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The velocity autocorrelation function (v(¢) v(0)) of a hard-sphere Brownian particle moving
in an incompressible viscous fluid is calculated on the basis of hydrodynamics. The usually
assumed exponential decay at long times is shown to be inconsistent with fluid mechanics. A
slower decay « £3/% as ¢— = is derived. This decay has been observed in molecular dynamic
computations carried out by Alder and Wainwright.

L INTRODUCTION

The Brownian motion of a large massive impurity
in a classical liquid is well known as direct evidence
of thermal molecular motion. In Einstein’s classic
investigations,' it was pointed out that the diffusion
coefficient

2 -]
D=1im<—<ig-(tt)—>> _ fo (w(B0(0)) dt 1)
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is simply related to the mobility u :
u=D/kT . (2)

Einstein considered a hard sphere of mass M and
radius R moving through an incompressible fluid

of mass density p and viscosity 7 as a model Brow -
nian particle. The mobility is then given by
Stokes’s law :

wt=6mR . (3)

The experimental validity of the relation D=£T/
67MR strongly supports the physical reality of this
model.

It is interesting to note that Einstein made no
hypothesis about the behavior of the velocity auto-
correlation function

o (t=s)=(v(tv(s)) . 4)

Assuming the stochastic random variable v(?) is
Gaussian and Markovian, it follows? that ¢ (¢) is
exponentially decaying. Although this leads to an
important mathematical theory,’ the basic assump-
tions are physically unproven both theoretically
(from microscopic dynamics) and experimentally.
The detailed time dependence of ¢(¢) has not yet
been observed in the laboratory.

The purpose of this paper is to point out the fol-
lowing: (i) Fluid mechanics makes a definite pre-
diction about the behavior of the velocity autocor-
relation function ¢(¢); (ii) the prediction is valid
in the limit - ; and (iii) the usually assumed
exponential decay is too fast; the actual decay is
P~ ag t= oo,

II. EQUATION OF MOTION

The drag force on a hard sphere moving with
velocity «(f) in an incompressible fluid is given by*
F(t)= - 6mnRu(t) - 2npR3 4 (1)

t
-6R¥mp)'/? [ (t=s)"2u(s)ds. (5)

When u(¢)=0, Eq. (5) yields the Stokes mobility
given in Eq. (3). When #({)# 0, the last two terms
on the right-hand side of Eq. (5) become important.

Suppose that an external force f,,;(f) acts on the
Brownian impurity. The total force equals the ex-
ternal force plus the drag force:

Mu(t)=f, () + F(2) . (6)

On the other hand, linear-response theory® predicts
that

u®)= BT [1 ¢t = s)fels) ds . W)

The equation of motion for ¢(¢) follows from Egs.
(5)=(7) and the initial condition

$(0)=®)=kT/M . (8)
It is
M*¢(t)= ~ 6mR (t) - BR*RT(mp/tM?)*/?
- (8R*RT/M)(mp)*2 [* (t = 5)/%p(s) ds , (9)

where the effective mass of the impurity is given
by

M*=M+21pR® . (10)
Trying a solution of the form
¢(0)= (RT/M[1 - [T 9(x) dx], (1)
where
y=6mR/M* , (12)
yields the integral equation
W(x) + foxg(x =9)9(y) dy = g(x) . (13)
In Eq. (13)
g(x)=1+a(rx)"?, (14)
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a®=6mpR}/M* . (15)

From Egs. (10) and (15) it follows that the physical
values of the dimensionless parameter « are in
the range

0<a<3, (16)

Equation (13) is a Volterra integral equation of the
second kind and of the Faltung type.® It is solved
by transform techniques.

III. SOLUTION OF INTEGRAL EQUATION

Let
= [ ey dx, ¢>0. ()
From (i) the obvious indentity [see Eq. (14)]
e g av=(1/89+ a1/2), (18)

(ii) the convolution theorem for Laplace trans-
forms, and (iii) Eq. (13), it follows that

1+ag
f(€)=m . (19)

Furthermore, let

x(©)= [ 2tf(©)e®dg, o>0. (20)

Equations (17) and (20) imply

x(0) f Y dx (21)

X+0

Considered as a function of a complex variable,
x(0) is analytic in the o plane with a cut on the neg-
ative axis. The discontinuity across this cut is de-
termined by (x). Since §(x) is real, a dispersion
relation follows :

¥(x) = = (1/m)lim Imy(o= —x +i€) . (22)
€~ 0"

The solution of Eq. (13) can now be found in the
following manner: (i) Evaluate Eq. (20) for real
positive values of ¢ in a form that can be analyti-
cally continued into the complex o plane. (ii) The
solution of the integral equation is found from the
dispersion relation in Eq. (22).

From Eqgs. (19) and (20) it follows that

X(0)=/w 25(1+ ag)
0

-¢2g
l+af+¢ e rdt. (23)

Using the change of integration variable y = ¢%¢, it
follows that

X(©0)= [ "Gy, 0)e dy , (24)
where
1/2 1/2
o2+ ay
Gy, 0)= A a0y s yo? (25)
For fixed values of y (real and positive), G(y, o) has

the same analytic properties in the complex o plane
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as x(o). The analytic continuation can be made on
both sides of Eq. (24). From Eq. (25), it follows
that

_% lim ImG(y, o= = x + i€)

€~0*

. y*2
T oavx (y=x)7%+aixy (26)

Equations (22), (24), and (26) therefore imply that

3/2
P(x) = f—f G0t oy dy . 27

Equations (11) and (27) represent the formal solu-
tion of the hydrodynamic calculation of the velocity
autocorrelation function in Eq. (4).

IV. CONCLUSIONS

Since hydrodynamic claculations of autocorrela-
tion functions are only valid for long (i.e., macro-
scopic) times,” the formal solution should be eval-
uated as t—~ <. Equation (27) has the asymptotic
expansion

W(x)= (Ba/4VT )x 2+ 0(x "3,

X = 0

; (28)

therefore

M/ET)o(8) = (a/2VT )(vt) 3%+ as t-~o . (29)

The power-law decay o¢(t)~ £3/2 is much slower than
the usually assumed exponential decay ¢(¢)~e™t,
which we have shown to be inconsistent with hydro-
dynamics. Qualitatively, the hydrodynamic predic-
tion for ¢(¢) decreases monotonically from k7T/M

to zero in the interval 0<i{<=,

Will the power-law decay o (f)~ ¢ /% occur in real
liquids? This decay will dominate the exponential
decay in all fluids where the parameter « is ap-
preciable, i.e., in all fluids where the mass density
of the impurity is comparable to the mass density
of the fluid. In gases the exponential decay repre-
sents a fairly valid description. In dense liquids
where p is comparable to 3M/4rR® exponential de-
cay will not be valid.

Can the power-law decay ¢()~ ¢ /2 be observed?
Although diffusion coefficients (and hence mobili-
ties) have often been measured in the laboratory,
this is not true of ¢(¢). However, ¢(¢) for a fluid
made up of hard-sphere molecules has recently
been calculated on a computer by Alder and Wain-
wright.® They see clear evidence of a ¢ /% law and
attribute this behavior to macroscopic fluid mech-
anics. Their hydrodynamic calculation® “, .. differs
conceptually from the Stokes-Einstein model el
We have shown that no conceptual differences need
be invoked. The relation D=kT/6mR is not in-
consistent with ¢ ()~ t3/2. I fact, both follow from
the same model.
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The one-dimensional charged-particle continuity equation with recombination-volume loss
terms has been solved in a negative-glow—Faraday-dark-space environment without the
usual assumptions neglecting the dependence of electron transport and recombination coef-
ficients on the electric field. It is concluded that such assumptions are in serious error in
the one-dimensional case and this raises the question of their effect on a three-dimensional

model.

I. INTRODUCTION

The Faraday dark space and negative glow are
familiar phenomena in glow discharges, and there
is general agreement as to the important atomic
processes that should be included in any theoretical
discussion of these regions.'? The negative glow
is characterized as a low-field high-charge-density
plasma with a beam of high-energy electrons from
the cathode-fall region being injected into its cath-
ode edge. The effect of this beam is increasingly
restricted to the cathode -fall-negative -glow bound-
ary at pressures greater than 1 Torr. Also, at such
higher pressures and for sufficiently large discharge
dimensions, diffusion loss becomes subordinate to
electron-ion recombination loss.3® This is the type
of discharge environment with which this present
discussion is concerned. On proceeding farther
from the cathode-fall region presumably one comes
to a point that, due to the loss in charged particles,
the electric field has risen to such a value that the
recombination rate is reduced considerably and has
become subordinate to the diffusion loss rate. This
is generally thought to be the condition which distin-
guishes the Faraday dark space from the negative
glow. Consequently, for the discharge environment
outlined above the continuity equation in the negative
glow sufficiently far from the cathode-fall boundary
becomes

V2N =(a/D,)N? , (1)

where « is the recombination coefficient and D, is
the ambipolar diffusion coefficient. In the Faraday
dark space, the continuity equation becomes :

Vv3N=0. )

In general, these regions are considered separately
with an assumed sharp boundary between them and
with the mobility, diffusion, and recombination pa-
rameters assumed to have constant but different
values in the two regions. It is also generallyrec-
ognized that this boundary is an artificial concept,
that its location is arbitrary, and that there is actu-
ally a continuous transition from the negative glow
to the Faraday dark space.

Also neither of the preceding equations includes
any explicit dependence on the current density, one
of the most important parameters from an experi-
mental standpoint. The obvious response to this
observation with regard to Eq. (1) is that @ and
D, are dependent on the electric field, which is in
turn dependent on the current density. However,
Eq. (2) implies that there is no recombination in
the Faraday dark space, and consequently the only
possible current dependence of the charge distribu-
tion in this region is through the boundary condi-
tions at the negative-glow-Faraday-dark-space in-
terface, an impractical concept as discussed above.



