, +abq4 —Q ) —Qa[(aqa/y) Qmz, —(a+b)qaQ~]
[(aft'/y) Q' —(a+b)q'Q']'+ Q'(Q' +abq' Q')-'

(20d)

where

a =K/mpoc„, y=C~/C„, b = (x4q, +&)g/mpo

and Q~=q Co, Co being the low-frequency limit of
the sound velocity (the other symbols have their
usual meanings).

The integrated intensity ratio l„„(q)/I„„(q)is
given by

Iv„(q) 1+ 2 X(1+v )

I„„(q) 1+ &&.(1+& )

For anisotropic molecular liquids like quinoline and
nitrobenzene studied experimentally by Stegeman
and Stoicheff, 4' the integrated intensities of I&8
and I» are equal. Since & «1, this puts a restric-
tion on K, namely, &z «1, or in terms of w we
have

&t »q'I/m-10 '

IV. COMPARISON WITH EXPERIMENT

in Figs. 3 and 4 for two different values, & = 10
and 10 . The spectrum of I„e(q, Q) has a maximum

at 0= 0. 8 GHz, and consequently we obtain a split-
ting which is in qualitative agreement with that ob-
served experimentally where the maximum is at
0=0.95 GHz. It should be clear that by choosing
slightly different values of the various parameters
which are not known very accurately, we could ob-
tain a much better fit. The width of both the I~„
and I «„spe ctr ais given by 1/r, theoretically and

experimentally. Also we find a small Brillouin
peak in the I„e(q, Q) spectrum at Q = 6. 2 GHz. Note

that the intensity of th'e peak can be adjusted by the

parameter w, and should be close to & =10 . Note

also that this value of & is well within the bounds

imposed by Eq. (21), namely, the observed equality
of integrated intensities I«(q) and Iee(q).

V. ORDINARY HYDRODYNAMICS AND GENERALIZED
HYDRODYNAMICS

mP Q'+(vq')' (22)

where v is the kinematic viscosity (equal to &)Jmpo).
These formulas are at variance with the experi-

ment for the following reasons:
(a) They predict no backscattering, yet experi-

mentally there is I«backscattering.
(b) They predict (when typical values are substi-

tuted for v} much narrower lines than are observed.
(c) They do not account for the splittings observed

in some fluids.
(d} They predict that there will be no central line

in I~~ for 8= &m, yet experimentally there is such
a line.

When angular momentum is included, these ob-
jections are removed. It is legitimate to ask wheth-
er a generalized hydrodynamic theory can be devised
which would account for the characteristics of the

In this section we study what happens when the
angular momentum is left out of the hydrodynamics.
All that has to be done is to formally set q„=0 and

X& =0. An immediate consequence of this is that no
antisymmetric terms will appear in either the stress
tensor or in the dielectric fluctuations. The spectra
then immediately reduce to

8= v (backscattering): I„e(q, Q) =0

e = —,'~:

I „(q, Q) = —,
'

i
X, i

' q' C',"'(q, Q),

I„„(q,Q) =
f
X~

f
Q S(q, Q)

where C]"&(q, Q) is the spectral density of the trans-
verse velocity (v, or v~),

C,'"'(q, Q) = 'J' dt-e '"'(v„*(q, 0) v, (q, t))

Here we have
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observed spectrum without adding any "nonhydro-
dynamic" terms like angular momentum.

Recently, much progress has been made with
regard to understanding collective behavior of mon-
atomic liquids. ' ~ It was found that if the hydro-
dynamic equations are modified to take into account
memory effects (frequency-dependent transport co-
efficients), both the microscopic and macroscopic
behavior of the collective variables 6p(q, t), v(q, t),
5T(q, t) can be understood on the basis of one com-
prehensive theory. This theory can be derived from
first principles by methods first developed by
Zwanzig ' and Mori. ' For long times, the behavior
of these variables is just that expected from Eqs.
(14a)-(14d), (15a) and (15b), and (16a) and (16b). This
theory is now commonly called generalized hydro-

dynamics. For monatomic liquids it has been shown
experimentally that the linear hydrodynamic theory
of fluctuations works for wave numbers as high as
1{jecm ' and for frequencies as high as 10' sec '.
Thus for simple liquids like argon and xenon, hydro-
dynamic fluctuation theory suffices for a prediction
of the spectrum (except for collision-induced scat-
tering). For molecular liquids, the situation is
much more complex. From ultrasonics it is
known that there are at least three time regimes
in the attenuation of sound corresponding to vibra-
tional, rotational, and translational relaxation. Ac-
cording to experiments, there is marked frequency
dependence in the attenuation coefficient of sound.
This has lead many investigators to assume that
transport coefficients such as q, and q„depend on
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the frequency. Mountain, for example, has attrib-
uted observed deviations from the Landau- Placzek
ratio in the Brillouin scattering from CS2, to fre-
quency dependence in the bulk viscosity which he
claims reflects the vibrational relaxation of these
molecules. By allowing q„ to depend on a single
relaxation time, Mountain accounts for the observed
scattering and, moreover, predicts the existence
of a new broad band in liquids. Now there is abso-
lutely no reason not to put frequency dependence
into the shear viscosity as well. After all, rota-
tions and asymmetric molecular vibrations can couple
to transverse modes in liquids. One way to modify
the equations is to put memory effects into the hy-
drodynamics (these can be attributed to vibrational
and rotational relaxation). Then, for example, the
stress tensor will become

r,q(r, t) = J dt, r),(t,)[V,v8(r, t —t, )

+ Vzv (r, t —t~) ——, V' v(r, t —tq)5 gj

+ f dt's r)„(tg) &' v(r, t —tg)5 ~, (23)

where we ignore spatial dispersion in q,(r) and g„(r)
(because in light scattering, relatively small values
of q are examined) and angular momentum fluctua-
tions are ignored. A similar expression can be
written for the entropy. Now it is anybody's guess
what the time dependence of r),(r) should be. We
suspect that a, reasonable form for r),(r) is

r)( r)=(r), /v;) e ' '~+(r)2/r, )e ' '~+ ~ ~ ~, (24a)

where each term corresponds to a different relaxing
degree of freedom that couples to transverse modes
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in the fluid (rotations, asymmetric molecular vi

brations, etc. ). Some possible choices of r}, are

single relaxation time:

q, (t) =(gJr) e ' ' (g, =shear viscosity); (24b)

one fast and one slow relaxation process:

g, (t) =g„5(f)+ [(7i, -)7„)/v] e

%e are interested in computing I«so that at this
point it is not necessary to specify the time depen-
dence of the volume viscosity.

The only modification in the I„~ spectrum intro-
duced by memory effects is the replacement of
C~("'(q, Q) in Eq. (22) by

v, (Q)qo

mP [Q+ v, (Q)q']'+ [v,(Q)q']'
(25a}

where the quantity Qr is
Qr=q(v/r)'~'=2k(v/r)' o sin~8 (25d)

Only when Q~» 7 ' or q vv'» 1 would this give rise
to a splitting which varies linearly with sin&e.
However, the q values used in the experiment are
so small that we have q' v7'«1 in fact. If, on the
other hand, E(l. (24c) is used, we get

(v) Q~+Q Q„v
mp (Q —Q ) v +(1+Q 7 )Q

where

Qr =q(v/T) Q =q((7„/mPor)~~o (25b)

This will account for the observed splitting in I«.
Both of these models do not predict backscattering
in the I«spectrum, however. Thus, a pure1y gen-
eraUzed hydrodynamic theory will not account for
the observations.

VI. RYTOV'S THEORY

Ne have adopted the point of view that the dielec-
tric Quctuations could be assumed from the form
of the optical anisotropies of a fluid in steady Qow.
Let us now look a little more deeply into the origin
of such terms. The reason for the appearance of
these optical anisotropies lies in the fact that a non-

where v, (Q) and v, (Q) are the real and imaginary
parts of the frequency-dependent kinematic viscos-
ity

v(iQ) = v„(Q) +iv, (Q) = J"dt e '"' v(t), (25b)

where v(t) =g,(f)/mpo The line shape of I„e(q, Q)
will depend critically, therefore, on what form we
take for v(t). For example, if the singlerelaxation-
time approximation [E(l. (24b)] is used, the trans-
verse mode has the spectrum

spherical molecule experiences an aligning torque
in a moving fluid. Since the divergence of the
stress tensor (Vo r,o) gives the force F acting on
a Quid element at each point in the Quid, and there-
by on each point of a body immersed in the fluid, it
follows that the moment of this force is an aligning
torque. If this argument is carried through to its
logical conclusion, it is found that the degree of
alignment of the molecules in steady Qow, and
therefore the anisotropic part of the dielectric ten-
sor, depends on the viscous stress tensor 7'~ and
only indirectly on the velocity gradients. Then it
is reasonable to assume that

«~(q, f)=—5p(q, ~)5~+ Z &,~'~(q, t), (27a)
8e

8p

where ~'', v'~, and v'z' are the scalar, antisym-
metric, and symmetric parts of the viscous stress
tensor, respectively, and Y& are the coupling coef-
ficients. If noncentral intermolecular forces are
ignored, the antisymmetric part r"o' of the viscous
stress tensor vanishes; the viscous stress tensor
has now only six components and E(l. (27a) becomes

5e o(q, f)= —, 5p(q f)5~+co~~ (q, f)+yo&"s'(q f)

(27b)

For 90' depolarized scattering, E(ls. (4) reduce to

«ve(q, t) = 2 [5e)))q(q, t) -6eqN(q, t)],

«MH(q f}= -'[«(q, f) —«,.(q t)]
(28)

p(q) = m Z e'",
)=1

J (q}= m & v~(t) e'"
f=1

))„(q)= 2, mq'qq ~ l 2 ~,'. q" (q))
(r&y)

where

(29a)

(29b}

(29c)

P g & j & g

)

dv ft 1-e ~~'~

ik R g~gg

and where p(q), Z, (q}, and II o(q) are, respectively,
the mass density, mass current density, and mi-
croscopic stress tensor. In these definitions, x ~, v ~

denote the position and velocity of jth molecule in
the system. Akcasu and Daniels also consider tem-

It is our intention, in this section, to show that what
Rytovo has calculated is just the viscous stress ten-
sor correlation functions. This has also been
pointed out by Volterra. '0 Akcasu and Daniels, ' in
a recent paper on current-current correlations,
have derived generalized Langevin equations for the
viscous stress tensor. They choose a set of vari-
ables
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perature fluctuations, which we will ignore in the
present discussion. The viscous stress tensor is
now defined as

~~(q}=11~(q)-& ( ) ~B&
p(q) .& p*(q)II.B(q}& (29e)

i'»(q, t) —(i/q) (Qs —Qz -2Qr)J, (q, t) (30)

By using projection-operator techniques developed
by Zwanzig ' and Mori, '6 these authors derive gen-
eralized Langevin equations for the variables p(q),J (q), and r B(q).

Assuming that the relaxation times of the longitu-
dinal viscosity and shear viscosity are the same,
and further ignoring the coupling between v„„, v»,
and v [cf. Eqs. (4. 21) and (4. 56a}, Ref. 18], the
equations of motion are

p(q, t)=iq J,(q, t), J,(q, t) =iq7„,(q, t),

P, (q, t) —(i/q) Q,'p(q, t) = iq &,.(q, t}

(q, t) —(i/q) (Q', —Q,' 2Q',—)J.(q, t)

+ (I/r) r (q, t) = F„„(q,t),

where

C = —.'I I BI
B Vt, T

Similarly we have

C 1 3(Q -QI, )
4 ( ()'r' (()' —()'I+()'7'(()' —()')')'

(33b)

Note that Eqs. (33a) and (33b) are exactly those de-
rived by Leontovich and by Rytovp in his last paper.
Rytov, of course, has discussed a more general
frequency dependence. for Y2. Moreover, in this
calculation, angular momentum has been completely
ignored. Ne believe it is quite possible to develop
an analogous theory with angular momenta by study-
ing the antisymmetric stress tensor.

These formulas have recently received experi-
mental support from the work of Stegeman and
Stoicheff. ~' Rytov's derivation of these results is
somewhat confusing. It proceeds along the following
lines:

(a) It is assumed that the dielectric fluctuations
are

+ (I/v) v„„(q, t) = F,„(q, t), 5E.~&=Xu5 &+ Yu~~, (34)

i„(q, t) - (i/q) (QB Qz)J,(-q, t)

+ (I/r) v„(q, t) =F„(q, t),

&„(q, t) —(i/q) Qr J,(q, t) + (I/r) r„,(q, t) = F„(q, t),

»(q, t)'—(i/q) Qr J,(q, t)+(I/r)7'„(q, t) =F„(q, t),

r,„(q, t) + (I/r) r„,(q, t) = F„„(q,t),
'

where F B(q, t) is a random force with a white spec-
trum and

where u z is the strain tensor in viscoelastic theory,
u is the trace of u~, and u~ is the symmetric
traceless part of u.

(b) It is assumed that the coupling coefficients
Xand Yare frequency dependent and are, respective-
ly, proportional to the frequency-dependent bulk K(Q)
and shear modulus p(Q), i. e. , that X(iQ) = XK(iQ)
and F(tQ) = Yp(iQ)

(c) The stress tensor v B(q, iQ) is

Qi = q Kdpp, Qr = q p-/pp,
2 2 2 2

Qs = q (K~+~g~)/pp —Qg+f Qr.
(31)

r,B(q, iQ) =K(iQ) u 5,+ p(iQ) u'B (35a)

and the displacements s (a=1, 2, 3) satisfy the equa-
tion of viscoelasticity

Note that in writing down Eqs. (30), a single-relax-
ation-time approximation has been made for shear
and bulk viscc sities

8 s
PP P

= VBTa Bf+u ~Bi" (35b)

(. )
g„r (. )

(K -Kp)v'
1+gus ' " 1+go~ (32}

where f is a random force.
(d) From the form of the stress tensor it follows

that
where the symbols have the usual meaning. For
further details, see Akcasu and Daniels.

It is straightforward now to calculate the depolar-
ized scattered intensities I«(q, Q) and I„„(q,Q) and
from Eqs. (1) and (28):

&&[v„,(q) —r„(q) J" [~ (q, t) —r„.(q, t)]&

C 1 g2
2 (+ () T () + (() —() ) r ) '

(33a)

u', B(q, Q) =[I/g(iQ)] r~(q, Q),

u(q, Q}= [ I/K(i Q)]
r' B'(q, Q), (36)

where ~'z' and v'z' are the scalar and symmetric
traceless parts of the stress tensor. Substitution
of Eq. (36) into Eq. (34) then gives

Gaol = X 7'~ + Yv ~g,
where r~ is still of the form given in Eq. (35a).

(e) Rytov at this point calculates the stress-ten-
sor correlation functions.

Our derivation springs naturally from a consider-
ation of the microscopic events. %Ye hope that our
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derivation makes Rytov's basic idea more accessi-
ble to the reader. One advantage in our approach
is that we avoid introducing the notion of a displace-
ment of distortion field which we believe is mean-
ingless in connection with the liquid state.

VII. DISCUSSION

Of central importance in this article is the obser-
vation that a purely hydrodynamic theory of fluctua-
tions does not suffice to explain depolarized light
scattering in liquids such as quinoline. Yet the ob-
served spectra occur at rather long wavelengths
(q- 10' cm ) and small frequencies (Q-10'0 sec ');
this suggests that it is probably unnecessary to con-
sider in detail the dynamics of close collisions; a
coarser description in terms of largely collective
modes should be sufficient. Apparently what is
probed in these experiments are the collective pro-
cesses towards the end of the kinetic stage which
describe the approach toward local equilibrium.
Moreover, we note that these not-quite-hydrody-
namic modes have to couple directly to the radia-
tion field. If we were to assume that the light is
scattered only from fluctuations of the density and
the velocity gradients (as would be appropriate in
local equilibrium) we would not obtain a backscat-
tered Ivs(q, Q) spectrum, even if nonhydrodynamic
fluctuations of these variables were taken into ac-
count. This is quite clear from our rederivation of
the results obtained by Rytov. His theory of depo-
larized light scattering starts from the observation
that a liquid responds to a perturbation of relatively
high frequency in much the same way as a glass
does. Like a glass or a solid, it is thus expected
that a liquid can support transverse high-frequency
waves. Rytov therefore starts out from the clas-
sical equations of viscoelasticity but assumes that the
shear viscosity has a frequency dependence deter-
mined by a single relaxation time. In order to de-
rive the frequency spectrum, Rytov introduces
"random forces" into his equations in much the
same way as Landau' does. Central in Rytov's
treatment is the notion of a "distortion" in the liquid
state. Whereas this concept is mell defined in con-
nection with a glass, its meaning in a liquid is not
very clear. We presented in Secs. V and VI a visco-
elastic theory based on generalized hydroynamics
which avoids the concept of a distortion field. This
approach is different from Rytov's. It is based in
part on the rigorous body of theory connected to
memory functions and the second Quctuation-dissip-
ation theorem. The nonhydrodynamic fluctuations
are those of the stress tensor which are assumed to
decay with a simple, q-independent relaxation time.
Note that this modification of hydrodynamics does
not give a, backscattered I„& spectrum if the dielec-
tric tensor is coupled only to the Newtonian part of
the stress tensor, i.e. , to velocity gradients. We

do find a backscattered I~0 spectrum of the right
shape if we assume that the dielectric fluctuations
couple to the microscopic stress tensor.

To account for some of the gross features that
are observed experimentally in molecular liquids,
then, Eq. (9) is inadequate, and must be modified
such that the dielectric fluctuations are of the form

5e, (q, Q) = —5p(q, Q)+ Z x,v'~tI(q, Q)+ XSK~(q, Q).
f= Os2

In our version of Rytov's theory, g z would be the
non-Newtonian part of the microscopic stress ten-
sor. Another possibility is to use for f z a, tensor
which describes the orientational ordering of single
molecules in the liquid, such as the order parame-
ter discussed in the work of Leontovich and, more
recently, Volterra. ' If it is assumed for simplici-
ty that f z does not couple to v~f' and 5p, then it is
found, for example, that

(q, Q) =
I
x

I
'&I t;.(q, Q)

I
')+

I
x

I
'q'd"'(q, Q) cos'-.'e.

Thus for 8=m, we have

I,„(q, Q) =
~
x,

~

'(
~
t (q, Q)

~

') ~ 0.

This correlation function has been computed by
Pecora for the case of asymmetric Brownian ro-
tation. It is, in general, a sum of five Lorentzians
with (essentially q-independent) widths which are de-
termined by the rotational diffusion coefficients
around the different molecular symmetry axes. For a
spherical-top molecule, these reduce to

q D+68„,'""" "'=»"» o, ( D', Be ))
where D and 8„,are the translational and rotational
self -diffusion coefficients. This mechanism could
in principle describe both the broad background (if
the rotational diffusion tensor is very anisotropic)
and the central line. We have not considered it in
detail, but a more systematic analysis appears pos-
sible. Indeed, this kind of treatment is similar in
spirit to the theories of Leontovich and Volterra.

What is entirely new in this paper is the treatment
of angular-momentum fluctuations in connection with
depolarized light scattering. For this theory, the
nonhydrodynamic term in 5a z is antisymmetric and
given by t;,~=e ~„(Vxv-2~)„. We find it appealing
that a very small contribution of this form (of rela-
tive order ~- Sx10 ) is sufficient to render most of
the qualitative features of the observed spectra.
The crucial parameter in this theory is then the ro-
tational viscosity g„or, equivalently, the decay rate
I/rinEqs. (20a)-(20d). q„ is, inprinciple, suscepti-
ble to independent determination from flow measure-
ments; however, at present we know of no experi-
ments from which the value of g„could be indepen-
dently obtained. 7 is the decay time of collective
intrinsic ar~ular momentum fluctuations in the li-
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quid. It is important to note that the numerical value
of v required to give a reasonable fit to the light-
scattering data (v = 3.4X10 " sec) is several orders
of magnitude larger than the relaxation time of a
single molecule's angular momentum. This is, of
course, consistent and desirable within our theory,
which is based upon the assumption" that the inter-
particle forces are relatively ineffective in destroy-
ing collective spin-density excitations (by converting
them into translational vortex motion).

We wish to end on a cautionary note: It is clear
that a phenomenological theory like ours could be
"improved" by allowing for frequency dependence in
the transport coefficients p„p„, and p„. Similarly,
the coupling coefficients X& in Eq. (12) could be
made frequency dependent as some authors have
suggested in similar cases. While such frequency
dependence is not without physical motivation, we
have refrained from introducing it here, chiefly in

order to keep the number of adjustable parameters
at a minimum. It seems to us that without a much
more fundamental theory of light scattering in mo-
lecular liquids, the experimental data available are
not sufficient to allow a clear decision between sev-
eral possible phenomenological models, and to in-
troduce too many adjustable parameters would only
becloud the issue. In this sense, we wish to present
the considerations in this article as interesting in
connection with depolarized light scattering, rather
than as the definitive solution of what we regard as
a still largely unsolved problem. '
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