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expansion and evaluated leading terms for the pho-
non frequency and damping which were not available
before.

The rather sizable reduction in algebraic com-
plexity using our method seen s to indicate that the
next order, i.e. , the two-ring terms, is not out of
reach. The study of two-ring diagrams will be much
more than just a mathematical exercise. It will be
a critical examination of the so-called "four-phonon
process" and it will indicate the role of close-range
interactions. The numerical results (5. 38)-(5.40)
are not expected to be too useful in fitting the pho-

non dispersion data of superfluid helium. Of course,
useful numerical coefficients are not the objective
of our calculation. We hope the above analysis has
demonstrated a more novel method of calculation
as well as given a clearer physical picture.
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Generalized hydrodynamics for classical fluids composed of structured molecules is dis-
cussed from a fundamental microscopic viewpoint. The analysis is concentrated on collec-
tive fluctuations of the intrinsic molecular angular momentum, and their coupling to the con-
served densities of particle number, linear momentum, and energy. It is found from sym-
metry that the transverse components of linear and angular momentum are dynamically cou-
pled, while the longitudinal angular momentum density moves independently of the other vari-
ables. By using the Zwanzig-Mori projection-operator technique, we derive closed and rig-
orous equations of motion for the set of fluctuations considered. For the case where the in-
trinsic angular momentum is not far from being separately conserved, approximations can
be motivated which reduce these equations to simple relaxation equations, valid for small k
and long times. General, Kubo-type expressions for the relaxation coefficients are given.
Finally, sum-rule considerations are presented from which these coefficients can be approx-
imately calculated.

I. INTRODUCTION

The dynamics of collective fluctuations in mon-

atomic classical gases and liquids has been studied
extensively and is, in general terms, fairly mell
understood. Comparatively little is known about the
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dynamical behavior of molecular fluids which are
capable of translational as well as internal, e. g. ,
rotational, motion. hile there is an increasing
number of experiments' and computer studies '

on polyatomic liquids, their interpretation is often
uncertain. Typical of this are the studies of depo-
larized light scattering by Stegeman and Stoicheff.
In several polyatomic liquids including quinoline,
they have observed a depolarized doublet centered
at the incoming laser frequency. It is not clear
whether this splitting is caused by high-frequency
shea. r waves as they suggested, by individual mo-
lecular orientational Quctuations, or by some other
mechanism. The difficulty in molecular fluids is
due to the fact that translational and internal modes
of collective motion are generally mixed. In this
paper we will restrict attention to a particularly in-
teresting example of this, namely, the coupling be-
tween molecular rotations and mass flow.

Consider, for simplicity, a classical isotropic
one-component Quid of rigid structured molecules.
The rotation of the oth molecule around its center
of mass can be described by its space-fixed angular
momentum S (f) which we shall call its "spin. " We
will be interested in the decay of Quctuations of the
corresponding locally averaged spin density S(rf),
and its dynamical coupling to fluctuations of the
linear momentum density g(rt). Since local devia-
tions from equilibrium are usually small, such
Quctuations can be conveniently discussed in terms
of equilibrium-averaged, space- and time -dependent
correlation functions' which contain all the infor-
mation obtained from scattering experiments and
some of the information obtained from computer
studies. Using the projection-operator methods of
Zwanzig" and Mori we will derive and discuss
generalized Langevin equations for the fluctuations
of g(rt) and S(rt). These equations are rigorous and
non-Markovian. In general, they are useful mainly
in clarifying certaingeneral properties of the Quc-
tuation spectrum. However, in the important region
of slow spatial variation (sma, ll wave number k) and
long times (small frequency ur), they reduce to sim-
ple relaxation equations similar to those of pheno-
menological theory, ' provided that the spin density
is "almost" conserved, in a manner described be-
low. In this case, we obtain Kubo-like expressions
for the relaxation coefficients in terms of well-de-
fined correlation functions of microscopic Quxes.
The description can be extended to shorter times if
one is willing to approximate the memory functions
involved by appropriate parametrized trial functions.
Parameters can then be determined from equilibrium
statistical mechanics through the use of high-fre-
quency sum rules, and these can then be used to cal-
culate the low-frequency relaxation coefficients.
This procedure has been quite successful in simple
liquids. '

—S,(k, f)= —2ik '-g„(k, f)-4~ S„(k, f), (1. 1b)

where g and g„are shear and rotational viscosity
coefficients, respectively, p is the number density,
m the molecular mass, and I the average moment
of inertia of a molecule. The longitudinal spin
density S,(k, t) does not couple to the hydrodynam-
ical variables and relaxes according to the equation

S,(ki f) = —4 —"Sg(k, f) .et ' ' Ip (l. 2)

The interesting feature of these equations is that
the same coefficient g„describes both the decay of
spin-density fluctuations and their coupling to mass
flow. This is a consequence of angular momentum
conservation. We will verify this behavior from the
microscopic theory, and show that near k = 0 it can
be extended to arbitrary times or frequencies when
p„becomes a frequency-dependent memory function.

Equations (1.1) and (1.2) are essentially hydro-
dynamic and expected to hold only w hen (ka) «1,
where a = (I/m)'~ characterizes the size of a mole-
cule. If also (ka)'« 'g„/q, the normal modes have
a particularly simple physical meaning; they can
be written in the form

Before embarking on a formal discussion, let us
briefly recall the "hydrodynamical" theory of a
viscous molecular fluid given by de Groot and Ma-
zur. '3 Strictly speaking, the hydrodynamical des-
cription (valid in the limit of small k and long times)
is, of course, the same in polyatomic as in mon-
atomic fluids and is given by the Navier-Stokes equa-
tions for the densities of mass, energy, and mo-
mentum. " Because of the conservation laws, local
Quctuations in any of these quantities decay extremely
slowly since they cannot decay locally but must
spread throughout the system. It is important to
realize that there is no additional hydrodynamic
mode (i. e. , a mode whose lifetime increa. ses to
infinity as k-0) that would correspond to conserva-
ation of angular momentum, since the translational
part of the angular momentum density r &&g(rt) is
not a local quantity. Indeed, a local fluctuation in
the spin density S(rt), for example, can be locally
and therefore rapidly transformed into translational
vortex motion whose slow decay is then described
by the usual equations of hydrodynamics.

The equations of de Groot and Mazur' are sup-
posed to be valid at shorter times when this process
of the decay of spin-density fluctuations into vortic-
ity takes place. From symmetry, S(rt) can only
couple to the transverse part of g(rt). For spatial
Fourier components, with k chosen in the z direc-
tion, the phenomenological equations are of the form

g(kf): ~ ik2g (k t)+2ik~Si(ki f) i (1 la)
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(V x v —2~),(k, t) e-""""~",

(~g+ 1px S) (k t) ed'/rtlp)k~t

(1.3a)

(1.3b)

p, u, and g obey differential conservation laws.
In particular, momentum conservation can be writ-
ten as (summation over repeated vector indices is
implied)

V xv(rt) = &x—g(rt)/m is the local angular velocity
Of vortex motion which first equalizes with the local
angular velocity of molecular rotation u&(rt) = S(rt)/
I .'s The slower process (1.3b) is the truly hydro-
dynamic one of viscous flow; we show in Appendix
A that g+ —,

' V xS is the total momentum density if
the finite size of molecules is taken into account.

Much of this article is devoted to a derivation of
phenomenological equations like (1.1) and (l. 2)
starting from the Liouville equation of motion. In
Sec. II, we introduce the relevant dynamical vari-
ables (A„}=(p,u, g, S], namely, the densities of
number, energy, momentum, and intrinsic angular
momentum. We then use the symmetries of the
system to show that S, couples only to g„, for ex-
ample, while the longitudinal component S, is un-
coupled from the rest. In Sec. III we write down
rigorous Langevin-type equations for the A„, and
discuss their general properties. Sections IV and
V are then devoted to the reduction of these rigor-
ous and complicated equations to simple relaxation
equations like those exhibited above. In Sec. VI we
indicate how the relaxation coefficients could be
approximately calculated from various sum rules.

II. DEFINITIONS AND SYMMETRIES

We begin with a definition of the microscopic
densities with which we are concerned. These in-
clude the locally conserved densities p(rt), u(rt),
and g(rt) of particle number, energy, and momen-
tum which are needed if the hydrodynamic limit is
to be rendered properly, and the spin density S(rt)
in whose correlations we are particularly inter-
ested. They can be defined by

—g((rt)+ V,r„(rt) = 0 .
at

(2. 2)

where E is the force between molecules 0,'and P,
N is the number of molecules, and a, » is the Levi-
Civita symbol. v,'~ is thus a torque density which

couples rotational and translational motion. Be-
cause of this coupling, the spin density is not in-
dependently conserved but obeys the equation

at
S ( rt) + &/0'(/(rt) eg/gr/g(rt) (2. 4)

where e„ is the spin current. " Combining Eqs.
(2. 2) and (2. 4), one can readily see that the total
angular momentum f dr[rxg(rt)+S(rt)] is con-
served. However, the spin density is independently
conserved only if the intermolecular forces are
purely central so that 7',

&
= 0.

The central objects of our discussion are the
correlation functions

C„„(rt)=(A„(00)A„(rt)) -(A„(00))(A„(rt)) (2. 6)

and, more conveniently, their Fourier transforms
(k+ 0)

Here, v, &
is the microscopic stress tensor which

serves as a momentum current. In simple liquids,
v, &

is symmetric. In a system of molecules which
interact through noncentral forces, ~,&

has an anti-
symmetric part r',

&
= —,'(r,

& r/, -) whose spatial in-
tegral is given by

J draff/(r)= MN-rf, ( k= )0

,'c, /-, -Q [(r -r~)x F ], , (2. 3)
Nfg

p(rt) =~,5(r -r (t)),

u(rt) =Q, » (t)5(r-r'(t)),
g(rt)=Z. p (t)6(r-r (t)),
S(rt) =Z.S (t)6(r r™(t)), -

(2. la)

(2. lb)

(2. lc)

(2, ld)

where the sums extend over all molecules of the
system. r (t) and p'(t) are the center-of-mass
position and momentum of the ath molecule at time
t, S'(t) is its internal angular momentum about its
center of mass, with respect to the laboratory
frame of reference. Its energy e'(t) includes trans-
lational and rotational kinetic energy as well as the
potential energy in the generally noncentral field of
its neighbors. These definitions treat the molecules
as oriented and spinning particles but neglect their
finite size otherwise. They are appropriate only
if the fluctuations occur at wavelengths»& u.
(This point is dealt with in Appendix A. }

C,„(kt) = (A„(~, 0)A„(kt)) . (2. 6)

Here, ( ) indicates an equilibrium average, and

(A, (rt)} is the set of dynamical variables of Eqs.
(2. la) -(2. ld) whose Fourier components are given

by, e. g. ,

S(k, t)=X'"Q S (t)e"'"" (2. 7)

Invariance under time reversal results in

and similarly for the other variables. We shall
always choose k to point in the z direction.

Before discussing the equations of motion for the
correlation matrix C„„(k, t), let us exploit the sym-
metries of the system In writi. ng down Eqs. (2. 5)
and (2. 6) we have tacitly assumed translational in-
variance in space and time. Since all of the vari-
ables A„(rt) are real we get in addition

C„„(k, t) = C „„(-k, t) = C„„(-k, - t) . (2. 8)
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C~„(k, t)= e'"'C, „(k, v),
~00

(2. 13)

C„„(k, t)=«r„«rC„„(k, —t), (2. 9)

where «„ is the signature of A„; « =1 for {p, u}
and « = —1 for {g, S}. We further assume that both
the Hamiltonian and the equilibrium ensemble are
invariant under the parity operation, excluding from
consideration such systems as nonracemic mixtures
of optically active molecules. In this case we have

C,„(k, t}=«~«~C„„(-k, t}, (2. 10)

where « =1 for {p, u, S}and « = —1 for g. The
most important simplification results from rotation-
al invariance in association edith parity. For ex-
ample, (g f(k, 0)S((k, t)) tran. .'orms like a pseudo-
tensor under improper rotations. However, the
only function of k with that property is E &» k, = E &»k,
so that we have

(g((k, 0)S((k, t)) =t«((zkF~, (k, t), (2. 11)

where F„(k, t) is a scalar function of k, and is
real and even in t because of (2. 8) and (2. 9). Sim-
ilar arguments show that {A~}separates into four
sets, namely,

{A„}={p, u, gg, {Sg, {g„,Sg, {g„S„},(2 12)

such that members of any two sets are uncorrelated.
The last two sets are, of course, equivalent. We
note that these arguments hold only in the absence
of long-range order, excluding liquid crystals in
which three-dimensional rotational symmetry is
broken.

Finally, let us note an important positiveness
property which is connected to the dynamical stabil-
ity of the system. If we define Fourier transforms
in time by

proved without difficulty from the positiveness
property Eq. (2. 14) (see Appendix B). Using the
projector method of Zwanzig ' and Mori' we can
write down "explicit" expressions for 0 and K.
If L is the Liouville operator, defined such that
A„(k, t) =e' 'A„(k), then II and K are given by

|I„„(k)=—II„„(k)C„„(k)=(A*„(k)LA„(k)), (3 2)

K„„(k, t) -=K„,(k, t)C„„(k)

=(A*„(k)e("'"'(I -P)A (k)}, (3 3)

where C„„(k)—= C„„(k, t=0). P is the Projector onto
the subspace of the variables {A„(k)}which we can
define by

PG(k) =—Z A „(k )C~„(k' }(A„(k' )G(k) )

=A„(k)C„'„(k)(A„*(k)G(R)}. (3. 4)

Because of translational invariance, only the kth

component of P is effective in (3.3). We have in-
cluded the g(,. in (3.4) to demonstrate that P is in-
variant under rotations and parity, as well as time
reversal. It is therefore clear that K„„(k, t) has
precisely the same symmetry properties as C„„
(k, t); in particular,

K„„(k, t)=K~„(—k, t)=Kc~(-k, -t)
= «~«„K„„(k, —t) = « «„~K„„(—k, t), (3. 5)

where K„„(k, t}((0 only if ((, v represent variables
of the same set in (2. 12). It is also easy to see
that Q„„(k)= —i0 (k„„t=, 0) connects only variables
A„(k) with opposite signatures under time reversal;
it is therefore zero in all but the first set of vari-
ables of (2. 12), {p, u, g,}. Note that this implies
that

(2. 14)

then C„„(k, &o) is a positive matrix in any stable
system,

4 a*„C„„(k,(d)a„~ 0

PS(k) = Pg„(k) = P'g„(k) = 0 .
Most importantly, the Fourier transform

K,„(k, ur)= J „dte 'K„„(k, t)

(3. 6)

(3 't)

for all k, & and arbitrary {a„}.Equation (2. 14) is
easily proved from the definition (2. 5) with the aid
of Bochner's theorem. "

III. EQUATION OF MOTION

We now turn to the equation of motion for the cor-
relation matrix C(k, t) ={C~„(k, t)}. It is by now
well known that it can always be written in the com-
pact form

(3. 1)

where A(k) is the frequency matrix and K(k, t) the
memory-function matrix. Its existence can be

is a positive definite matrix

Q a„K„„(k,(d)a„~ 0 (3. 8)
tty V

for all k, (d and arbitrary {a„}.This is easily
proved from (2. 14) and (3.1), or directly from (3.3)
using Bochner 's theorem. Equation (3.8) guarantees
that the solutions of Eq. (3. 1) decay, rather than
grow, as t- ~.

Equation (3.1) poses an initial value problem; it
is more convenient to analyze it in terms of Laplace
transforms which we define by

C„„(k, z)= Jo dte '(C„„(k, t), Imz& 0 (3. 9)

and similarly for K„„(k,z). Both functions are then
analytic in the lower half of the complex z plane;
in the upper half-plane, they are defined by analytic
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continuation. Equation (3. 1) then takes the form

[z -Q(k) —iK(k, z)]C(k, z) = (1/i)C(k) . (3.10)

(g f(R)gq(k)) = mksT5;, , (3. 1la)

( S (*(k) Sg ( k) ) = Iks T5;),
(g f(k) S~(k)) = 0, (3. 11c)

where m is the molecular mass, I= —,'tr.I is the sca-
lar part of the moment-of-inertia tensor of a mole-
cule, and k~T is the temperature in energy units.

Equations (3. lla)-(3. llc) are exact classically
if, as is usually the case, the molecules interact
via velocity and spin-independent forces. Other-
wise, they hold at least in the limit as k- 0; they
are not crucial to our discussion, and could easily
be dropped.

(3. 1 lb)

IV. LONGITUDINAL SPIN FLUCTUATIONS

We first consider the longitudinal spin density.
S,(k, t) since it is fully decoupled from the other
variables under consideration. Its correlation func-
tion is given from Eq. (3. 10) by

(I/i)fk, T
Cs,s, (k, z)-=c~s(k, z)=

in terms of the memory function

Ks(k, z) = (fks T) ' f dt e '

(4 I)

x(S, (k)e'" ' '(I -P)S,(k)) ~ (4. 2)

From Eq. (2. 4) we have

Sg(k) =iko, g(k)+ 2&r„',(k), (4. 3)

where we have written v'„= X~',
~ for the antisymmet-

ric part of the microscopic stress tensor to display
the strength X of the interparticle torque.

A. Infinitesimal Torque

I et us consider infinitesimally small k and ~,

For a system which is invariant under rotations and
reflections, Eq. (3. 10) separates into four uncoupled
matrix equations, one each for the sets of variables
of (2. 12). These equations will be analyzed in Secs.
IV and V. Since we are mostly interested in the spin
density S(k, t), we will not discuss any further the
set (p, u, g,}from which S is completely decoupled.
In the limit of small k and long times (small ! Imz I ), .

the equations for this set reduce in a familiar man-
ner' to the Navier-Stokes equations of hydrodynam-
ics, and only the numerical values of the transport
coefficients reflect the molecular structure of the
fluid.

We already noted that for the remaining variables,
II(k) = 0. As to the initial values C,„(k) we shall
assume for simplicity that the static correlations
between the vector variables g and S are of the sim-
ple form

the case where S, is almost conserved. Since all of
the conserved variables have been projected out,

Ks (k, t) presumably decays as e~' where 1/y is a
microscopic relaxation time and finite even as
k- 0 and X- 0; this meansthat K~&(k, z) is analytic in

z for Imz & y. However, Ks'(k, z) vanishes as k =0
and X= 0, so that in this limit Cs(k, z) has a single
pole at the origin which reflects Eq, (4. 3). Assum-

ing that Ks'(k, z) is a well-behaved function of both

k and X, this single pole moves upward on the imag-
inary z axis. To lowest order in k and X, it is
given by

z = iKs (k, z = 0) = i (4X v„+ k D), (4. 4)

where the rotational viscosity coefficient vr is given

by

v„= (IkzT) 'limlim f dte "
6-0 a-0

A-0

x(&'„, (k)e'" ' '(1 -P)s„'„(k)),

and the spin diffusion coefficient D by

D = (fkzT) ' lim lim f dt e "
6-0 0-0

0

x(o*(k)e' ' '(1 —P)o'„(k)) .

(4. 5)

(4. 6)

In the limit of small k and X, the behavior of Cz
(k, z) is dominated by the "hydrodynamic" pole
(4. 4). Instead of (4. 1), we can write the correlation
function as

(I i/)Ik zT

—'(4&'v +k'D) 'r+ (4. 7)

which corresponds to the equation of motion

Sg(k, t) = -(4A. v„+k D)Ss(k, t) (4. 8)

for the longitudinal spin density. This is the equa-
tion (1.2) of de Groot and Mazur, with q„/Ip = X'v„.
However, Eq (4. 8) co.ntains the additional relaxa-
tion term k D to account for spin diffusion.

Both transport coefficients v„and D are real and
positive as is clear from Eq. (4.4): They are real
because from Eqs. (3. 5) the imaginary part of
Ks(k, co - i0) is odd in w and vanishes at u = 0; they
are positive because the real part of Ks (k, ~ -i0)
is positive [see Eq. (3.8)]. Both coefficients can
also be expressed by Kubo relations which are ob-
tained from Eqs. (4. 5) and (4. 6) by omitting the
projector P everywhere. This is accomplished with
the help of the relation

Ks(k, z) =4 s(k, z)[1+ (i/z)4,'(k, z)] ', (4. &)

where Cs(k, z) is given by Eq. (4. 2), but without
the projector. To order k and &, therefore, we
have E= @ and the projector P can be omitted from
Eqs. (4. 5) and (4. 6).

v„can then be calculated from the autocorrelation
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D=lim-,' J dte '(v(0) v(t))„o
&" 0

(4. 12)

in terms of the one-article velocity autocorrelation
function. Of course, in the absence of interparticle
torques, the spin-density correlation function is
simply proportional to the self- (or test-particle)
correlation function, Cz,.s (k, t)=6;~(IkzT)Fz(k, t).

Finally, note that the Kubo relations (4. 11) and
(4. 12) [or (4. 6) without the P's] can also be ex-
pressed in terms of the Fourier transform C(w)
=2ReC(m -i0) by

v„= (8IkaT) Iimlimlim(ig /X )Cz(k, ~), (4. 13)
g 0 X 0 0 0

D=(2IkaT) Iimlimlim(ig'/k )Cz(k, ~) . (4. 14)
tz)" 0 k™0 h-0

In these formulas, it is crucial that the limits be
taken in the order indicated. This is apparent from
the hydrodynamic form

ig + 4k%„+k D)

B. Finite Small Torque

The assumption of an infinitesimally small non-

function of the total torque N = ~ N which is given by
[cf. Eqs. (2. 3) and (2. 4)]

A

d r 8(r, t ) = &N(t) = —z Q r' (t) x F~(t), (4. 10)Bt 0t@

and to which, obviously, only the noncentral inter-
particle forces contribute. With this definition4
of N, we get

OO

v, = (Ika T) lim( ,'N) -dt e '(N(0) ~ N(t)), (4. 11)
6" 0

0
where N(t) = e' '

~ N(0) is calculated in the absence
of noncentral forces.

Let us note here that the limit X- 0 does not nec-
essarily imply that interparticle torques disappear
completely. In this limit the Hamiltonian is sepa-
rately invariant under rotations in coordinate space
and in "spin space" so that the total spin S=g 8 (t)
is conserved even though the individual 8 (t) might
continue to depend on time. This would be the case,
for example, if the potential energy between two
particles contained terms of the type V( I

r~
I )

x B(e' ) where the function It depends only on the
relative orientation of the particles, not on their
position.

However, if there are no such terms left at ~= 0,
we have S'(t) = const at X = 0 for each particle. In
this case, S is just a tag attached to the molecule.
D is then simply the self-diffusion coefficient. In-
deed, noticing that o~(k=0) =K'~'$, 8,p, /m we
can, at &= 0, take the spin average independently:
(8,'S„)=6~(IkzT). Then Eq. (4. 6) reduces to the
familiar form

central force is, of course, quite restrictive. In

this section we will relax this restriction somewhat,
assuming that X is finite but still small enough for
the spin density to relax more slowly than other non-

conserved microscopic variables. As X increases,
the hydrodynamic pole (4. 4) of C'z(k, z) solution of

the equation

(4. 16)z-iKz(k, z) =0

moves farther away from the real axis into the upper
half z plane. From Eqs. (3. 5) it is easy to see
that Kz (k, z) = [Kz (k, - z~)]*, so that solutions to
(4. 16) come in conjugate pairs. Therefore, a.s
long as the pole (4. 4) remains single, it is forced
to stay on the imaginary z axis. Let us first ne-
glect terms of order k . Then Eq. (4. 16) reads

z=4tq„( )z/Ip-=4irl„/Ip,

where

,'IpK', (0—, z) -=q„(z)

(4. 17)

Cz'(k, z) = Ikz T—.
z z -4zq„y'Ip (4. 18)

The renormalized pole strength Z„ is the residue
at the pole position, and is given by

(4. 20)

It is not difficult to see that Z„ is real and positive;
otherwise, Eq. (4. 17) would have another solution
closer to the real axis.

Equation (4. 19) is valid near k = 0, and for X still
so small that

(4. 21)

Under this condition, the phenomenological equa-
tion (l. 2) is therefore expected to hold for long
times, i. e. , times t»1/y. In calculating the cor-
relation function from Eq. (1.2), its failure at short
times has to be corrected by the renormalized pole
strength Z„. It measures the portion of the inte-
grated power spectrum Cz(k, r&) which is contained
in the central peak

= (12kzTV) J dte '*'(N e" ' 'N). (4. 18)

We have inserted (4. 10) into (4. 2), and used rota-
tional invariance. 4iq„/Ip is that value of z which
solves Eq. (4. 17). More to the point, it is the solu-
tion which moves to the origin as X- 0. For small
A. , then, 4'„/Ip will still be considerably smaller
than the imaginary parts of all other singularities
of Cz(k, z), and therefore wi'1 dominate the long-
time behavior of Cz(k, t). Only for such values of
X will the solution to (4. 17) be useful. Note that
g„can no longer be written as a Kubo relation.

The correlation function can then be written in
the form



1468 AILA WADI, BERNE, AND FORSTER

(4. 22)

() )( (1/i)Ikz T
z —4i'O (z)/Ip

(4. 23)

but it is hardly useful. In this case, the phenomen-
ological equation (1.2) loses its validity, even for
long times, and the spectrum can no longer be ap-
proximately represented by a Lorentzian.

V. TRANSVERSE FLUCTUATIONS

Let us now consider the transverse 2&&2 correla-
tion matrix

C~(k, t)=(A'. (k, 0)A, (k, t)}, (5. 1)

with A, = g, and A2 = S, . The second set Q„SQ of
transverse variables is, of course, equivalent.
The general memory function [Eq. (3. 10)] for the
Laplace transform is now a 2&&2 matrix equation

[z —tK'(k, z)]C'(k, z) = (I/i)C'(k}, (5. 2)

with the initial values C'(k) = mkzT, Cz'z(k) =IkzT,
and C)z(k) =- Cz, (k) = 0 as given by (3. 11). The mem-
ory functions K z(k, z)can be read off from Eq
(3.3); e. g. , we have

K,',(k, z)=(mk T) ' f dte '"(g,*(k)e"' ' 'g„(k) } .
(5. 3)

Let us now assume as before that k is small.
We insert

g, = i km„, = ik(v' + 7„',},
S„=ika„-27'„'g

(S.4a,)

(5.4b)

from Eqs. (2. 2) and (2. 4). Omitting only terms of
order ks, K'(k, z) then takes the form

The rest of the integrated strength is given by
(1 —Z„) and is distributed over a broad background
with little structure, at least at small frequencies
~4 ~

It may be worth pointing out that while Z„ is
always positive, there is no general reason for it
to be smaller than 1. Indeed, if )},(t)- e " for ex-
ample, we have Z„& 1, and the broad background
in Cz(k, &o) is negative. It is only the total power
spectrum, central peak plus background, which
must be positive for all ~.

It is straightforward to include in the above equa-
tions terms of order k which have been omitted
here. In this case, a diffusion term is added in the
denominator of Eq. (4. 19).

C. Finite Torque

As the strength A. of the interparticle torques in-
creases further, the decay times which are con-
tained in K)z(k, t) and Cz" (k, t) will be of the same
order of magnitude. For small k, we can still
write a spectral representation

q g +g„z mp -2ikg„s Ip
K'(k, z) =

2tk)}„(z)/mp 40„(z)/Ip+ k D,f
(5. 5)

where

n(z) = p/(kzT) f, «e "'(&¹(0)e"' "'r'„,(0) ),
(5. 6a)

det[z —iK'(k, z)] = 0 . (5.7)

Using (5. 5} it is easy to see that one of these poles
is given to order k by

z =ik'q/mp, (5. 8)

so that )}=-)}(z=0) is the shear viscosity. Indeed,
an argument similar to that following Eq. (4. 9) can
be used to show that at z =0, the projector can be
omitted from Eq. (5. 6a) and we obtain the familiar
Kubo relation '

'g = Iim Iim p/(kz T) dt e "(7„,(k, 0) r„', (k, t) ) .
6-0 k-0 0 (5. 9)

Note that it is only the symmetric part of the mi-
croscopic stress tensor which determines the shear
viscosity.

D, (z) = (IkzT) 'f" d-te ' (o*(0)e ' 'o„,(0)),
(5.6b)

)},(z) =P/(keT) f d« "'(r;,"(0)e'" )zr„',(0)} .
(5. Gc)

To derive (5. 5), note that r„'¹(0) ~ r„',(0) ) = 0
from rotational invariance. Vile have assumed that
there are no correlations between r'(0) and o(0);
this can always be arranged. " Equation (5. 2), with
K'(k, z) as given in (5. 5), is valid for small k but
arbitrary frequency z (and torque strength X). The
interesting feature of the matrix K' of (5. 5) is the
multiple occurrence of the function )}„(z). Note that
because of rotational invariance, )I,(z) is the same
function which we defined in (4. 18), and which thus
also determines the motion of the longitudinal spin
component. It is an expression of angular momentum
conservation that this one function )}„(z)describes,
for small k, the decay of longitudinal and transverse
spin motion, as mell as the coupling of spin and
linear momentum.

As it stands K'(kz) of (5. 5) is not very useful,
however, since the functional form of )}„(z),etc , is.
difficult to determine. However, if the torque
strength A is small (but finite) we can effectively
replace K'(k, z) by az-independent matrix of the
same structure to obtain an equation for C'(kz) which
holds for small k and long times. The argument is
very similar to that presented in Sec. IV, and we
mill therefore be brief. The dominant poles of
C'(k, z) are obtained by solving
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(5. 13)

to order k~, where Z„ is the normalized pole
strength defined in (4. 20). Equation (5. 13) is sim-
ply obtained by the same procedure that led to
(4. 19}.

According to Eq. (5. 11)then, the correlation func-
tions can be obtained from the equations of motion
for the local variables

—g„= — "k g„'+ 2ik ~ S~,
g + g p g

et " rnp " Ip ' '

=S = —2ik "g„—4 +k D, Sg 7/ p

ei ~ mp " Ip

(5. 14)

which are the phenomenological equations (l. la),
and (1.lb) modified to account for spin diffusion.
From our discussion it is now clear that these equa-
tions can be used for infinitesimal k and small &,

i. e. , if we have

k '0/mp«4)}, /Ip«y, (5. 15)

where 1/y is a microscopic relaxation time. They
describe the dynamics only for long times, t» 1/y.
Their failure at shorter times is compensated in

Eq. (5. 11) by the pole strength matrix Z'.

To order k, Eq. (5. 9) has a. second solution
where we have

z = 4iq„(z)/(Ip)+ik' [R„(z)/(mp)+ D, (z)] (5. loa)

4i-q„/(Ip}+ik' [q„/(mp) + D,], (5. 10b)

where (5. 10b) defines that solution of (5. loa) which
vanishes as k-0 and X- 0. g„ is therefore the
same constant rotational viscosity which was given
in Eq. (4. 17); the transverse-spin-diffusion con-
stant D, is equal to the corresponding longitudinal
D [which we omitted from (4. 17) and (4. 19)] only
in the conserving limit X-0; in this case, both re-
duce to D of Eq. (4. 12).

For infinitesimal k and small X, the two poles
(5. 8) and (5. lob) are closer to the real axis than
all other singularitiesof C'(k, z), and dominate the
long-time behavior of C'(k, t). For long times,
we can therefore replace Eq. (5. 2) by

[z —iR (k)] C'(k, z) = (1/i) [C'(k) —Z (k)], (5. 11)

with the relaxation matrix

k ('0 + rt„)/(mp) —2ik g„/(Ip)'
R'(k) = (5. 12)

2ikn„/(mp) 4O„/(Ip) + k D,

to order k'. R'(k) is thus of the same form K'(k, z)
in (5. 5) but with constant coefficients so that Eq.
(5. 11) yields only the dominant poles (5. 8) and

(5. lob). Since (5. 11) is a long-time equation, the
initial value matrix on the right-hand side is
changed from C'(k) by

VI. SUM-RULE CALCULATIONS

The considerations that lead to Eqs. (5. 12) or
(5. 14) do not, of course, constitute a calculation of
the transport coefficients. In a sense, Eqs. (5. 2}
and (5. 5) merely shift the problem from the calcula-
tion of the correlation functions C'(k, z) to that of
calculating the "frequency-dependent transport co-
efficients" q(z), )l„(z}, and D, (z), which is almost

as forbidding. However, for small frequencies
these functions are presumably smoother than C'(kz)
itself, and we expect that a simple parametrized
ansatz for their frequency (or time) dependence will

be successful.
Consider the three functions of time )i(t}, q„(t),

and D, (t) whose Laplace transforms are given by

Eqs. (5. Ga)-(5. Gc). We write these memory func-
tions in terms of their initial value, and their time
dependence:

n(t) =n. 4 (t),

n, (t) = n„.4 (t),

D, (t) =D, (t) (t),

(G. la)

(e. lb)

(e. lc)

where f(()t=O)=1, i=1, 2, 3. The initial values
are then given by

q. =p(k, r) '(~„; (o) e. (0)), (e. 2a)

= p(k &) ' ( 7„', (0) 7'„, (0) ),
D, ,„=(ik,7')-'(o„*, (O) o„, (O) } .

(6. 2b)

(6. 2c}

p(k, &) ' —(g Czz (k, (()) = 4q„„+k Ip D, „+O(k ) .

(6.3c)

The real dynamical problem is contained in the
functions (t), (t). Their time dependence stems from
the numerous microscopic processes which are not
connected to a conservation law but which can take
place at short times. While the t(t)()can in general
be of quite forbidding complexity, they all presum-
ably decay within times of the order of a collision
time 7.= y '. For an order-of-magnitude calculation,
it is probably sufficient to lump all these rapid pro-
cesses together in one relaxation function

It is not difficult to calculate these values from
equilibrium statistical mechanics, and we shall con-
sider them known. Note that Eqs. (6. 2a)-(6. 2c) ex-
press the frequency sum rules

p(kz T) ' —(u'C'„(k, (d) = (kq„q+„„) O+( )k,

(6. 3a)

p(), )) f —, (': ())='h),'„~„-, o()"),
(G. 3b)
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4, (t)=4(t)=e" (6. 4a) mass position r and momentum p are defined by

or

y, (z) = y(z) = (tz+r)-' . (6. 4b)

If this is accepted, we can use (6. la) and (S. 8) to
express the shear viscosity p in terms o.' the re-
laxation frequency y, or vice versa:

q = q„/v -=q„r . (6. s)

Furthermore, Eqs. (e. lb), (e. lc), (5. 10), and
(4. 20) give the rotational viscosity q„, the renor-
malizedpole strength Z„, and the spin diffusion co-
efficient D, as g, (r) = Z, p' 5(r —r ) (A3b)

rOt, V rOt ( Ot, V with Z m'"( "=0, (A2a)
V~

p
"'"= (m '"/m ) p + v'" with+ v '" = 0, (A2b)

VN

where m '" is the mass of the v th atom and m is
the molecular mass. If Eqs. (A2a) and (A2b) are
inserted in (Al) we obtain, after some simple man-
ipulations,

g',"(r) =g, (r) + v, I'„(r), (A3a)

where

4'g„1 t 16'g„,

((
4II, 9)',

(6. 6)

(6. 7)

is the center-of-mass momentum density which we
introduced in Eq. (2.1c). The correction term I'
can be written as

D„„q„(Z„-1)q„
~r~ mP

(6. 8)

These equations allow us to calculate p„, Z„, and

D, in terms of g if the initial values of (6. 2) are
known. (Note that Z„&1 here. ) Whereas the ansatz
(6. 4) is crude, it should give results of the right
order of magnitude, a welcome feature at this point
since we know of no measurements of q„.~~

Equations (6. la)-(6. 4b) constitute the simplest
in a series of approximations that can be used to
calculate transport coefficients from sum rules, and
to extend the theory to shorter times and possibly
larger values of k. All of these approximations con-
sist in parametrizing the time dependence of the
memory functions K„„(tt, t), and determining pa-
rameters from sum rules like (6. 3). In simple li-
quids, this procedure has been very successful. '4

We refrain here from writing down the relevant ex-
pressions for a molecular fluid since too little is
known at present about sum rules of higher order.

1

x (, '" ds 6 r-r -s$
0

(A3c)

-=I",, (r) + F', , (r) .
The antisymmetric part is

r';;(r)=-', a;;,Z Z (] '""'"), 6(r —r )a
O, , V

=2&„,S,(r),

(A4)

(As)

since the term in square brackets is just the intrin-
sic angular momentum of the ath molecule. Com-
bining (A3a) and (As) and omitting I";„we therefore
obtain

In situations where variations in space are slow
(i.e. , k small so that ka «1) we can expand the in-
tegrand of (A3c) in s retaining only the lowest-order
term. We obtain

r„(r)= —Z (P n, "(; ")5(r -r )

APPENDIX A' ROTATIONAL CONTRIBUTION TO
'(r, t) g"'(r) = g(r) +-', v x S (r) (A6)

g"'(r)=Q Z p" "6(r —r'"),
Of V

where r '" and p
'" are position and momentum of

the vth atom within the Ah molecule. Center-of-

(Al)

In this appendix, we show that there is a rota-
tional contribution ~Y'x S (r, t) to the momentum den-
sity if the finite size of molecules is accounted for.
The argument is very similar to that familiar one
which shows that a magnetization M(r, t) contributes
to the electromagnetic current an amount cYrx M(rt).

If we resolve each molecule into the atoms of
which it consists, the total momentum density,
which includes internal motion, should be written
as (time dependence is omitted)

for slow spatial variations.
Noting that 7t "=~ '(, '", the symmetric part

1S

I"„(r)=——,'Q g m '"('"$~"" 5(r —r ) . (A7)' I get

Neglecting a gradient, I';, is therefore the time
derivative of a nonconserved quantity and can be
omitted at long times.

In a sense, Eqs. (A3b) and (A3c) can be connected
to Eq. (2.4). I et us assume that the intermolecular
potential arises from central forces acting between
any two atoms in the system. Then the total stress
tensor, defined such that
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g';" (r, f) + V, 7",,' (r, t) = 0,
is symmetric. If we now use Eq. (2. 2) and the
rigorous equation

(As)

f dr I";,. (r, t) = 2e,-» f dr S~(r, t),
we find

fO

9
dr S,(r, t)= z,» dr r',

& (r, t),

(AQ)

(A10)

which is the content of Eq. (2.4).

APPENDIX 8: EXISTENCE OF THE MEMORY
FUNCTION

Now the positiveness of C(~),

The positiveness property (2. 14) of the correla-
tion function implies the existence of a memory
function such that Eq. (3. 1}holds. In somewhat
different language, this has been demonstrated be-
fore but the connection does not seem to be gener-
ally appreciated. The following quick proof is an
adaptation of arguments given in the fundamental
paper by Kadanoff and Martin. '

For simplicity, we consider the case of one dy-
namical variable A(k, t) and its correlation function
C(k, f}, and suppress the argument k; the general-
ization to many variables is immediate. The La-
place transform C(z) and Fourier transform C((u),
defined as in (2. 13) and (3.9), are related by

C(z)= . , Imz& 0 .
I d m C(&u)

(Bl)

C(~}& 0,
implies that (y & 0)

d (d C (&d)
ReC(x —iy)=y

~ 2z (x —&u) +y

(B2)

we obtain
C'C -'(z) = f(z —n) +K(z), (B7)

where K(z) is analytic for Imz & 0, and vanishes as
z- ~. It is therefore the Laplace transform of a
function K(t), and Eq. (B7) is equivalent to Eq.
(3.1). Equation (B7) follows by the same line of
arguments for the ease of a correlation matrix
C„„(k,z). It can be used to directly obtain the sym-
metry and positiveness properties of K(z) from
those of C(z).

Therefore, C(z) vanishes nowhere in the lower-
half z plane, and since it is analytic there, its in-
verse C '(z) exists, and is analytic, too.

Now from (Bl) we see that for large z, to order
z-, we have

1 dM - 1
C(z) = —. C(~) = —. C', (B4iz . 2m 'Lg

where Co= C(f = 0). Therefore, we can write

C -'(z) = fz C'-'+ R(z),

where R(z) is analytic, and at most constant as z
—~ in the lower half-plane. Or, multiplying by C
and defining

—i Q = lim C'R(z), (B6)
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Recent light-scattering experiments which have investigated the splittings in the depolarized
Rayleigh spectrum of certain nonassociated liquids are discussed in the context of generalized
hydrodynamics. It is shown that a purely hydrodynamic or viscoelastic theory does not account
for important features of the observed spectrum. However, if angular momentum fluctuations
are considered, many of the features of the observed spectra can be accounted for. Moreover,
a theory due to Rytov is discussed and studied in the context of generalized hydrodynamics.

I. INTRODUCTION

Recently, laser-light- scattering experiments'
have been performed on a number of nonassociated
liquids of relatively high viscosity (2 cP). In these
liquids the depolarized spectrum contains, besides
a broad background (of width 10 cm '), a sharp
central peak (of width -0. 1 cm ') that accounts for
as much as 80% of the total depolarized spectrum
This narrow component sometimes shows a splitting
into two components which are symmetrically dis-
placed with respect to the incident light frequency.
As in Brillouin scattering, this splitting varies di-
rectly as sin-,'8, where 8 is the scattering angle
(i.e. , the angle between the propagation directions
of the incident and scattered light). The observed
splitting occurs at frequencies which are roughly
20% of the Brillouin splittings, and therefore can-
not be attributed to ordinary longitudinal sound as
can the Brillouin splitting. It is the purpose of this
article to review some of the explanations that have
been offered for this phenomenon, and to offer yet
another explanation.

Any theory of light scattering must proceed in
two steps: (a) First it must be decided which fluc-
tuations can couple to the radiation field; (b) second,
a dynamical theory of the mechanism by which these
fluctuations arise and regress must be developed.

Generally speaking, an isotropic fluid can support
both longitudinal and transverse modes. These
modes are specified by their frequency 0 and wave
vectors q. For small wave numbers q, the longitu-
dinal modes are long-lived propagating modes
(longitudinal sound) and the transverse modes are
purely diffusive modes (shear modes). As the
wave number q is increased, the lifetime of the

longitudinal modes decreases, whereas the trans-
verse modes may change from purely diffusive to
propagating modes with short lifetimes. In this
limit the transverse modes may be regarded as
"shear waves. " They then correspond to trans-
verse phonons {transverse sound) in glasses. The
small-q modes in a fluid are adequately described
by hydrodynamics, whereas the larger-q modes
must be treated by other methods such as the theory
of generalized hydrodynamics.

In Sec. II we discuss which modes in a liquid can
couple to the radiation field. Let us assume here
for the sake of argument that both longitudinal and
transverse modes can couple to the light, Since
light scattering probes modes of intermediate wave
number (q-105 cm '), it is impossible to say
whether or not the transverse modes corresponding
to this value of q are propagating modes, without a
detailed analysis.

If a fluid can support propagating transverse
modes at the q of a light-scattering experiment,
and if these transverse fluctuations couple to the
radiation field, then it is expected that the depolar-
ized spectrum will split. In this case the depolar-
ized scattering can be regarded as a "Raman scat-
tering" process in which a photon suffers an energy
change 0 and a momentum change q, and thus
"creates" or "annihilates" a transverse "phonon, "
thereby suffering a negative (Stokes) or positive
(anti-Stokes} frequency shift as the case may be.
The widths of these lines are determined by the
lifetimes of the propagating transverse modes. If
the only transverse modes occurring at q are purely
diffusive modes, no splitting will be observed.

A split depolarized line has been observed in
some molecular liquids. This has led some inves-


