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Employing analytic Hartree-Fock wave functions, model calculations have been performed
on the structure and lifetimes of the slowly auto-ionizing states arising from (1s, 2s, 2p) P
in He and Li. The effect of mixing with the associated P's is considered and the phenomenon

of differential metastability discussed. A framework is provided to interpret experimental
observations.

I. INTROOUCTION

The decay of an excited atomic state lying above
the first ionization potential of that atom to the ad-
jacent continuum may occur with no accompanying
radiation; this is the phenomenon of auto-ioniza-
tion. These auto-ionizing states may be of two

types. The first are the kind that interact with the
adjacent continuum very strongly through the elec-
trostatic terms in the Hamiltonian and thus have
very short lifetimes, typically of the order 10 '—
10 "sec. These states have been observed as
resonances in scattering' and photoabsorption pro-
cesses, but have essentially no observable effect
on atomic spectra because they decay so quickly.
The second type are those which interact only
weakly with an adjacent continuum through the fine-
structure part of the Hamiltonian (spin-orbit, spin-
other-orbit, and spin-spin interactions) and, be-
cause of the weakness of the interaction, are meta-
stable against auto-ionization, having auto-ionizing
lifetimes of the order 10 '-10 ' sec. These states
live long enough to be initial states of spectroscopic
lines; in fact they were first postulated by Beutler'
in 1933 to explain ultraviolet absorption lines he

found in various alkalis. A number of metastable
auto-ionizing states have been found experimental-
ly, mostly in the alkalis or alkalilike ions. ~

Theoretical calculations have been carried out on
the multiplet energies of such states (ignoring fine
and hyperfine structure of the levels making up the
multiplet) by a number of authors" and decay
lifetime calculations have also been performed.

Metastable auto-ionizing states are of interest
at present in several connections. First, since
their decay lifetimes are long and the levels them-
selves correspondingly narrow, both can be mea-
sured with a high degree of precision, giving a
very sensitive test of the theory and the wave func-
tions employed therein. Secondly, within a given
multiplet, the fine- and hyperfine-structure levels
may have different lifetimes. This differential

metastability would lead to certain of the levels
being depopulated much more quickly than others,
so that after a certain time the auto-ionized elec-
trons would be polarized. The polarized electrons
could then be used in a variety of collisions experi-
ments. Finally, since structure measurements on

these narrow states could be, if necessary, ex-
tremely accurate, it is possible to obtain a better
value of the fine-structure constant, if a calcula-
tion could be done with sufficient accuracy.

In an effort to understand the structure and life-
times of slowly auto-ionizing states, we have per-
formed calculations using analytic Hartree-Fock
wave functions. We have confined these calcula-
tions to the (is, 2s, 2p) configuration in Li and

He, since the three-electron system is the simplest
in which slowly auto-ionizing states can occur. Al-

though we no not expect that the theoretical results
using Hartree-Fock wave functions will give de-
tailed agreement with experiment, it should provide
us with a certain amount of insight into the behav-
ior of such states.

The following paper' will discuss the results of
experiments on the (ls, 2s, and 2p) P states in

lithium as well as the effect of a magnetic field on
such states and give a detailed comparison of the

experimental and theoretical results.
II. THEORY AND DISCUSSION

A. Multiplet Structure

In the approximation of LS coupling, which is
generally excellent for low-z atoms and ions, the

(ls, 2s, 2p) configuration consists of a P and

two P multiplets. " In order to calculate the wave
functions and energies, we first consider just the
nonrelativisti c H amiltonian

where P; is the momentum of the ith electron and
Z is the nuclear charge. Since Ho does not include
the fine-structure operator, all values of 4 in a
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given multiplet level will have the same energy.
For the 'P state, the J=-,', M& =-,' is considered,
since it simplifies the calculation. We then perform
an analytic Hartree-Fock calculation for the P
state. The energy is then

&4P = T(1s)+T(2s) + T(2p) + V(ls)+ V(2s) + V(2lt)

+ Fe(ls, 2 s)

+F (1s, 2l)t+F (e2
s, 2p)

x —G (1s, 2s}- -', G'(1s, 2p) - 3 G'(2s, 2p)

(2)

where T refers to the kinetic energy, V to the nu-

clear potential energy, and

F'(nl, n'l ') = f f (r(/r&'')g~, (1)n, (1)n e,

x(2)u„ t, (2)r~ redry drm,

G'(nl, n'l')= f f (r~ir)')n„*, , (1)n„,t(1)n„;t

(3a)

x (2)n„,,~ (2)r i r e«i «e (3b)

u„, being the radial part of the one-electron func-
tion with quantum numbers (n, l).

To obtain wave functions and energies for the P
states we make the simplifying approximation the
radial orbitals are the same as for the P. Then,
by diagonalizing the 3 && 3 matrix associated with
this configuration, "we find that the energies of
the P, levels (eP, referring to the upper one, P
to the lower) are given by

H, = T(ls)+ T(2s)+ T(2P)+ V(1s)+ V(2s)+ V(2ttt)

those predicted by the better ones. Thus we expect
the results using a Hartree-Fock wave function to
be fairly realistic. This is borne out by the experi-
mental results of Levitt, Novick, and Feldman. 6

B. Fine and Hyperfine Structure

The fine-structure operator is the sum of the

spin-orbit plus spin-other -orbit Hamiltonian H~
and the spin-spin Hamiltonian H„

2 3 2

H — X. 3
— Z 3 x Pg '(s(+2sg) ~

Q g l)es] Q

2 j-g rg 2
(6)

1 - - 3(st rU)(s, ~ rt, }
gg= & 3 S( ~ Sf —

2 t
f&f r if ff

(7)

()I) u

where & is the fine-structure constant, r~f = r~ —rf.
To calculate the fine structure we note that within

the framework of LS coupling& H~ is proportional
to L S and H« to -', (L ~ S) + 3(L ~ S) —I (f + 1)S(S+ 1),
L and S being, respectively, the total orbital and

spin angular momenta of the atom. We can, thus
write

H~= C~ L ~ S, (aa)

H „=C„[~( L ~ S) + 3( L ~ S} L(L + 1)S—(S + 1)] . (Sb)

The (1s, 2s, 2p) 'P level has angular momentum
components 4 = -'„—,', —,'. We calculate directly the
energy of the J= -', state, and using Eqs. (8), the en-

+F'(1s, 2s)+F'(ls, 2p)

+F'(2s, 2p)+SC,

&= (g [[G'(1s, 2s) ——,
' G'(1s, 2P}]'

+ [-,' G'(1s, 2ttt)
——' G (2 s, 2P )]'

(4)
75

55 &

+[-,'G'(2s, 2P) -G (1s, 2s)]'})"'. (5)

The energies resulting from the calculations are
shown in Fig. I for Li and Fig. 2 for He along with
experimental energies of other relevant levels in
these systems.

Since the 4P arising from the (1s, 2s, 2P) con-
figuration is the lowest 'P level in each case, the
results of our calculations give upper bounds to
their energies; no such claim can be made, how-
ever, for the P levels. We can estimate the ac-
curacy of the P wave-function calcul. ations by com-
parison with experiment ' and with other calcula-
tions employing more sophisticated wave func-
tions. This comparison is shown in Table I.
while our energies are about 0.25 eV higher than
those of the more sophisticated calculations, it is
expected that the electron densities as given by our
wave functions will not be so very different from

f
eo- ]i (la,21,2p)LI

()I) u

0 (II,21)Li

FIG. 1. Calculated (1s, 2s, 2p) multiplet energies in
Li along with experimental energies of other relevent
levels.
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TABLE I. Energy, in eV, of the (1s, 2s, 2p) 'P level
in Li and He.

Expt Expt Theory Theory
This work (Ref. 6) (Ref. 28) (Ref. 19) (Ref. 17)

I j 57. 68 57.3+0.3
He 19.978

57. 44 57. 47
19.741 19.749 19.785

ergies of the lower 4 states.
The hyperfine Hamiltonian can be written as the

sum of three terms: the Fermi contact term, 3O H„.
the magnetic dipole interaction, ' H ~; and the quad-
rupole term H, :

2 3

H = —~" Z i s 5'(r ) (0)
k=1

I I& I s, 3(I r)(s, r)
md ~ ~3 ~3 + ~5=1

24-

th

d

$22

2I

20—

0 '

(Is)HO

(leap) P
(Is,2p) P

(ls, 2s) S

(Is,2s)5

(Is) He

t
P
P

(ls,2s,2p) He

where I is the nuclear spin, g„ the nuclear g factor,
M the nuclear mass, and e the fine-structure con-
stant. Since we are assuming LS coupling, we can
then write

Hc=acI'S ~
(I la)

H „=C [I ~ L+~ [(I ~ S)L(L+1)——(I ~ L)(L ~ S)

——'( L ~ S)(I L)]}. (lib)

FIG. 2. Calculated (ls, 2s, 2P) multiplet energies in
He along with exPerimental energies of other relevent
levels.

are good to 2%; C ~, C„, and C, 5% in Li, 10%, in

He; but, for both cases, C~ is a problem. It
arises because the two contributions to C, the
spin-orbit effect and the spin-other-orbit effect,

Since the quadrupole contribution is much smaller
than Hhf or H~, we consider only diagonal (in J)
matrix elements and can write 0, as '

H, = [Qqq/2I (2I —1)Z(2J—1)][3(I~ J)~+ j I ~ J
—I(I+ 1)J(J+1)]. (»)

Here Q is the nuclear quadrupole moment and

q. =-«, ~.=~I(3cos'ea, -l/~a')I ~, M. =W

= &(I/&ap)) fz

C, =Q((1/rz )) independent of 4 .

3.0, -

?.0

1.0-

J & I/2

LI

5/2

The calculations are carried out directly for the
highest F state ( F= I+ J) in each case, and Eqs.
(11) and (12) are then used to find the contributions
for the lower F states.

Since the configuration we are considering has
two unpaired s electrons, the Fermi contact con-
tribution is so large that the hyperfine splittings
are of the same order of magnitude as the fine-
structure separations. Thus it cannot be considered
a small perturbation, and we must diagonalize the
fine-plus-hyperfine energy matrix to obtain the en-
ergy levels. The results are shown in Fig. 3 for
Li and Fig. 4 for He, and the parameters C, C„,
a„C~, and C, are shown in Table II.

The accuracy of these calculations is determined
by how well the parameters C, C„,a„C ~, and
C, are known. We estimate that our values of a,

T
E

4~ 5/2 Je5/2

-I.O

-2.0-

FIG. 3. Calculated fine and hyperfine structure of
(1s, 2s, 2p) P in Li and Li .

7/2

5/2
3/2
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are nearly equal in magnitude and opposite in sign.
Thus we would put the maximum error of C~ at
5o-'oo%.

It is important to note, however, that, although
the values of the constants determined using our
Hartree-Fock wave function have inaccuracies as
pointed out above, the parametrization that we have
written out for the fine and hyperfine energies

H, +H„+H +H~+H

with the terms given by Eqs. (8}, (11), and (12}, is
still correct as long as LS coupling holds. This is
the case for our states as evidenced by the config-
uration interaction wave functions, ~ '~ which give
excellent electrostatic energies and are pure LS
functions. Hence our calculation should be con-
sidered a first approximation to the values of the
constants. The par ametrization along with our
values of the constants will be used in the following
paper to determine the actual values and, thence,
the fine and hyperfine structure.

C. Lifetimes

He

5/2

JNI/2

Ji 5/2

He

F
0

2
I

TABLE II. Calculated fine- and hyperfine- structure
parameters in cm ' for Li and He .

Cls ac CififI C

He3

He4

Li'
Li7

—0. 101
—0. 0613 0. 0114

0. 065
—0. 325 0. 185 0. 172

0. 187x10 3

~ 0 ~

0. 775 x 10-3 0. 185xlO-&
0. 205 x 10 0. 105x 10 3

In order to calculate lifetimes we use a projec-
tion-operator technique we have devised. This
method has been discussed in detail previously,
so we shall just outline it here. The first step is
to obtain the Hartree-Fock solution to the initial
state g, and construct an operator to Hp to which it
is an eigensolution. Using this operator we find a
final-state wave function gz (which turns out to be
very close to the Hartree-Fock final function)" and
get the transition matrix element of the total Hamil-
tonian H Hp between the initial and final states.
The decay rate (the inverse of the lifetime) is then
given by

R= (2vjR ) ~ (%(~ H-Hd~ +y) ~ p, (14)

where p is the density of final states. Then to ob-
tain the decay rates of the 'P states we use the
wave functions obtained in the diagonalization of the
energy matricies in the structure calculations of
Sec. IIB. The J=-,' states ('P», ) will be connected
to the (1s, df ) F»d continuum only through the
spin-spin Hamiltonian. The 'P3/p and Ppp states
will decay to the (Is', &p) 'P„2, P«, continua via
the spin-orbit plus spin-other-orbit plus spin-spin
interactions, so that they very likely decay some-

FIG. 4. Calculated fine and hyperfine structure of
(1s, 2s, 2P) 4I' in He3 and He4 .

.i,oeo ~old Y ( I ~ 01 ~4g ) ~old
~f (15)

what more quickly than the 'P~& states. We must
however, further, consider the mixing of the 'P
states with the P, and 3P states, since the coupling
of the 'P states to the continuum directly is a priori
of the same order of magnitude as their coupling
to the continuum via the doublet states. This is
because the quartet states are directly coupled to
the continuum by the fine-structure Hamiltonain
and the coupling is thus of order ~'; while the cou-
pling to the doublets is by the fine and hyperfine
Hamiltonians, also of order &,' and the doublets
are coupled directly to the continuum by the elec-
trostatic operators of order unity. This mixing
only occurs, of course, for the J=-,' and & states
since the 'P's do not have a J= —,

' component. Fur-
ther, this mixing does not affect the P fine or hy-
perfine structure very much since the fine and
hyperfine structure in the P's are of the same or-
der of magnitude as in the P so that, when multi-
plied by the rather small (= 10 ') mixing coefficient,
their contribution is negligible.

To find the wave functions of the 4P states in-
cluding the doublet contribution, perturbation theory
can be used, since the quartet-doublet matrix ele-
ments are of the order of 1 cm ', whereas the sepa-
ration of the states is of the order of eV. Then
using the well-known formula from perturbation
theory
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we obtain the wave functions of the system.
We now note that all of the states of different F

and J within a given doublet will have essentially
the same coupling to the continuum, since the elec-
trostatic operators are four orders of magnitude
larger than the fine-structure operators. We shall
denote these matrix elements for P, and 'P by
M, and M, respectively. Further, within the P
state all the different F levels arising from a given
value of J will have the same coupling to the con-
tinuum, since the auto-ionization is carried by the
fine-structure Hamiltonian which is diagonal in J
but independent of F. We denote the three matrix
elements for J=-'„» and-,' as M»» M3/p, and M, ,~.

As an example of how the calculation goes, con-
sider a state of Li with F = 3, M~ = 3 of the form

g=a I'P, J= —,', F

+cI P„z=-'„

=3, M~=3)
F= 3) Mp, —-3)
F= 3, M~= 3)

+dI P, J= —,', F=3, Ms=3) .

The auto-ionization rate of this state is then

(16)

&=(2~/~)(al'Msi~l'+
I

~M»~+cM, +dM I')n(~) .
(17)

The fact that different hyperfine states have dif-
fering amounts of J=-', , -'„and —,

' character, aswell
as of ~P, character, means that, in general, they
will have differing metastable lifetimes, i. e. , the

phenomenon of differential metastability. Further,
since the J=-', states are only coupled to the 'P's
through the hyperfine Hamiltonian and are coupled
directly to the continuum only through the spin-spin
Hamiltonian, it is expected that these states will
be most weakly coupled to the continuum and, thus,
have the longest lifetimes. It is important to note,
however, that this may not always be the case.
Since the J =-,', —,

' components of the 'P and P states
auto-ionize to the same final states, their transition
matrix elements add up coherently [as in the second
term in Eq. (17)] and thus, depending upon the signs
of the mixing coefficients and transition matrix ele-
ments, the decay rates of some of these lower J
states could be anomalously small and their life-
times correspondingly large.

The results of our calculations are shown in
Table III for Li', Li, He', and He'. Here can be
seen the effects of coherent mixing in the J=-,' states
of He' and Li designated by asterisks. Due to can-
cellation between the contributions, the decay rate
is small and the lifetime thus anomalously large.
Unfortunately the cancellations are so large tnat,
when considered in conjunction with the uncertainty
in each of the component matrix elements due to
the nature of the simple model we are using, these
lifetimes are not at all reliable. Relatively small
changes in the component matrix elements can

change these asterisked lifetimes by more than an

order of magnitude. Thus, we reemphasize, these
results show the type of effects than can occur
under certain circumstances, but are not of suffi-
cient accuracy to necessarily agree with experi-
ment. The other lifetimes should be rather better,
but are still not to be taken too seriously. The
results for the states associated with J= —', are more
accurate than the lower J states, and the Li results
are more reliable than those of He.

The addition of a magnetic field will not be con-
sidered in detail, but its effects can be described
qualitatively. The Zeeman Hamiltonian introduces
no new mixing between quartet and doublet states,
but it does have an interaction between states of
the same M~. Thus the degeneracies of the M~
states are removed and, as a function of magnetic
field, the energy levels change. This in turn causes
level "anticrossings" between states of the same
M~ and crossings between states of differing MF.
These shall be discussed further in the following

paper.
The Zeeman interaction thus causes the wave

function of a particular level to change as a func-
tion of magnetic field; in particular the amounts of

J =-'„-,', and & will vary. Hence the lifetimes of
the levels will change if the magnetic field does,
and the states that were long-lived at zero field will
be mixed with shorter-lived ones, so that their
decay rates will be, in general, increased. This
will happen unless, of course, a particular value
of the magnetic field causes a large amount of co-
herent cancellation of the matrix element, which is
unlikely. This shortening of the lifetime of the
various states as a magnetic field is turned on, is
known as Zeeman quenching. Note that a relatively
small field would quench long-lived lower J states,
so that even if our results are correct, it is unlikely
that these states would be seen unless they were
looked for in a field-free region.

The states of highest F with M~ = + F are, how-
ever, never mixed with any other state. Thus,
with a large magnetic field, after a short time es-
sentially all of the other states will have decayed
leaving only atoms in these states. Subsequent
decays would then yield polarized electrons which
could be used in a variety of ways.

III. FlNAL REMARKS

The formalism presented in this paper is not only
useful in the interpretation of experimental data on
the (ls, 2s, 2p) 4P states, but also provides some
insight into the details of the decay and structure of
these states. Further, it should be helpful in un-
derstanding metastable auto-ionizing states, which
are found in other alkalis and alkalilike ions and
which may occur in other atomic systems as well.
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TABLE III. Calculated lifetimes in ysec of the states arising from (1s, 2s, 2p) 4P in Hes, He, Li, and Li, including

the effects of the (1s, 2s, 2p) 2P levels. Those lifetimes marked by asterisks involved large cancellations and must be
considered extremely unreliable.

l3, 5/2&
12, 5/2&
l2, 3/2&
I1, 3/2&
I1, 1/2&
lo, 1/2&

He3

1000
370

65
29
21
80

I 5&2, 5/2&
I 3/2, 3/2&
I 1/2, 1/2 &

He4

1000
33

3500*

I7/2, 5/2&
I 5/2, 5/2 &

I 3/2, 5/2&
I5/2, 3/2&
I 3/2, 3/2&
I 1/2, 3/2&
I3/2, 1/2&
I 1/2, 1/2 &

Li6

5. 88
5. 88
5.05
0.24
0.25
0.29

100~
29*

I 4, 5/2&
I3, 5/2&
l2, 5/2&
I1, 5/2&
I3, 3/2&
I2, 3/2&
I1, 3/2&
lo, 3/2&
l2, 1/2&
I1, 1/2&

5. 88
1.47
2. 30
5. 87
0. 28
0.30
0.32
0.35

20. 0*
10.2*

The particulars of each of these states wiB be dif-
ferent, but they should all exhibit many of the fea-
tures which we have discussed, such as differential
metastability, Zeeman quenching, and anomalously
long-lived states due to coherent mixing of matrix
elements as in our treatment of the (ls, 2s, 2P) 'P
states.

At this point it is worthwhile to consider how

these calculations may be improved. The fine and

hyperfine structure of the 'P state could be calcu-
lated quite accurately using one of the good cor-
related' ' or configuration-interaction' wave func-
tions which are currently available. The results
could be further improved by adding in radiative
corrections and by amending the wave function to
include deviations from LS coupling, i.e. , mixing
with doublet states. This calculation would be a
tremendous amount of work, but it is conceivable
that the results would be as accurate as hydrogen,
n =2 results. Then, since the splittings in this
state in lithium are an order of magnitude larger
than in hydrogen, a careful experiment could obtain
an independent value of the fine-structure constant

better than is now known.

Improving the lifetime calculation is somewhat
more difficult. 'Ihe quartet states alone (ignoring
the coupling to the doublets) could be treated more
accurately by an extension of our technique to cor-
related wave functions, or by some other projection
operator method, e.g. , the Feshbach formalism.
The doublet states alone can be well calculated by
the close-coupling technique or by a projection-
operator method. 3 To treat both, with the attendant
fine and hyperfine mixing, on the same footing as
close coupling, would lead to exceedingly complex
coupling integrodifferential equations, which would
be extremely difficult and time consuming, if at all
possible, to solve. Thus the best prospect for a
better calculation seems to be by a modification of
an existing projection-operator method.
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A general treatment is given for the interaction of two propagating modes when they are non-
linearly coupled by a large-amplitude driving wave. The equations describing the space-time
development of the mode amplitudes have a certain symmetry due to the constraints of small-
signal energy conservation. The wave solutions, given the vector coupling relations (~„
= ~~+ ~&, kz —-k, +k&), are Of four possible types, depending on the signs of the energy den-
sities and group velocities of the individual modes. The periodicity imposed by the driving
wave is used to construct a spatial-temporal harmonic dispersion diagram in which these
interactions are displayed. The results are then shown to be generalizations of the wave-
wave couplings of linear theory.

I. INTRODUCTION

Many wave-interaction phenomena in nature can
be adequately described by coupled mode equations.
In the case of linear or direct coupling, the four
possible two-mode solutions have a well-known
symmetry. ' Lately, nonlinear wave-wave or "para-
metric" interactions have become a subject of much
interest in plasma physics. "5 In many of the prob-
lems which have been treated, including those of
the greatest experimental relevance, similar under-
lying mode-coupling symmetries operate. The fol-
lowing is a development of the form of these con-
straints.

The nonlinear effects which are to be described
are those caused by the impression of a high-level
driving wave, which, in relation to other low-level
signal waves, may be considered to have a sub-
stantially constant amplitude. This assumption

allows a quasilinear treatment of the second-order
terms in the equations. Under the common condi-
tions of harmonic excitation and ~eak coupling
these equations may be reexpressed in terms of the
quiescent normal modes of the system with small
intermode interaction coefficients. The treatment
of this generalized class of dynamical equations in
the linear case was conceived by Pierce and is
called the coupling-of-modes theory.

We will consider an extension of this theory in
which a nonlinear interaction may be accurately de-
scribed by the parametric coupling of takeo z-direct-
ed modes (a, b). This coupling is effected by the
impression of a driving or "pump" wave d satisfy-
ing [Fig. 1(a)] the Fourier-analysis vector rela-
tions

where all frequencies are positive and co, «~,. The


