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The thermodynamic equilibrium properties of strongly ionized multicomponent gas mixtures
are investigated by application of the free-energy minimization method. For high-temperature
regions where the Coulomb interaction is the dominant perturbation, the many-body partition
function is developed from quantum cluster-expansion theory. The Coulomb free energy is
given as the sum of the first- and second-order direct-interaction terms, plus the first three
exchange-interaction terms. AH five terms are exact in the classical limit, i.e. , where
Maxwell-Boltzmann statistics apply. The direct terms are correct for weak electron degen-
eracy and include wave-mechanical effects, while the first-order exchange term is epact for
all degrees of degeneracy. The theoretical model is applied to multicomponent mixtures of
hydrogen anI of helium in the temperature range 50—2000 eV. The combination of the ring
term plus higher-order terms significantly extends the region of applicability of the model
over a classical electrostatic model. Specifically, electron degeneracy, the short-range cut-
off in the ring term, and the three-rung ladder (second-order direct) term all operate to pro-
duce much less divergent thermodynamic results at a given density and temperature. First-
order exchange is important even at moderate values of the electron-degeneracy parameter.
The thermodynamic results indicate that evaluation of the exact quantum-mechanical ring
term is essential for wider application of the perturbation-expansion theory, as is the devel-
opment of a second-order exchange term for arbitrary degeneracy.

I. INTRODUCTION

The thermodynamic properties of nonideal multi-
component gas mixtures require numerous inter-
action effects to describe adequately the many-body
system over wide ranges of density and tempera-
ture. In this paper, the free-energy minimization
method, described in Paper I, is used to study a
systematic treatment of the many-body partition
function of the strongly ionized gas. By limiting
our attention to the strongly ionized gas and the
Coulomb interactions, a detailed analysis of these
effects can be made which is relatively independent
of the other internal and configurational interac-
tions.

The quantum statistical mechanics of dense
ionized gases has been studied intensively over the
past ten years, 3~ and numerous theoreticaldevelop-
ments have appeared which can significantly im-
prove the calculation of thermodynamic equilibrium
compositions and properties of strongly ionized
gases. The quantum perturbation expansion and
its associated diagram techniques provide a
quantum-dynamic generalization of the classical
electrostatic model of plasmas, one in which the
theoretical partition function can be expressed as
a series of direct and exchange terms in the
screened Coulomb interaction. Although the per-
turbation-expansion theory is difficult and has com-
plex analytical features, it can be handled by
straightforward numerical methods. The perturba-
tion expansion as utilized here consists of the

first- and second-order direct interaction terms
plus first-, second-, and third-order exchange
interactions. The numerical studies have yielded
an exact solution for the first-order exchange term
for electrons, valid for all degrees of degeneracy.
The other terms are presently available as approxi-
mations, exact only in the specified asymptotic
limits. However, their range of validity has been
extended over the previously available region of
phase space.

In Secs. II-VI, we present a brief discussion of
the many-body perturbation expansion and a de-
tailed description of the various Coulomb-inter-
action free-energy terms. Next, a series of
numerical models are constructed which demon-
strate the effects of the various terms, both on
the equilibrium configuration and on the thermo-
dynamic properties. The region of density-
temperature space studied is restricted to high
temperatures, where the gas is strongly ionized
and where competing nonideal effects, specifically
the confined atom bound-state perturbation and the
excluded volume configurational terms, are small.
The hydrogen plasma is chosen for analysis, but
a pure helium plasma is also included to demon-
strate the strong Z dependence of theseinteractions.

II. PERTURBATION-EXPANSION THEORY FOR
COULOMB INTERACTION

The most rigorous theoretical method used in
the study of the fully ionized gas interacting via
the Coulomb potential is the perturbation expansion
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of the many-body partition function and the concur-
rent use of Feynman diagram techniques. The
divergence problems of the quantum-mechanical
Coulomb gas have been illustrated by DeWitt using
a simple perturbation expansion of the first three
terms. It is readily shown that the first-order
perturbation term is canceled by the electroneu-
tr ality condition.

The second-order term of the simple perturba-
tion expansion gives a linear divergence due to the
long-range nature of the Coulomb interaction. This
difficulty is resolved in the perturbation expansion
of the partition function by summing the ring dia-
grams which are the most divergent pieces of the
simple perturbation expansion. The resultant ring-
diagram sum is finite, since the Coulomb potential
is replaced by the dynamic screened potential. The
ring sum and the appearance of the screened potential
are equivalent to therandom-phase approximationof
Bohm and Pines. The screened potential intro-
duces a generalization of the Debye screening
length and cuts off the linear divergence. The
finite temperature quantum form of the ring sum
due to Montroll and Ward~ gives the Debye-Huckel
(DH) result in the high-temperature or classical
limit, and quantum corrections arising from the un-
certainty principle. At zero temperature and high
density, the ring sum gives the Gell-Mann-Brueck
ner correlation energy of the electron gas. For
intermediate temperatures, it does not seem pos-
sible to evaluate the ring sum analytically; numer-
ical evaluation is in progress.

The third-order term of the simple perturbation
expansion produces a double logarithmic diver-
gence: a long-range divergence as in the second-
order term and a short-range divergence arising
from the singularity at the origin. The quantum-
perturbation method replaces the third-order term
by a sum of higher-order terms, described by the
Feynman ladder diagrams. In this term, two steps
are required to remove the divergences. First,
Coulomb-interaction chains are summed, producing
a screened interaction between particle pairs, thus
introducing the screening length and removing the
long-range divergence. Second, the resulting
ladder interactions with the screened potential
are summed over all orders from three upward.
For the classical gas this produces a cutoff, the
average distance of closest approach Pe2(Z2),
which removes the short-range divergence. In
the much more complex term for a two-particle
quantum gas, the three-rung ladder term, the
short-range cutoff in the quantum term is the de
Broglie wavelength k arising from the uncertainty
principle.

In addition to the direct interactions, when a
real multicomponent gas obeying Fermi-Dirac
(FD) statistics is considered, a second series of

terms must; appear in the perturbation expansion.
These exchange-interaction terms arise from
symmetry considerations, the operation of the
exclusion principle. In general, for much of den-

sity and temperature space, the contribution of the

exchange interactions is small compared to the
direct terms, although they become dominant in

the limit of low temperature or high density. The

exchange terms have been evaluated to varying de-
grees of completeness for first-, second-, and

third-order in the expansion.
In Secs. III-VI, these contributions to the free

energy of a, multicomponent, partially degenerate,
strongly ionized gas will be studied individually

by the free-energy minimization method. Since the
present model is rigorous only in the high-tempera-
ture limit, we shall concentrate the analysis on a
hydrogen plasma in this high-temperature region,
whose limits as prescribed by internal validity con-
straints of the theory are 50& T & 2000 eV. To
examine the behavior of the model in a nonrigorous
but physically interesting region, we also study
hydrogen in a 5 & T & 50-eV low-temperature
region. Finally, the application of the theory
to a, more strongly interacting system, ionized
helium, is briefly investigated.

III. RING - SUM TERM FOR PARTIALLY DEGENERATE
MULTICOMPONENT SYSTEMS

The perturbation expansion for a multicomponent
fully ionized gas has as its leading term the quantum.
mechanical ring sum, a quantum generalization of
the classical electrostatic (DH) model, including
both the effects of quantum statistics and of wave
mechanics. As derived by Montrell and Ward
and DeWitt, the ring sum has the general form

PF„,„,=-', V Q „3 (y(k, v) —in[l+y(k, v)]j,
"

4nk dk

V=-o
Q

where

g(k, v) = (4vPe /Nk )4Z; N;2 (x;, 2' v)

x~ =A' P'

where Z(x„2@iv) is the pair propagator.
This general form is analytically intractable

and currently is being evaluated numerically. How-
ever, by suitable simplifications, it can be reduced
to an approximate analytic form which is valid for
multicomponent mixtures of charged particles,
which obey either Maxwell-Boltzmann (MB) statis-
tics or weakly degenerate FD statistics.

This approximate form for the multicomponent
partially degenerate point-charge plasma is

pF„M = -ZN, 3AF—
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FIG. 1. Degeneracy
effects for electron-elec-
tron, electron-ion, and
ion-ion pair interactions.
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A = 2«r" e'P" (N/V) ' (QZ N, 8,~N, ) ~, (4)

where

f'(n+l), e" «+l ' (6)

In the classical limit, for weak interactions, this
form reduces to the DH equation. This classical
asymptotic form is a reasonably accurate calcula-
tion of Coulombic effects for « —4, A 0.3.

The plasma parameter, a dimensionless quantity
representing the expansion parameter for the per-
turbation theory, is also directly related to the
generalized screening length:

1
A

4mn&
(6)

r, =(4vPe'ZZ', . N,.8,/V) '".
The region of density-temperature space where

Eq. (2) can be expected to provide an accurate
description of the Coulomb interactions is given
by the restrictions AF & 0.5, &, &+2.

The first restriction relates to the importance
of higher-order terms in the perturbation expan-
sion; the second relates to the point where the
quantum statistical approximations are no longer
adequate. It is instructive to rewrite AF in a form
which more explicitly demonstrates both the pair
nature of the perturbation and the effects of the
quantum statistics on the interaction:

A =X /4«rn& = & (4«rP e N/V)

[Z, N, 8, + 2Z, N, 8, g Z; N; 6; + v 5' Z; Z; N;N«8; 6«]

(& N;)'
(&)

where the three terms in square brackets represent,
respectively, the electron-electron, the electron-
ion, and the ion-ion Coulomb interactions. In the
classical limit, the 8 s approach 1, and the full
expression is identical to the DH theory for point
charges. In the direction of increasing degeneracy,
e, changes monotonically from its classical value
of 1 towards 0.

The relative contributions to the total ring-sum

y,
-=x «/x~, &« = /|f( 2mkT)'",

i.«=a/(2p„t r)"',
p,„=m,m, /(m, +m;).

(6)

It should be noted here that there are two forms
for the y parameters, a single-particle form y,
containing the single-particle mass, and a pair
form y, &, containing the reduced mass of the inter-
acting pair. The various y's are ordered as

= [y, - (l/m. )'"]&[y„- (2/m, )'"]

& [y; —(l/m;)"'].

The application of this wave-mechanical correction
is restricted to regions of density-temperature
space where &, & —4 and A & y;. This latter re-
striction is equivalent to pe2(Z ) &x «.

The wave-mechanical correction is given by the
term in curly brackets:

pp„= -ZN, —.'A, {p(y)},

«2 «/2

free energy are illustrated in Fig. 1. The electron-
electron term contributes one-fourth of the total
in the classical limit, decreasing as 8, to 0.114
at oe=+2.

The electron-ion term contributes one-half of the
total ring sum in the classical limit, and decreases
as 8, to 0. 444 by &, =+2. The strength of the ion-
ion term is unaffected by degeneracy until very
high densities are reached. If the partial degener-
acy approximation is carried out to higher values
of &„ it shows the electron-electron term de-
creasing to a negligible value at &, =+ 20 and the
electron-ion term dropping to 0.13 of the total.
The degeneracy factors for the iona (8;, 8«) are
unity for all regions studied in this paper, so that
even in the limit of high electron density the ion-
ion term retains its low-density form.

The quantum-mechanical ring sum has additional
analytical features which extend its region of appli-
cability. In addition to the inclusion of effects of
quantum statistics, De%itt has evaluated the ring
sum at finite temperature. In the high-temperature
limit where all particles obey MB statistics, the
quantum ring sum reduces to a classical ring sum
times an asymptotic expansion in powers of y, the
quantum diffraction parameter. This function arises
solely from the operation of the uncertainty prin-
ciple, and thus embodies the wave-mechanical
effects present in the high-temperature plasma.
The expansion is in powers of a wave-mechanical
diffraction parameter defined by
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z Z,'N, y„+2Z, Z, N, y„+Z, Z, N,N,
N4(Z')' 4 e

Z, N, + Z,Z, N,N, (1 + m, /m () + Z4(N2((m, /(n()
X

NR(ZR )2

(10)

An additional restriction on the use of this form
is that yz & y, , where y, represents that value of y
where the full asymptotic series begins to diverge.
For the one-component gas, this value is found

analytically to be y, = 2.042. For multicomponent

gases, the value of y where the two term series
given above starts to diverge depends on the charge
of the gas ions.

The wave-mechanical correction is illustrated
in Fig. 2 for fully ionized gases with ions of charge
Z=1, 2, and 6. For hydrogen, the minimum value
attained is 0. 83 at y of 1.14. As Z increases, the
minimum value of P(y) and the value of y at this
point both increase. It is clear that this asymptotic
form is limited to the region 0& y& 1.1 for hydrogen.

Both the statistical and wave-mechanical effects
extend the range of applicability of the ring-sum
term, but there are large regions of density-tem-
perature space where both these limiting forms
are insufficient. Specifically, in the high-density
limit, the ion-ion term causes an eventual diver-
gence of the ring sum, a failure which is ac-
companied by the appearance of negative pressures
and energies. This short-range divergence can
be removed only by a rigorous theory which includes
all terms in the nth-order perturbation expansion,
or as many terms as are necessary to remove the
singularity. Since this high-order quantum-mechan-
ical sum evaluation is not feasible at present,
various empirical models have been proposed to
represent this correct approach.

In the theory of a classical electrostatic system
of extended (nonpoint) charges, there is a straight-
forward approach used to incorporate the finite
size of the charged particles. This approach has
the effect of removing the divergence by introduc-
tion of a short-range cutoff length. The procedure
results in a function r(x) which is called a finite-
ion-size correction. For a dilute plasma containing
ions with electronic orbitals, this model can be
directly applied: For the short-range limit of the
interaction integral, one uses the effective radius
of the outer electron orbital. These radii, for
such systems as H, He', Li', can be approxima-
ted from experimental data, or from self-consis-
tent field calculations of the free-atom charge-
density distributions.

For fully ionized nuclei, a short-range cutoff
of the Coulomb interaction must be chosen from
oneof the available characteristic lengths of the
system. An obvious candidate is the average dis-

lol »II

1.0

0.9

0,8—

=6 FlG. 2. Wave-mechani-
cal corrections for fully
ionized two-component
gases of nuclear charge
1, 2, and6.
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~(x) = 3[in(1+x) -x+-,'x~] x~,

where

x=r „/Xr,

(12)

and r „is the effective radius of the outer orbital
for extended species, and is l, for the bare nuclei.
This modification when combined with the foregoing
definition of the ring term gives a total configura-
tional Coulombic free energy of the following form:

P(F4),(,g = -ZN( ~ &r(4((P e Z N(/V) {Z,Nf 8,

+ 2Z, N, 8, Z Z( N(8 (T(x, )

+ZZZ( Z(N(N(8(8(v(x(())/'KN() (13).
The finite-ion-size correction in the electron-ion
term is never significant for the hydrogen plasma
considered here. This is true because extended
charged species (FQ, H ) are everywhere trace con-
stituents, while repulsive electron-ion interactions
are only operative for the H ion. The finite-ion-
size correction can become quite large for the ion-
ion interaction, specifically for the H'-H' contri-
bution. However, in the region of density-tempera-
ture space where the full perturbation-expansion
model presented here is strictly valid, this correc-
tion never reduces the ion-ion term by more than
10/o.

tance of closest approach of two nuclei Pe Z&Z&,

the classical turning point, and a reasonable esti-
mate for the short-range limit of a repulsive inter-
action. This distance is modified by the fact that
the nuclei can be considered to be interacting via
a screened Coulomb potential, whose associated
generalized screening length contains the effects
of quantum statistics on the electron interactions.
Taking this into consideration, a screened distance
of closest approach can be defined as

e F

which reduces to the unscreened value l, when

l, «&F, and which is significantly smaller than

l, when l, »F. The functional form of the finite-
ion-size correction is given by
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IV. FIRST-, SECOND-, AND THIRD-ORDER EXCHANGE
INTERACTIONS FOR ELECTRONS

This can be rewritten in terms of the Fermi
functions for a fermion gas as'0

Niyi 1
4 t" (2, +1) fr d& 8 tin(a ),

where

yi (xi/~D}(ziNi/~ ziNi)

= (4 pe QZiNi/V)

(16)

(16)

which becomes, for electrons,

~g]2 e

This general form of the first-order exchange
interaction for electrons can be simplified in two
limiting cases. First, for the classical electron
gas,

lim ( J „«'8'i,p(o")/0 i', g(&,)) = r' .
ee~-j,

Thus, we have

P(F,),„=-N, ,'y,'(N, /QZ', N—,) .

(18)

In the region of the completely degenerate elec-
tron gas, Wasserman, Buckholtz, and DeWitt' find
that

lim 2 f„do"4.»2(o") = (4/w) oi'- —', wlnn+C, ,
e ~41

(20)
C, = —3+ 31n2+ y+ (12/7i') (- 0. 101316 68),

so that

lim p(F4)i„~=-N~ 2y, ~ ZqNI ~41 l. ~&

The total partition function for a real gas should
include terms representing the exchange inter-
actions between free particles of equal spin. The
simplest exchange interaction, treated in first-
order perturbation theory, gives for the free energy
of the gas

dy, dy, f (y|)f (ym)

2(2s, + 1)

(14)

actly to first order. Higher-order perturbation
terms are available; however, the labor required
to calculate them accurately is extensive. The
second-order exchange term is known analytically
for that physical region where MB statistics apply
to the electrons:

e+ j f

The second-order exchange term in this limit is
evidently of the same form as the wave-mechanical
corrected ring term. In general, contributions to
the ring term of order ~y" should be accompanied
by the corresponding exchange term of the same
order. The restrictions on the use of this form of
the second-order exchange are that +, ( —4.

The third- order exchange term for electron-
electron interactions is also toodifficult to evaluate
for arbitrary degeneracy at present. However,
there is an analytic evaluation which is valid for
the region of MB statistics, derived by Hoffman
and Ebeling':

P(F4}q,~ —-N~ (Ao/12 Ap} [N,/(QNi} ]D„, (23}

where D„=~ii' and Ao= pe'/&z.

V. THREE-RUNG LADDER TERM

A major advantage of the perturbation expansion
is that it permits a systematic extension of the
many-body plasma partition function to a quantum
theory of higher-order terms. The expansion term
beyond the ring- sum term in the quantum cluster ex-
pansion is the three-rung ladger term S2. It describes
direct interactions involving three and more scat-
terings of two particles via the dynamic screened
Coulomb potential.

The exact quantum-mechanical form for S~ is a
complex multidimensional integral which is far
more difficult to evaluate than the ring integral of
Eil. (1). The exact result for this integral in the
high-temperature limit has been solved analytically
by Hoffman and Ebeling. The high-temperature
limit is defined here as the region of classical
statistics, where the plasma lengths obey the fol-
lowing order:

x 1 (4/ii) a —f ii inn + C,
[(4/3~) I/ii]8 ' (2 )

The functional form of the exchange term is shown
in Fig. 3. The classical asymptote provides a good
approximation for values —~ &0' & —1.5, while the
complete degeneracy asymptote is reasonably ac-
curate over the range + ~» 0.'& + 5.

Inclusion of the general first-order exchange
term, or either of the asymptotic forms where
valid, treats the exchange partition function ex-
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FIG. 3. The exchange
integral as a function of
degeneracy compared to
Maxwellian and completely
degenerate asymptotic
limits.
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&„&Pe'(Z') &X„, (24) S2(A») =x'dx {exp(-A~~e */x) —1+ A» (e "/x)

which gives an ordering of the dimensionless pa-
rameters of

—,'[A„(e-"/x)]') . (29}

y«&A&y„, y„&1 . (2S)

where

and

x+N( f S2(A, ()

++KIN, N)/N ) f S~(A(i)],

Aa, = ZaZ, Pe /Xz

(27)

(28}

This set of restrictions, when applied to a fully
ionized hydrogen gas, corresponds to a temperature
range 50&T& 2000 eV.

The limiting form of the three-rung ladder is
then

p(E4)3~ = —QN( S2,

S,=+A {Z,N, (lny„+Do)+2Z, N, KZ&N&

x (lny &+Do)+QUIZ Z&N N&

x [In(Z(Z~pe /&~)+D, ])/N (Z ), (26}

where D, = 0. 419'74 and D = 0. 88722014. The
first term describes the electron-electron inter-
action, the second, the electron-ion interaction,
and the third, the ion-ion interaction. Much heavier
than the electrons, the ions operate as purely clas-
sical particles everywhere in this region. How-
ever, the electron interactions exhibit wave-me-
chanical effects in the high-temperature region.
Because of the Z dependence, the three terms in
F& do not have the same sign and combine in a
destructive manner rather than in a constructive
manner, as did the individual components of the
ring sum. Thus, in the high-temperature region,
the total three-rung ladder term tends to be always
smaller than the individual terms which combine
to form it.

Since the exact asymptotic form is valid only in
the region where the three-rung ladder makes small
corrections to the ring-sum term, an approximate
form of the quantum-mechanical ladder term has
been developed. This integral expression incor-
porates both quantum-statistical effects and wave-
mechanical effects into the higher-order perturba-
tion term, and hence should apply over a wider
range of physical space than the exact asymptotic
form. It does recover this exact form in the high-
temperature limit. The partially degenerate multi-
component integral equation for the approximate
three-rung ladder is

p(E4}3J LNf S2(A, y)

S2= (I/2A~) [(N,/N }f S~(A„}+(2N, /N )
1"ee

The value of a, (0. 454575) is determined by re-
quiring the integral expression for S2 to recover
the exact form in the limit of high temperature.

The integral

f x2(e '- 1+q ——,'q }dx,
where q = (A/x) e ' cannot be evaluated analytically
and is somewhat difficult to do numerically.

The simplest procedure seems to be to divide
the interval of integration into three separate sub-
intervals. In the interval where x & c, and e is
sufficiently large so that (IA I/c)e '« I, we can
expand the e in the integrand and the integral
becomes

( 1)II All fix

~ ~ ~~ ~~ ~

f1~3 6 ~
C

The individual terms in this series are difficult
to integrate numerically if a «1, but fortunately
by use of the definition

(Z) -=f (e "/f )«,

(30)

(31)

we can rewrite the series as

, E„a(nc);( A)ll

m3~

and by using the recursion relation
~Z

E (Z}= — Z .,(Z), m &1
m —1 m 1

(32)

(33)

f x ( —1+q- ,'q )dx=3(a' —b—') +A(ae ' —be ')

+A(e ' —e ')+-,' A (e 2' —e ~) . (35)

In the case A&0 for b &x&c, the integrand is
quite well behaved, and it is no problem to integrate
numerically.

The one remaining case is for A& 0 and Iq l not
small. The integral diverges in the limit a-0,
and is quite difficult to evaluate even numerically
for small values of a, because of the x ' term in

the integral from a to ~ becomes

—,
' AE, (3c}+(A'/24c) [e "-4c E,(4c}]

—(A /240c ) [(1—5c) e + 25c E,(5c}]+~ ~ ~ . (34)

The exponential integral E,(Z) can be evaluated
comparatively easily, and the above series con-
verges quite rapidly when c is large enough that
q & 0. 2.

In the case A &0, there may exist an interval
a &x &b such that (A/b}e "»1. In this interval e '
may be neglected in the integrand, and the re-
maining part may be integrated analytically giving
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of hydrogen and helium gas mixtures.
The hydrogen system studied consists of a six-

component mixture (Ha, Ha, H, H', e ) with an initial
composition of one mole of H~. The primary tem-
perature region examined is 50 & T g 2000 eV,
where H, H', and e are the only significant con-
stituents. This high-temperature regime is chosen
for several reasons. First, it minimizes the im-
portance of the other nonideal terms (bound-state
perturbation and excluded volume term) and allows
the Coulomb interactions to dominate. Second, it
restricts n, , the electron degeneracy, to near-
classical values and restricts A~ to small or mod-
erate values. These restrictions are necessary
for the present form of the ring term to be valid,
and for the second-order Coulomb term to be
smaller than the ring term. Third, this choice
causes Ar/p, &

& l, which is the validity requirement
for the asymptotic form of Sa and for the wave-
mechanical correction to the ring term.

In the previous study, the inclusion of a simpler
model of the Coulomb interaction was found to in-
crease ionization and to decrease the total pressure
over a wide density-temperature range. A similar
result is obtained here, as demonstrated by the re-
sults for hydrogen given in Fig. 6. In the figure,
the total mole number (one initial mole of Ha ion-
izes to four moles of plasma) exhibits strong ioniza-
tion at all volumes for all six isotherms. The pri-
mary mechanism for nonideal ionization here is
still the bound-state perturbation, and the Coulomb
effects contribute a maximum ionization enhance-
ment of 0. 3%0.

Since the Coulomb configurational term makes
very minor changes in the ionization equilibrium
in this high-temperature region, a lower-tempera-
ture regime was calculated, 5&T & 50 eV. Here,
the contributions of the various Coulomb perturba-
tion-expansion terms are more readily separable,
as shown in Table I. The ionization for the full

V
{cm3) 10

T{eV)
20 50

106

105

10

103

102

20

10

3.9984
3.9887b
3.9887'
3.9888

3.8955
3.9027
3.9027
3.9035

3.4888
B.5450
3.5453
3.5566

3.1614
3.3477
3.3514
3.4102

2. 6848
3e 2233
3, 2624
3, 3410

2. 6116
3.2815
3.3511
3.3663

2. 7950
3.4250
3.5322
3.4978

3.1464
3.5879
3.7049
3.6249

3.4825
3.7125
3.8085
3.7401

3. 9964
3.9965
3.9965
3.9965

3.9654
3.9664
3.9664
3. 9664

3.7397
3.7559
3.7559
3.7566

3.5042
3.5568
3.5573
3.5623

3.2670
3.4448
3.4521
3.4660

3.2043
3.4618
3, 4763
3.4981

3.2232
3.5394
3.5681
3.5674

3.4084
3.6527
B.6904
3.6773

3.6237
3.7731
3.8103
3.7927

3.9986
3.9986
3.9986
3.9986

3.9879
3.9879
3.9879
3.9879

3.8925
3.8956
3.8957
3.8957

3.6683
3.6835
3.6837
3.6840

3.5082
3.5645
3.5661
3.5678

3.4846
3.5602
3.5632
3.5654

3.4988
3.6029
3.6097
3.6114

3.5888
3.6845
3.6937
3.6935

3.7215
3.7946
3.8051
3.8028

3.9968
3.9968
3.9968
3.9968

3.9710
3.9712
3.9712
3.9712

3.8201
3.8229
3.8230
3.8229

3.7026
3.7145
3.7146
3.7147

3.7415
3.7515
3.7516
3.7517

TABLE I. Ionization equilibrium of hydrogen for
various Coulomb-interaction free-energy models.
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FIG. 6. Ionization equilibrium of hydrogen for tem-
peratures of 50-2000 eV. The fully ionized gas consists
of 4. 0 moles of ions and electrons. At the ionization
minimum on the 50-eV isotherm, the atomic hydrogen
is 86% ionized.

nonideal models is compared for (a) no Coulomb
interaction, (b) ring term only, (c) ring plus first-
and second-order exchange, (d) ring plus first-,
second-, and third-order exchange plus the three-
rung ladder. At the lower temperatures, the ion-
ization enhancement of the ring term is clearly
evident, reaching a maximum of 26% at 5 eV and
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negative. (b) Coulomb pres-
sure contributions at 200 eV.
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50 cm'. The addition of the first-order exchange
term increases the ionization even further, al-
though the effect is smaller: a maximum of 4/o at
5 eV and 20 cm . The addition of the three-rung
ladder shows an interesting reversal. At low den-
sities, where F4(») is a negative function of A, the
three-rung ladder term enhances ionization. This
effect is smaller than the ring-term effectbut larg-
er than the exchange effects and occurs for V & 50

cm . As A„ increases, F4&»& changes sign, and
the ladder term begins to inhibit ionization. This
effect is still small even at 5 eV, and now is dom-
inated by both ring and exchange contributions. By
50 eV in hydrogen, all these terms produce rela-
tively small effects in the equilibrium composition.

A much stronger effect is seen when the equa-
tions of state are examined. The pressure cor-
rections contributed by the Coulomb interaction
are generally the largest nonideal corrections
throughout the high-temperature region. The total
Coulomb pressure effect and the individual contri-
butions of the separate terms in F4 are illustrated
in Fig. 7, where they are given as fractions of the
total pressure. The P4, Ppjng& and P1&& are nega-
tive pressures, while P» is a positive pressure.
The low-density functional dependence of the three
terms are (P4)„,QP„„,-A- V '; P,„,/P„«-p,

forms quite closely match the numerical results at
low density. At higher density, the ring-term pres-
sure departs from this limiting behavior, because
of recombination and pressure ionization, to elec-
tron degeneracy and finally to the operation of a
strong short-range cutoff factor r(x). Electron
degeneracy also begins to cause P&„, to decrease
from its low-density V ' dependence. The major

conclusion apparent from these results is that the
ring term is, as expected, the largest contributor
at low density. The sharp turnaround observed at
50 and 1000 eV is due to the onset of electron de-
generacy and the short-range cutoff. This latter
effect is obviously crucial, since P4 is a moderate
fraction of P««„and if P„„were to continue to
rise at its low-density rate, the negative Coulomb
correction would soon exceed the positive pressure.
This indicates the importance of a complete evalu-
ation of the exact quantum-mechanical ring sum
for an ion-electron system. This task is being
carried out by numerical integration on a com-
puter, and will allow replacement of the approxi-
mate form used here Eq. (13) by an exact theoreti-
cal result.

The second conclusion is that the exchange pres-
sure is an important contributor, even at reason-
ably moderate values of the electron degeneracy.
Exchange reaches 5% of the total pressure at values
of o.', ranging from 0 (at 50 eV) to+5 (1000 eV), the
region of slight-to-moderate degeneracy. At all
three temperatures in Fig. 7, exchange becomes
the largest contributor to the Coulomb pressure at
the end of the isotherm. Generally, exchange pres-
sure is not included in high-temperature or low-
density Coulomb models until the gas is nearly
completely degenerate. This leads to an under-
estimate of the Coulomb correction for all equa-
tions of state.

The three-rung ladder term is the smallest con-
tributor everywhere, as is expected for this low
4 region. However, this term does rise rapidly
with increasing density, and at the end of the three
isotherms, it is approaching the ring term, al-
though by the time this occurs the exchange pres-
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FIG. 8. The plasma interaction parameter A+, and
the quantum diffraction parameter p« for ionized hydro-
gen in the range 50 ~ T~ 1000 eV.

10

sure has become dominant. In general, the exten-
sion of the perturbation-expansion theory to include
terms beyond the ring term (a process intended to
reduce the divergence of the Coulomb partition
function and to extend the range of positive accurate
pressure calculations) has the effect of making the
pressure more negative throughout the weak-to-
moderate interaction region. In addition to the
quantum-mechanical ring sum, a strong need is
apparent for a correct calculation of the second-
order exchange term for degenerate electrons,
which acts to decrease the total exchange pressure.
It should be noted here that in these calculations,
the second- and third-order exchange terms were
included only in the classical region, since the
analytical forms of Eqs. (22) and (23) are valid
only for MB statistics.

An examination of the dimensionless parameters
characterizing the strongly ionized gas provides
an estimate of the validity of the various terms.
In Fig. 8, A~ and y„are plotted for three iso-
therms of hydrogen. The lowest isotherm (50 eV)
has Ar/y«- 1, indicating that the wave-mechanical
correction is marginally valid here, but should be
accurate for T &50 eV. Also, the asymptotic S~
form should be accurate at the low-density end of
the isotherm. At 200 and 1000 eV, the value of
Ar/y„drops to - —,

' and - —,'. At the high-density
end of all three isotherms, electron degeneracy
and short-range cutoff effects cause a marked de-

10-
I I I I I I

'
I

10
U

10

10
-14 -12

I i I i I s I

-10 -8 -6 -4 -2 0 2 4 6

FIG. 9. The plasma-interaction parameter and elec-
tron degeneracy n, for ionized hydrogen in the range
50 ~ T ~ 2000 eV.

crease in the volume dependence of A~. The
degeneracy effects are exhibited in Fig. 9, where

A~ and &, are plotted for the full V, T range con-
sidered. The range of A~ is from 10 (Coulomb
corrections negligible) to 1 (three-rung ladder
necessary), while a, ranges from —12 (highly
Maxwellian) to +4 (moderately degenerate, ex-
change effects dominant).

A comparison of the analytically correct wave-
mechanical correction P(y) and the empiricalfinite-
ion-size correction r(x) is given for hydrogen in

Fig. 10. The wave-mechanical correction reaches
minimum values in the range 0. 82-0. 86 for the
temperature range 50-2000 eV, with the minimum
occurring at y„of about 1.15. For y, &

&1.15 there
is a sharp reversal as P(y) becomes larger than

unity, due to divergence of the two-term asymptotic
series.

The finite-ion-size correction exhibits somewhat
different behavior, as shown in the Fig. 10. There are
several r(x&) terms, corresponding to the various ion-
ion pair interactions (H -H, Hz-Hz, H'-H ), but
the only one which is operative in the strongly ion-
ized gas is the short-range cutoff for O'-H' inter-
actions. %hen this factor is compared with the

P(y) behavior, it is clear that there is quite good
qualitative agreement —the two factors have almost
identical volume dependence over the complete
range of V studied. Their quantitative agreement
is also reasonably good: At 200 eV they differ by
less than one-half of 1%. For T & 200 eV, the r
factor attained lower values than P(y), which be-
comes inexact in the range T +50 eV, while for
T &200 eV, the T factor attains larger values than
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FIG. 10. (a) The wave-mechanical correction P(y)
for ionized hydrogen for 50~ T~2000eV. (b) The finite-
ion-size correction for the H'-H' interaction for 50~ T
~2000 eV.

P(y). The use of the empirical short-range cutoff
in place of the analytical wave-mechanical correc-
tion is correct to 5% at worst in the range 50~ T
& 2000 eV, andinthe range 100 T 500 eV, the
error is 2% or less. This result indicates that
use of the empirical r(xI function to approximate
or to continue the wave-mechanical behavior of the
ring-sum term in the region where the P(y) expan-
sion diverges is a reasonable procedure.

A comparison of first- and second-order exchange
in the near-classical region is given in Fig. 11.
At the lowest temperature, the two terms arenearly
equal, because of the near equality of A and y, at
this point. As T increases, the second-order ex-
change becomes increasingly less important rela-
tive to the first-order term. At T &1000 eV, it can
be neglected for the entire region log, o&& 3.
It is clear, however, that if this model is to be
carried to higher densities or lower temperatures,
both third-order exchange and an exact degeneracy-
dependent form of Sa~ must be included. At the
lowest volumes plotted for 100 and 200 eV, the
classical S», term, if carried up to this point,
equals or exceeds the degeneracy-dependent S&

This effect can be removed only by including the
Fermi statistics in the second-order term.

The three-rung ladder term has contributed
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FIG. 11. Exchange
free energies for hydro-
gen. First- plus third-
order terms are com-
pared to second order.
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small but significant effects to the thermodynamic
properties at high temperature. The region where

S& becomes important is at the low-volume end of
the isotherms. The comparison between the nu-

merically evaluated Sz integral and the analytic
high-temperature expression of Hoffman and
Ebeling' is illustrated in Fig. 12. The logarithm
of IS&1 is plotted for electron-electron and ion-ion
terms, both negative, and for the electron-ion
positive term.

At highest volume, for all three temperatures
the agreement between the integral Sa and asymp-
totic S2 is quite good. In all cases, the electron-
ion term exhibits the greatest disagreement, which
at the largest is 14% at 50 eV and 10' cm . This is
due to the ratio IA, &/y, &

I being smaller than A„/y„,
while A, &

is negative. This condition, A&0 and

IA/a I large, was shown to be one which produced
very rapid changes in S» where the asymptotic
expansion starts to diverge. The agreement for
the electron-electron term is within a few percent,
and for the ion-ion term the two forms agree to
four significant figures. As the volume decreases,
the two sets of curves begin to separate, until at
sufficiently high density, the asymptotic term rap-
idly diverges from the integral term. In all these
cases, this discrepancy grows very rapidly, the
electron-electron term diverging first, followed
by the electron-ion and then the ion-ion term.
About the point where the asymptotic form fails,
a stronger curvature sets in for the electron-
electron and electron-ion integral terms, denoting
the onset of significant electron degeneracy. At
the lowest volume points on the isotherms, the
electron-electron and electron-ion contributions
here begin to decrease, while the ion-ion term
still exhibits a classical low-density dependence.

It is of interest to note the partial "cancellation"
of the total S~ term at highest volume. Because of
the Z3 dependence of the three-rung ladder term,
the three terms occur in the approximate ratio
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volume. (b) Three-rung ladder term values at 200 eV.
(c) Three-rung ladder term values at 1000 eV.

(- 1, 2, —1I, so that their additive effect is about
one order of magnitude down from the value of the
individual terms. As electron degeneracy begins
to affect the electron-electron and electron-ion
terms, this approximate equivalence is destroyed,
until at lowest volume the total S& is closely approx-
imated by the ion-ion term alone.

The full Coulomb configurational free-energy
model was also applied to a calculation of the ther-
modynamic properties of a helium system at high
temperature. The thermodynamic effects produced
by the Coulomb interaction were similar to those
observed in hydrogen, the primary differences
being due to the stronger interaction of the doubly
charged helium ions. The ionization equilibrium
for the He'-He system is shown in Fig. 13 for
the temperature range 50-2000 eV. The shift of
the ionization minimum toward higher density as
the temperature increases is more marked in he-
lium than in hydrogen. The stronger Coulomb in-
teractions (for identical temperature and density)
produce larger ionization enhancement in helium,
as well as larger Coulomb pressures. In the hy-
drogen gas, the maximum ionization enhancement
produced by the Coulomb effects at 50 eV was 1
part in 400, while for helium at this temperature
a 4. 2% enhancement is observed.

A comparison of the two dimensionless inter-
action parameters ~~ and y« is given in Fig. 14
for the two systems. Since the electron density of
the two fully ionized gases (for one initial mole of
Hz and one initial mole of He) is equal for given
density and temperature, the electron degeneracy
for H and He will be almost equal throughout this
strongly ionized high- temperature region. Simi-
larly degeneracy effects will be equivalent. The
quantum diffraction parameter, which is related to
the wave-mechanical effects in the ring sum and
to the first-order exchange, is dependent on the
plasma charge:
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Hence for helium, at given density and tempera-
ture, the y factors will be (6/4)'~ or l. 222 times
larger than the y factors for a fully ionized hydro-

gen gas. Examination of Fig. 14 bears out this
relationship, the deviations from this ratio oc-
curring where partial recombination or electron
degeneracy are significant. This small Z depen-
dence indicates that first-order exchange andwave-
mechanical effects are less important relative to
the direct interaction terms as Z increases.

The Z dependence of A is given by

a~(gz', x, /& x,)"'.

10
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I I I I I I I II

1 0 2
I I I I I I I I I

10

FIG. 14. The plasma-interaction parameter Az and
quantum diffraction parameter y« for hydrogen and he-
lium at 50, 200, and 1000 eV. The connecting lines link
points of equal density and temperature for the two gases.

For ionized helium, the A factors are (6/3) ' or
2. 828 times the values for ionized hydrogen at the
same density and temperature. This relationship
is also attained in the results of Fig. 14, slightly
modified by recombination and degeneracy effects.
This stronger Z dependence makes the ring term
increasingly dominant as Z increases.
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Rayleigh Scattering of a Laser Beam fron& a Massive Relativistic Two-Level Atom'
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A relativistic two-level model of a massive atom in the presence of an external plane-wave
laser beam is solved. Using the resulting wave functions, the cross sections for the scatter-
ing of a photon of the laser frequency or one of its harmonics is calculated. Many interesting
nonlinear effects are found, the most striking being the rapid change of the resonance frequency
in the cross section for harmonic production as the intensity of the laser is increased. Both
approximate and exact numerical results are presented.

I. INTRODUCTION

The nonlinear interactions of an intense photon
(laser) beam with other systems has been the sub-
ject of many theoretical investigations. Of partic-
ular interest are those that start from first princi-
ples, i.e. , quantum electrodynamics, since the
predictions can then be used as a test of the under-

lying theory. The most investigated subject is
nonlinear Compton scattering from a free electron, '
but with present-day lasers the interesting predic-
tions are too small to be measured. In order to
increase the size of the nonlinear effects, we would
like to study the nonlinear scattering of a photon
beam from an atom. For the free electron the only
dimensionless parameter available is e a /m„


