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Moments of the relativistic Vlasov equation were taken over a Maxwellian distribution. The
resulting fluid equations were coupled with Maxwell's equations and solved for an axially uni-
form cylindrically symmetric electron beam in the steady state. Magnetic neutralization and
thermal conduction were neglected, and the beam was assumed to be charge neutralized in the
observer s reference frame. The equilibrium was supported by radial gradients in particle
pressure balancing against magnetic forces. With no externally applied magnetic field, or for
a beam propagating parallel to a magnetic field with no rotation, the total current carried by
the beam was found to be significantly less than the Alfv6n critical current I&, the ratio of
beam current to Iz increasing with temperature and decreasing with increasing p. For a dia-
magnetic beam in an external field, a rigid-rotator model was assumed. Solutions of the
steady-state equations were obtained for various values of rotation frequency cu and beam tem-
perature. The radial density profiles were peaked on axis for small (d, and became hollow as
~ increased, because of centrifugal forces. For all co, the beam density was observed to ex-
hibit radial oscillations which grew in amplitude and decreased in wavelength with decreasing
temperature. Equilibria with magnetic field reversal were possible for all values of &. Purely
rotational self-consistent equilibria of the rigid-rotor type were not possible for a charge-
neutralized beam of the type considered.

I. INTRODUCTION

The equations of motion for a finite-temperature
relativistic fluid are well known. ' More recently
there have been attempts to formulate Lorentz-
invariant theories for many-particle systems and
for plasmas. ' It has been shown that if a descrip-
tion of a many-particle system is to be Lorentz
invariant, then the particles must interact through
fields. 4 The present work utilizes the results of
Synge and Kursonoglus to formulate the problem of
a finite-temperature electron beam immersed in
a plasma. The interactions between the beam elec-
trons and p1asma electrons and ions are described
by self-consistent electric and magnetic fields de-
termined from Maxwell's equations. All particle-
particle correlations are neglected, and the elec-
tromagnetic field is treated classically. Thus,
pair production and other quantum processes are
not considered.

Bennett has previously obtained solutions for a
finite-temperature beam in which the axial velocity
was independent of radial position. Radial gra-
dients in pressure were balanced by space-charge
effects in the beam rest frame. The possibility of
a net rotation of the beam, such as can be expected
if the beam is injected into an axial magnetic field,
was neglected. The present theory includes the
Bennett approximation of the prob1em as a special
case. More recent theoretical work by Hammer
and Rostoker' considered only the case of a zero-
temperature electron beam injected into a plasma.

Alfvbn has derived an expression for the max-
imum current which can be carried by a fully

space-charge-neutralized beam of constant cross
section and velocity V. The total current is lim-
ited by the drift of the constituents of the beam in
the self-magnetic field of the beam, and is of order

I„=(mc'/e) P y = 17 000Py A

for electrons. In Eq. (1), m(e) is the electron
mass (charge), c is the speed of light, P= V/c,

(1 P2) -1/2

Section II contains some results pertaining to the
choice of a distribution function for a relativistic
many-body system. In Sec. III fluid equations for
a finite-temperature system of charged particles
are obtained by taking moments of the relativistic
Vlasov equation. In Sec. IV the coupled Vlasov-
Maxwell equations are solved in the steady state
under the assumptions that all variables are func-
tions of radius only and that the background plasma
is immobile. Two specific cases are considered.
The first is that of a beam in no external magnetic
field which is fully space-charge neutralized in the
lab frame. In this case there is no beam rotation
and v& B forces are cancelled by radial gradients
in pressure. The second case is for a beam in-
jected into a weak axial magnetic field. Such a
beam will tend to rotate about its axis in order to
screen out the external field.

II. DISTRIBUTION FUNCTIONS

It will be assumed that one can write down a dis-
tribution function p (x",p") which is a Lorentz sca-
lar and whose amplitude is proportional to the prob-
ability of finding a particle of mass m in a volume
dI of the phase space of the independent variables
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p" = fp -p" d'p (4)

and N is a Lorentz scalar. It is easy to see that
if N is to be a constant in time and if p (p„x",aj"),
where n„and Ig„are constant four-vectors, then
we must have

P„der" =0, (5)

and P„must be spacelike.
In Fig. 1 let v, denote the timelike surface Z at

time t, and o2 the same timelike surface at time t~.
In the time interval t2- t&, Z sweeps out a three-
dimensional volume element Q. If N is a constant,
and if

f&= f doP-", I2= f; do„P",

then

I, —I, = i dv„— dv)P"
a~ g i%2

~ „der„p

dx „=0,
0

where the four-dimensional Gauss rule has been
invoked. The time interval and therefore A is ar-
bitrary, and hence

BPQ

Bx

x" and p". Following Kursonoglu and Klimintovich
we choose'0

dI =P do'~d P y

where dc„ is a timelike three-dimensional surface
in space-time. Also, d~p is the four-dimensional
volume element in momentum-energy.

The normalization of p is then given by

mN= f p p" da„d p = fdo„P",
where

~ -=mn=m/e, (10)

the ratio of rest-mass energy to thermal energy.

III. FLUID EQUATIONS

We will assume that the distribution function for
a given species obeys a "correlationless" kinetic
equation given by

BP „ Bp
p s Il f epQ

where p" and x' are independent variables, and f"
is the self-consistent force arising from the dis-
tribution of particles in the beam-plasma system.
It will also be assumed that the particles interact
solely through electromagnetic forces, in which
case

f"=qF""P„,

where q is the charge associated with a given
species.

F"", the electromagnetic field tensor, is anti-
symmetric and obeys the Maxwell equations

for N constant. If P" is defined to be the four-mo-
mentum associated with a volume element of fluid
at the point x", then Eq. (S) is just the continuity
equation.

For a system of particles in equilibrium, the
form of the distribution function in momentum space
has been given by Synge~:

p.(x",p") =2A(x")&'(p "p„+m')e " . (9}

Here e„ is a timelike vector related to the temper-
ature and the factor of 2 is due to the fact that we
only consider particles with positive energy. The
5 function confines the particles to a three-dimen-
sional shell in four-momentum space, and A(x")
describes the configuration of the system in real
space. The constant N in Eq. (3} is given by

N= [4vmK2(am)/a] J~ dr A(r),

where S is the reference frame in which u„= (0, —a)
and K& is the K Bessel function of order 2. The
constant a is just 1/e, where 6 is the kinetic tem-
perature of the gas, and we will define

„=4v 2 —' d'pp "p, ,Bx"
) m)

B~c v

»' Bx" Bx"

with i summed over all species.
The fluid equations are obtained by taking mo-

ments of Eq. (11) in momentum space. The zero
moment just recovers the continuity equation (8}.
The first moment yields (cf. the Appendix)

FIG. 1. The four-dimensional volume 0 swept out by
the timelike three-dimensional surface Z in the time in-
terval (t2- t&).

BT" q= —s"'p
B&v m at (14)
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and Eq. (14) becomes

(16)

with

T""=(1/m) fpp'p" d'p

In order to cast Eq. (14) into a more familiar form,
it will be convenient to define a fluid velocity v' by

P' = npmv',

where n, is the particle number density in the sys-
tem where the fluid element is instantaneously at
rest. The quantity nom will be called the proper
mass density g.

Define

It will be assumed that the electron beam and
background plasma can be treated as perfect fluids,
i. e. , fluids in which the pressure tensor is diagonal
and spatially isotropic in the rest frame of a fluid
element. Heat flow will be neglected. In a given
inertial reference frame, the continuity equation
(8) may be written

—+ v (nv) =0
Bt

(23)

where n = yno, y = (1—v v) ~, and v is the fluid
velocity. The equation of motion (18) becomes (cf.
the Appendix)

dv qn ~ ~ ~ ~ n
nyF + ——(E v)v+v ——+V—

dt m 'V(

8
„(pv v" + v"") =qnoF"'v„ qn= —(E+vxB)

m
(24)

which may be rewritten

877
P . + v

—qnp E va,d& ~x

with F =K,($)/Ke($) and d/dt the convective deriva-
tive. Maxwell's equations are

V E=4wZq, n&

where use has been made of the continuity equation,
and

d
~X V B=O,

V'~B- —=4& Mq n vf fi

QB
V&&E+ =0.

et

(as)

is the proper time derivative. m"" may be identified
with the pressure tensor.

Taking successively higher moments of Eq. (11)
leads to a hierarchy of equations. One way to ter-
minate the hierarchy is to assume a given form for
the distribution function. If the distribution function
is a Maxwellian and heat flow is neglected, then
(cf. the Appendix)

w"" = (p+ e) v'v" +pg'",

where

p = p, /t' = noe,
(20)

d Ka($)&=- p. —ln ~ +1
d$,

and g"" is the metric tensor.
In the limit (» j., we have e = —,'P, and in the ul-

trarelativistic limit $ «1, e = 3p. From Eqs. (16)
and (19)

T""=(p+ e +p) v"v" +pg"", (21)

(f)4~~ np q~vX
g

summed over all species.

(22)

which is the well-known energy-momentum tensor
for a perfect fluid. ' For a fluid with a more com-
plicated distribution function, the energy-momentum
tensor may be calculated from Eq. (15).

In terms of fluid quantities, the first of Maxwell's
equations in (13) becomes

IV. STEADY-STATE SOLUTION OF SELF-CONSIST~&T
EQUATIONS

Equations (23)-(25) will be solved in the steady
state. The background plasma will be considered
immobile and will serve only to reduce the space
charge within the beam. Magnetic neutralization
will not be considered. The electron beam will be
assumed to be cylindrically symmetric and without
variation in the axial direction. Even under these
assumptions the resulting equations are grossly
nonlinear and must be numerically solved.

In the steady state we have

V (nv) =0, (23')
en ~~ ~ 1~n

nyFv Vv ——v(v E)+ —V—
m

en= ——(E+vxB)
m

(24')

V. E = 4vne(f —1),

vx8=4vne(fV —v),

vxE=O, v B=O.

(as' )

Here e is the magnitude of the charge on the elec-
tron, f is the fractional charge neutralization, and
V is the velocity of the reference system relative
to the laboratory.

Since V &&K =0, let E = —VC. Substituting

V(1/y) = —y(v Vv+vxcurlv)

into Eq. (24 ) and dividing through by ny, we obtain
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(
1 1 1I' - —v Vv- —vxcurlv+ z Vn

$y n

+ [v(v. V4)) —V4] = — vx B .
my my

(26)

Assuming that all variables are functions of r only,
Eq. (26) when written in cylindrical coordinates
becomes

f, is the charge neutralization in the beam rest
frame, and c is the speed of light.

For the Bennett distribution, the total current
carried by the beam is

2mn, ep, ""
~d& m&Pyp

(d ( 1 + bc2x2/(d2) 2 4be

The ratio of I~ to the Alfven critical current I„is

E$-1 dv2 dv~ v~ dv, 1 dn

2( dr dr r ' dr $yn dr

+ (v„-1)—= (vB -vB)e z dC e
my " dr my

dvy ve e d4'
r + +dr r my "dr

(v„B,—v, B,),
my

(28)
s= n, [(I —2)/(I —v'. )]"'"' ', (36)

I,/I„= 2/[~(f, 1)].—

Thus for f, -1, the Bennett distribution can carry
an arbitrarily large current.

Another class of solutions is possible under the
assumption f = 1, i. e. , the beam is completely
neutralized in the observer's frame of reference.
In that case, V24 = 0 and 4(0) = finite requires 4 -=0.
Then the solution of Eq. (31) is

dv, e dC e
FV~ + Vg U„—= (V() B~ —V+() }."dr my ' "dr my

(28)

(32)

Both v„and B„may be eliminated from Eqs. (28)
and (29) by taking their ratio. Then we have

dv& v, dv, e ~ d4F U() + —+ Vg + (V() + Vg)—dr r ' dr my 'dr
e

(v,B, v~, ). —
my

Substituting Eq. (30) into (27), we obtain

E$ —1 dv~ e dC 1 dn
2$ dr my~ dr (yzn dr

Choosing the ref erence system such that V r = 0,
the V&&B equation (25 ) implies v, =0, and the con-
tinuity equation

with n(0) n„=v( 0) = v, . In the nonrelativistic lim-
it, Eq. (36) reduces to n= n, exp[-m(v2- v, }/28].

With 4) =0, Eq. (30) becomes

v() + + v = (vgB —v+() }. (37)dr r ' dr myE

The self-consistent magnetic field is given by

B,(r) = 8()+42e f"nv() dy',
(38)

B()(y) =(42e/r) f"n(f V —v, )y'dy',

with n computed from Eq. (36). Equations (36)-
(38) constitute a closed set of nonlinear integro-
diff erential equations for a space- charge-neutralized
axially uniform cylindrically symmetric electron
beam of finite temperature. These equations will
be solved for two cases.

Case I: No Axial Magnetic Field

ed%/my
C (33)

Substituting Eq. (33) into poisson's equation given
in (25 ), one obtains the Bennett solution:

n=n, (1+br ), b=(U2)(f2-1)/8c.
Here ~~ is the plasma frequency corresponding to
the beam density on axis in the rest frame of the
beam,

(U22 = 42n, e2/my, (35)

is trivially satisfied. Because of this, the set of
equations (30), (31), and (25 ) are incomplete. One
must specify either n(y) or 4(r), and make some
assumption on V2(r) and the relationship between
v& and v, in order to close the system of equations.

The assumption of Bennett was that v = const.
Under this assumption y is constant, and for elec-
trons, Eq. (31) gives

In this case there is no net rotation of the beam
and therefore v&= 0. The observer's frame will be
taken to be the laboratory. The self-consistent
equation of motion is

(38)

with w -=v„c(= ,'(F( —1), x= r(d2„-and (d2, the plas-
ma frequency corresponding to the beam density
on axis in the lab frame. The boundary condition
is 2()(0) =P. Fixing $ and P completely specifies the
problem.

For P fixed, the width of the beam increases with
increasing temperature. Figure 2 is a plot of
normalized current (. =ntv/n, P as a function of radius
for P = 0. 94, corresponding to a 1 MeV beam, and
values of $ ranging between 5 and 100. Also in
Fig. 2, the beam profiles for $ = 5 and 10 have been
compared to the Bennett distribution given in Eq.
(33). The charge neutralization parameter f 2 was
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chosen by fitting the Bennett distribution to the
solution of Eq. (38) at a=0. 5. Although the two
solutions correspond to completely different phys-
ical assumptions, the profiles are indistinguishable
except in the outer edges of the beam.

The total current carried by the beam is

10'

(40)

The ratio of I to the Alfven critical current I„is
plotted in Fig. 3 as a function of ( for various val-
ues of P. It is interesting to note that for fixed
temperature the ratio I/I„decreases with increasing
P. This is because the radially inward v,B& force
is balanced in the steady state by radial gradients
in pressure. A larger v, requires larger pressure
gradients and hence a narrower beam for fixed $.
Only for extremely high temperatures can the beam
transport a considerable fraction of the Alfven
current.

Case II: Beam Injected into an Axial Magnetic Field

1. Rigid Rotator

An electron beam injected into an axial magnetic
field Bo will rotate in the azimuthal direction so as
to reduce the field inside the beam. It is interesting
to consider the case of a rigid rotator v= rQ. The
case where A is large enough so that the external
magnetic field is reversed on the axis of the beam
is of relevance to proposed controlled thermonu-
clear devices such as Astron, "which seek to con-
fine high-temperature ions inside a magnetic bottle
produced by a rotating shell of relativistic elec-
trons.

The self-consistent equations for the rigid rota-

1.0

-2
10

IIIA

10 20 30 40 50 N 70 80 90

FIG. 3. Ratio of total current carried by beam in case
I to the Alfvdn critical current. The curves are parame-
trized by P.

tor are

z z z 1/z
2

= —(l-x (o —w ) (x(o~, —w(o, ) —4xw,2
dx I"

d(dg 1-X (d —gg

dx 1- Pz

dcoy coy 1 x QP —'I
+ —=-w zdg x ] pZ

(4l)

with w, x, and a defined as before, and to= A/&o~„
ur, =eB,/m&u~, , and ~~=eB&/mar~, . With w and $
f ixed, the problem is completed by specifying w(0)
= p, &u,(0) = B, and to~(0) = 0.

The case ~= 0 reduces to that considered in case
I. For small ~ such that

LO 1.5

FIG. 2. Normalized beam current L as a function of
radius s for case I vrhen P =0.94. The solid curves are
labeled by the value of ( = m/e. The dashed curves cor-
respond to the Bennett distributions fit to the curves for
)=5 and 10 at C=0.5.

we have the derivative dw~/dxl, .o &0 and the beam
current density c(x) = nw/n, p is peaked on axis. As
~ increases, centrifvgal forces on the beam in-
crease and the beam current density develops a
hole on axis. This behavior is shown in Fig. 4,
where the parameters were taken to be $ = 5,
P=0. 94, and B=O. The case B=O corresponds to
the reduction of the external magnetic field to zero
on the beam axis.

The line density N of electrons in the beam can
be obtained by evaluating Bx(r) in Eq. (38) for a
rigid rotor. Defining

v=¹/mc,
the number of electrons per classical electron ra-
dius of beam length, one obtains
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2. 0,

L6

fs5
P O. 94
B~O 0.1 5

10
50

TABLE I. Value of v as a function of ~ and ( for
IN=0. 98 and B=O.

(d

4.7
3.4
2.6

1.0
10
50

2.5
2.4
2.4

10.0 5
10
50

1.9
1.7
2. 2

LO 2. 0 3.0 4.0 5. 0

2
2 2o+1

d" =-F(1 P)."-&)& (48)

X

FIG. 4. Variation of radial beam current profile with
(d,

~ = [(o,(a) —B]/2(o,

where a is the radius of the beam. Table I exhibits
the calculated values of v for various values of
angular frequency ~ and inverse temperature $,
with P=0. 98 and B=O.

For fixed ~, p, and 8, as the temperature de-
creased, radial oscillations were observed in the
beam density. Figures 5 and 8 show this behavior
reflected in a(x), for &@=0.1 and &v=10. For beams
with field reversal, the same behavior was observed
as is shown in Fig. 7, where the normalized den-
sity n/n, is plotted vs x for P = 0. 98, B = —10, and
co = 10. This behavior can be understood by exam-
ining Eqs. (41). As temperature decreases, a=-,'
x (F$ —1) gets very large and small variations in su

can lead to large variations in dry, /dx and d&u~/dx.
Making the change of variable g2= 1 —x2co2 —se2 in
Eqs. (41), one obtains

2
cfg 2 2g 2 2 2 1/2
cfx

=2x(u ——[x(o&o -(1-x (u —q ) ~ ]6)

In the low-temperature limit, we have F= 1 and
&-$»1, and therefore may expand g=gp+5n, and
the dominant term in Eq. (48) is proportional to (:

d 5q t'(1- q~)q
Z (1 PZ)u 7(

so that Og= e', with

](1 ~2)~»-&/(1 P&) ~ (44)

0. 1

P O. 98
B 0

Equation (44) agrees well with the wave number of
the oscillations observed in the numerical solutions
to Eqs. (41).

The physical mechanism of the radial density os-
cillations can be somewhat clarified by noting that

l(dg XSO

(1-P') " ' (41')

cfcog Mg 1 —x 40
2 2 2

x (1-P')

Differentiating the first equation in (41 ) gives

d 'g 2g dctP ELEAN' —( -1'~x' - n')' 12
ch F ch dx

+ (slowly varying terms). (42)

I I

10 20 30 4. 0 5. p 6. 0 7. 0 8. p 9. p 10.0
X

ignoring the slowly varying terms in Eq. (42) and
substituting for d&u, /dx and d&u, /dx leads to

FIG. 5. Radial beam current profiles for ~ =0.1. Each
curve is labeled by the parameter $ = m/e, with the ordi-
nates displaced by one unit for purposes of clarity.
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the solution to the equation (written in the inertial
frame where w=0)

—"+-"= —(1-u')"' B+ (1-u')™udx', (45)
dx x F

.10

FIG. 6. Radial beam current profiles for ru =10. Each
curve is labeled by the parameter $ =m/e, with the ordi-
nates displaced by two units for purposes of clarity.

with u -=v~, and the other parameters as defined
above. The boundary condition is u(0) =0. Fixing
the beam temperature $ and 8 completely specifies
the problem.

The case B= 0 in Eq. (45) leads to the trivial
solution u =0. Note that this limit does not cor-
respond to case I considered above; rather, it cor-
responds to the limit of the Bennett solution, Eq.
(34), with f, = 1. As B is increased in magnitude,
the radius of the beam decreases and is peaked on
the axis. The solutions to Eq. (45) do not admit a
hollow beam since the sign of du/dx at x = 0 is de-
termined by B. For B finite and fixed, the width
of the electron beam increases with temperature as
shown in Fig. 8.

V. DISCUSSION

the wave number ~ varies inversely with tempera-
ture and that the dominant term in Eq. (41) which
gives rise to the oscillatory solutions is the v&8
force. Hence, the interaction is between magnetic
pressure and kinetic pressure. We note, however,
that such oscillations did not arise for ve = 0, thus
implying that centrifugal force effects also con-
tribute to the process.

2. Constant Axial Velocity

For w constant, the system of equations (41) is
overdetermined and no rigid-rotor solution to the
equations exists for real temperature. A self-con-
sistent solution for v& does exist and is given by

The self-consistent equations of motion for a
finite-temperature collisionless relativistic plas-
ma have been derived by taking moments of the
Lorentz-covariant Vlasov equation. The special
case of an axially uniform cylindrically symmetric
electron beam in an immobile background of positive
ions has been considered in the steady state. In
order to close the set of equations, it was necessary
to make some assumptions on either the density,
or the electric field, or the fluid velocity

Under the assumption that the fluid velocity was
independent of radius, the solutions of Bennett were
obtained. The equilibrium consisted of radial gra-
dients in pressure balanced against a radial elec-

1.0

0.9-

0.8-

0. 7-

n

n
C 0.6-

0. 5-

0. 00 am a04 0. 06

X

0. 08 0. 10

FIG. 7. Radial beam density profiles for (d =10 and
B= —10 corresponding to field reversal. Each curve is
labeled by the parameter ( =m/e. The ordinate scaling
is arbitrary.

0. 1-

I

1.0 2. 0 3. 0 4. 0 5. 0 6. 0 7. 0 8. 0 9.0
X

FIG. 8. Normalized beam current t. as a function of
radius x for case II with av = const and B=0.01. The
curves are labeled by the parameter $.



FINITE- TEMPERATURE RELATIVISTIC ELECTRON BEAM

tric field in the rest frame of the beam. For an
electron beam with density no on axis, the two pa-
rameters which determine the Bennett distribution
are the temperature g

' and the charge neutraliza-
tion parameter in the rest frame of the beam f, .
For f,= 1, the total current carried by the beam
can exceed the Alfven critical current.

For an electron beam which had a radially depen-
dent velocity, solutions were obtained for the case
where the beam was charge neutralized in the lab-
oratory, f, = l. In this case, the equilibria were
supported by radial gradients in pressure balanced
against magnetostatic forces.

In the absence of an external magnetic fieM, the
free parameters were the velocity of the beam on

axis P, and the beam temperature $ '. For all val-
ues of the parameters considered, the ratio of beam
current to Alfven critical current was less than 1.
Ratios I/I„& 0. 1 implied extremely high tempera-
tures. For example, a 2-MeV beam (P = 0. 98) with

I/I„= 0. 01 implied a beam temperature of about
500 keV in the rest system. Such temperatures
could only be produced by some anomalous randomi-
zation of beam energy, possibly due to turbulence.
As P was increased, the ratio I/I„was found to de-
crease for a given temperature.

For a warm beam injected into an axial magnetic
field, radial motion of the beam electrons induces a
net rotation of the beam, causing the beam to be-
have diamagnetically. The equations of motion for
the beam were numerically integrated assuming a
rigid-rotor equilibrium v& = x~. The variable pa-
rameters were angular velocity ~, temperature $ ',
velocity of the beam on axis P, and the value of the
magnetic fieM on axis B. The qualitative behavior
of the equilibria was not sensitive to the assumed
values for P and B. For arbitrary temperature,
the density profiles were peaked on axis for small
~ and hollow for large ~ due to centrifugal forces.
Field reversal on axis was possible with both types
of equilibria.

Due to the nonlinear interaction between pressure,
centrifugal, and magnetic forces, large amplitude
oscillations in the radial density profiles were ob-
tained for all values of ~. The wavelength of the
oscillations was proportional to temperature. At
high temperatures, the wavelengths were compa-
rable to the beam radius and the density oscillations
did not appear. One would expect that radial oscil-
lations in density would lead to macroinstabilities
and, therefore, it would appear that stable rigid-
rotor equilibria would be more probable for a high-
temperature beam. From Table I it is apparent
that electron beams which have sufficient rotation
to exclude an external magnetic field from the axis
have appreciable line densities v. The above re-
sults indicate that high-temperature beams with
I/I„= v/y -1 should be considered for injection into

The author would like to express his apprecia-
tion to T. J. Wright for pointing out a mathematical
error in a preliminary draft of this paper. F. O.
Lane gave considerable help with the numerical
calculations.

APPENDIX

The first moment of the Vlasov equation is

Jl
~'u (u'o ",".~ so"~-o. ,".)

„~~ d pp"p p+qF"'~(d4pp"p, „=0. (Al)

Integrating the second term by parts, we have

y4pp p
p

fy Qpg

=&" ~&'P(~p ~DDp~ —P.&'p P's. p). -(A2)

The first term is 0 because the distribution function
vanishes at infinity in momentum space, and the
last term is 0 because F"' is an antisymmetric
tensor. Then, we have

F d4p pp p Fa ~pg fy ~

Multiplying (Al) by 1/m and substituting from (A3)
give Eqs. (14) and (15).

The pressure tensor is

(A3)

v""= 7""—(1/v. )P"P'. (A4)

For the Maxwellian given in Eq. (9), we identify

mIq= f~dr p (r) = [4vm— ~Am(])/]] f drA(r), (A5)

A(r ) = p(r ) t'/4vm'E' (g) . (Ae)

In order to evaluate P" and m"", we convert to
spherical coordinates in momentum space through
the transformation

p' = v sinhX sin8 cosy, 0 ~ K & ~

p =xsinhysin8siny, 0~ X&~

P'= ~ sinhx cos8,

p'= ~ cosh',

0&8&m

0~@~2'
(A7)

d p = ~' sinh'y sin8 d~ dX d8 dp.

In this coordinate system p "p„=—~ and the 0 func-
tion in p restricts the integrand to a surface ~ =m.

machines like Astron.
Within the present model, purely rotational (v, = 0)

self-consistent equilibria of the rigid-rotor type
were not possible for a charge-neutralized beam.
Self-consistent solutions for v~ (x) with v, = 0 were
obtained, but did not admit to field reversal.
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Then we have

(A8)P" = f d(o p"A(x") e

with d(d = m sinh X sine dg de dp. In the Lorentz
frame S, we have

Pe = A(r ) fd(oP" e '"'~ (A9)

Evaluating the integral and using (A6) one obtains

The covariant equation of motion is

y. + „(p+e)v"v" + =qnoF"v„
dV Bg x

or

dg"
(p+p+e) „+v" „[(p+e)v"]

(A15)

P,'=0, i= 1, 2, 8; P', = p(r). (A10)

Hence S is the rest system of the fluid and p. is the
proper mass density at position r. In any other
reference frame we have

P"= (uyv, Vy) = uv", (All)

Te" -—[A (r }/m] fd&u p "p"e ~ "'"",
All off-diagonal terms are zero and we have

(A12)

., i~h y=(1-v v) '".
In a similar way we evaluate T"" in the reference

frame S:

~P ua+ =qnoF v, .Sg

Taking the scalar product of (A16) with v„results
in

(A16)

a „dp„[(p+e)v"]=
d

(Alv)

where we have used v„v"= —1, F"'=-F'", and the
definition of d/dr. Now from Eq. (20) we have

p+p+ e = p ———ln e = pF($), (A18)1~,(&) ~

d$

with F($) =Ez($)/KI($). Hence, the equation of mo-
tion becomes

u/t'

0 —}U.
—ln

dv ~ dP ~PPF + &~ + = qnoF "'v, .
d& dT Sg~

In a particular Lorentz frame, (A19) becomes

(A19)

hence, pFy —(yv)+y'v —+vp=qn, y(E v+&&B) (A20}
dt dt

Op 00
(0 Op 0/' (A14)

for the space component, and

dy 2 dp 8p
i Fy —+y ———=qn, y(E v)dt dt et (A21)

with p and e as defined in Eq. (20}.
A Lorentz transformation on (A14) to the system

S moving with velocity —v gives Eq. (19).

for the time component. Defining n =soy and sub-
stituting p =n/y$, we multiply (A21) by v and sub-
stitute the result into (A20) to obtain Eq. (24).
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