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lKs-KtEI(s'-5')"a=yaK'IEt -Eels'(f. -f ) .
(23)

With this fact, the integral over Z becomes trivial
and recalling the limits on Z, we finally obtain the
expression

[( )" —(.)" ]e -1 IKt —KsI s. (f, t -).
(24)

which is identical to the result obtained in Eq. (5).
It thus appears rather obvious that the Coulomb t
matrix does posses a branch cut along the unitarity
axis, contrary to previous assertions. The crucial
error in Ref. 2 is that the limit 6- 0 was taken in-

correctly to yield the result

0= T(K ) —T(K ) e lim [T(K + i5) —T(K - i5)]

as 5 0. (25)

We note that T(K ) does not satisfy the usual uni-
tarity condition owing to the singular factor in the
integral in Eq. (7) which gives rise to the extra
multiplicative factor shown in Eq. (9). We may ob-
tain a relation which looks more like ordinary uni-
tarity if, like Schwinger, ' we remove a factor
(Ks Ks-+i5) + (2vri)+s(es~ —1) t~s from T(Ks+i5)
and a similar factor of (Ks -K" i5—)"(2vt})"s
&&(e~ —1) s from T(Ks-i5) before performing the
integral in Eq. (3).
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A strong-coupling model for the simple exchange reaction &+BC-&B+C is developed by
considering the atom-diatom inelastic problems A+BC and &B+C separately and then intro-
ducing coupling between these configurations to allow for reaction. The inelastic systems are
developed in the form of self-coupled differential-integral equations and are recoupled by the
matrix element over internal states of the resonance energy between the adiabatic surfaces for
the separate configurations. The model is applied to the D+H2 DH+H system and its isotopes
in a two-level approximation. At the threshold energy (0.33 eV) for the D+H2 DH+ H system,
the calculated reactive total cross section is l. 62 At and the DH product is backscattered in
the center-of-mass system.

I. INTRODUCTION

Advances in the technique of experimental molec-
ular beams has renewed interest in the microscopic
theory of chemical kinetics. In the present paper
the dynamics of the simple exchange reaction
A+BC-AB+C will be considered. To date, the
appropriate equations of motion have been consid-
ered mainly in the classical case. ' Quantum rne-
chanically, the dynamics of the reaction may be
considered within the framework of scattering
theory. Weak-coupling (e. g. , distorted wave)
models~'3 have been developed with the approxima-
tion of a linear alignment of A, B, and C; however
they tend to underestimate the observable cross
sections.

In these models the scattering amplitude is de-

termined in its integral form for the two-state case.
In the present paper, a strong-coupling model from
the coupled-differential-equations approach will be
investigated also using a two-state approximation.
The coupled radial Schrodinger equations will be
solved exactly and the R matrix determined nurneri-
cally.

To begin our model, the relative motion of both
configurations A+ BC and AB+ C is expressed in a
common radial coordinate. The self-coupled sets
of radial equations for each configuration are de-
veloped similar to the atom-diatom inelastic prob-
lem. In Sec. III, coupling is introduced to account
for the reactive process. The supposition is made
that the self-coupled sets of radial equations for the
separate configurations are recoupled by a matrix
element over internal states of the resonance en-
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ergy between the adiabatic potential surfaces for
these configurations.

The recoupled sets of radial equations are re-
duced to the two-level approximation in Sec. V by
neglecting coupling of internal and orbital angular
momenta and assuming only one reactant state and
one product state. Although this approximation is
quite restrictive in general, it may be applied to
the D+H~-DH+H system for which no product ex-
citation is observed. ' In addition, experimental
data ' is also available for the isotopic systems
H+H- H2+H and H+Da-DH+D.

II. FORMULATION

In the present work, the rearrangement collision
A+ BC-AB+ C is considered to be a resonance be-
tween the configurations A + BC and AB+ C. The
initial (or reactant) channel a is characterized by
its energy, the orbital angular momentum E„and
the rotational J, and vibrational state v, of the
diatom. The product state AB+ C is similarly
characterized by its energy and quantum numbers
l» J» and v, . From Fig. 1 the internal motions
of the diatoms BC and AB are described by the
vectors r, and r~. The relative motions are de-
scribed by 0, and R,.

Assuming separation of internal and external mo-
tions, the wave functions of the separate configura-
tions are written as products

4,(R, r.) = q.(R) @.(r.),
4,(R, r, )=y, (R)4,(r, ) .

(2. 3a)

(2. 3b)

The center-of-mass motion may be separated
out into the coordinates (5, r, ) for the configuration
A+BC and into (%, r, ) for AB+C. The Hamiltonians
for the respective systems are then

Sa

2/Ac

k~
V, + V,(R, ra)

2Wac
(2. 4a)

ative-motion wave functions in the relative coordi-
nate R (i. e. , the AC vector of Fig. 1). At large
distances for the initial configuration, the r, vector
may be considered as having constant magnitude
which is the bond distance r,o. Averaging over
angles of approach, the correct relative-motion
wave function (i.e. , the plane wave e'&'ao) may be
written as a constant multiplying a plane wave in

5, that is, Ce' o' . The constant C is

sin(a, k,r,a)/(a, k,r,a),

where a, is the mass ratio ms/(ms+me). A simi-
lar argument with interchange of subscripts holds
for the final or product state AB+ C.

One might then begin by making the assumption
the total wave functions are given by

4, (R. , r. ) = y. (R.) e, (r,),
q'a(Ra ra) = 6 (&a)@a (ra)

(2. 1)
3Ca(R, ra) = — Vs — V~ ' V„

2p xc

where 4,(r,) and 4a (r,) are the internal-state wave
functions to be discussed in detail in Sec. IV.

In these coordinates the respective Hamiltonians
are where

h~
'7,a+ Va(%, ra) (2. 4b)

3C,(R„r, ) = —(I'/2p, )V'„—(A'/2pso)V',

+ V,(%„r,)

X (Ra„r )a= —(/f /2Pa)&as, —()i ,/2P, ~) &'„,

+ Va(&a ra)

(2. 2a)

(2. 2b)

p„,= m„m,/(I „+m,)

and V, and V, are the same adiabatic potentials of
Eq. (2. 2) with the indicated coordinate transforma-
tion.

where V, and V, are the adiabatic eigenvalues of the
total electronic Hamiltonians of the separate sys-
tems and p gives the appropriate reduced mass.

To eliminate the need for matching wave functions
at artificial boundaries, the functions g,(%,) and

ga(%a) must be expressed in a common coordinate.
The models of Karplus and Tang' and of Micha'
require the reaction to take place through a linear
arrangement of A, B, and C. Thus the coordinate
transformation necessary to evaluate the integral
form of the scattering amplitude is restricted to
this alignment. We shall consider the approxima-
tion involved in expressing the initial and final rel-

FIG. 1. The position vectors employed in separating
the center-of-mass motion c from the laboratory refer-
ence system Sl.. Other vectors defined in the text.
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x Q X„Y,„(8,y)C, (r.)=0,
al arne

(2. 6)

where y, = p, „o/mo and

v, (R, iR) = 2p. go V, (R, i'R)/g

Also, one obtains

0.'= 2P, „o(E,—E,)/g',
where E, is the eigenvalue of the internal Hamilton-
ian.

Multiplying Eq. (2. 6) on the left-hand side by
~ and 4,*. and integrating over dQ and dr, gen-

erates the coupled set

(II, , ~ R;(R I —II, , ' ' —,'ll, ,(R)
d' I,(l, +1)

The self-coupled sets of differential-integral
equations may now be developed to describe the
elastic and inelastic features of the separate con-
figurations. Only the configuration A +BC will be
considered, the same arguments holding for both
systems. The derivation is similar to that for the
atom-diatom inelastic problem. Separating the
potential V,(R, r, ) into an internal harmonic-oscil-
lator potential V" (r, ) and an external distortion po-
tential V, (R, r, ), and Hamiltonians for the internal
motions may be written

H, (r,) = —()I /2pso) V„+ V" (r, ) —D, , (2. 5)

where D, is the binding energy of the diatom BC.
Expanding $,(R) in the spherical harmonic func-

tion Y, (8, P) and the radial functions X„,(R) and

introducing this expression into the Schrodinger
equation for the system one obtains

l, (f, + 1)
6a a dRE+Fb R(R) —6@~ E

—'ub, ~ (R)
a' dR R

+5~.~&~ X~. ~ =0 (2. 10)

where F&., and&, .& are defined similar to Eqs.
(2. 8) and (2. 9) with the exchange of subscripts. In

Sec. III, recoupling between X,... and X, , will bea Ea b

introduced to account for the exchange process.

llI. RESONANCE COUPLING

i tEI/
25 50 80

fa)

If one begins the investigation of the reactive
system A+BC-AB+C by treating the entire sys-
tem collectively, one might make the initial assump-
tion that the total wave function is

e, = y.(R.) C,(r,)+y„(%,) e,(r, ) .

This leads to a coupling term between the radial
wave functions (e. g. , X„and X„,) which is of
second order. %e shall consider the concept of
resonance energy between adiabatic electronic
states which will allow us to estimate the coupling
in zero order and thus bring the problem to trac-
table form.

The significance of the resonance energy between
adiabatic electronic states is well known from the
Landau and Zener' expression for the probability
of crossing. A similar situation exists for the ex-
change reaction A+ BC -AB+ C except that one is
now dealing with the crossing of potential energy
surfaces. " The nature of these adiabatic surfaces
is shown in Fig. 2(a) from the work of Evans and

+5...k, X, , A =0 (2. 7)

where 5... is the Kronecker 5 function and

F...(R) = y, Idn dr, Y,
*„(8,y) C,*,(r, )

&&Vs V„Y, ( y8)e, ( )r. (2. 6)

B-C Distance

(b)

Also from Eq. (2. 7) we have the self-coupling ma-
trix element

Cl

LEJ

~...(R)= J dQdr, Y,*; (8, $)4,*.(r, )

xV, (R, r, ) Y, .(8, y)C, (r, ) . (2. 9)

The corresponding self-coupled set of differen-
tial-integral equations for the configuration AB+ C
1S

Reaction Coordinate

FIG. 2. (a) Schematic representation of the repulsive
London surfaces for the linear arrangements of & with
BC (E&) and AB with C (E2). The line a-b indicates the
reaction path and the units are arbitrary. (b) Schematic
section along the reaction path a-b from Fig. 2 (a). S&

and 82 are the surfaces resulting from the introduction of
configuration interaction and &~ is the resonance energy.
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Polanyi' for a collinear symmetric system. By
consideration of the interaction of configurations
in the region of intersection, the repulsive surfaces
E& and E3 split into a smooth lower surface S& and

a basinlike upper surface S~. This effect is ob-
served in Fig. 2(b) where the reaction path is the
path of minimum potential.

The resonance energy e,~ is a measure of the
degree of electron redistribution occurring upon
transition from surface E, to E2. The magnitude
and range of c~ are expected to be smaller the more
extensive the reorganization of the electronic struc-
ture. Thus, for homopolar reactions of the type
D+H2- DH+H, the resonance energy will be com-
paratively large.

Golden" has developed the probability formula for
surface crossing from time-dependent perturbation
theory. The resonance energy has the same role
here as in the Landau-Zener curve-crossing ex-
pression used to calculate reaction rates, " That
is, the greater e~, the greater the reaction prob-
ability. With this property in mind and the fact
that the resonance energy is defined in the region
where one expects the reaction to occur, we make
the supposition that the coupling between the radial
wave functions is given by the matrix element over
the resonance energy

U„(R)= (2p „c/N')5 d 0dr. Y,',.(8, P) 4 f(r.)

x e~(R, r, ) Y,,„,(8, 4)) 4,(r, ) (3. 2)

+ ~ osaka Xa~g~ R: Uap R X&p R (3.3a)

I (I +1)
&()r~ dR2 + E)).()(R)- 5,e,

'
Rg

—h, e,(R)
a'

+ 5~i~k~ X~i)i R = U~a R Xag R
a

(3.3b)

The scattering attributes of the total system are
determined by imposing boundary conditions upon
X, , and X, , and then solving this set of equations
to whatever degree of approximation is computa-
tionally feasible. We shall consider these boundary
conditions within a two-level approximation in Sec.
VI.

Now the position of the coupling between the radial
wave functions X,... and X,... of E(ls. (2. 7) and

(2. 10) will be determined by the position of the
resonance energy.

The self-coupled sets of differential-integral
equations from Sec. II may now be recoupled by
this resonance coupling term U~(R) to describe the
entire system, giving

Z(()... , ~)...()))-o... ' ', -~...0))
d2 I,(l, + 1)

a'

IV. INTERNAL EIGENFUNCTIONS AND EIGENVALUES

Implicit in the recoupling of E(ls. (3.3a) and

(3. 3b) is that the total energy of the system be con-
served in passing from one configuration to the
other. We have that E,=E, or

Kk, /2p„c+ e( v„t,) = Nk(/2p„c+, e~(v~, J~). (4. 1)

Assuming separation of vibrational and rotational
motions, the internal wave functions take the well-
known form'

4,(r, ) =r, ' S„($,) Y „,(8„4.) (4. 2)

with $, =r, —r,o. The F~ ~ are the spherical har-
monics and S„($,) is just the simple harmonic-os-
cillator wave function.

The internal Hamiltonian is

ff,(r) = —(5 /2psc) v + ~2PBc(co (&o &o0) —D, ,

(4. 3)

As a preliminary test of our model, an approxi-
mate calculation on the reactive system D+ H2

-DH+ H and its isotopes has been performed. As
mentioned in the Introduction, experimental scatter-
ing data are available for comparison. In addition,
the experimental evidence is that the product mol-
ecule is not internally excited. This reduces sig-
nificantly the number of coupled equations which
must be considered. The potential energy of these
systems is also well characterized by the H, semi-
empirical surface of Porter and Karplus. ' The
magnitude and position of the resonance energy
c„may be estimated from this potential surface.

To reduce the problem to a two-state system the
assumption of spherically symmetric distortion
potential. s is made. Thus there mill be no coupling
of internal and external angular momenta. Since it
is known that there is no product excitation, this
assumption may not be overly restrictive for this
system. If we make the additional assumption that
the resonance energy is al.so spherically symmetric,
then from the form of the resonance-coupling term
U~(R) we will have I, = I,(= I). Spherically symmet-
ric but segmented potentials were employed in the

where D, is the binding energy of BC. The resulting
eigenvalue is

e, (v„J',) = k((),(v, + 2) + 5 J',(J', + 1)/2I, —D, , (4.4)

where ~, is the frequency of the oscillator and I,
is the moment of inertia of the diatom BC.

The conterparts to these expressions for the
molecule AB are obtained by simple interchange of
subscripts. Second-order effects due to the anhar-
monicity of the harmonic-oscillator potential and
the coupling of rotational and vibrational motions
have been neglected.

V. TW'O-LEVEL APPROXIMATION
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model by Micha with the similar condition that
4l =0 upon reaction.

The recoupled system of equations is now reduced
to the coupled radial equations

—ll„(R) k,)X, , (R)=U, (R)X (R),

tions of Sec. V may be solved numerically and the
scattering cross sections computed. %'e have em-
ployed the method of deVogelaere' which has been
applied to the atom-diatom rotationally inelastic
problem. 4 In general, N second-order coupled
equations require 2N boundary conditions for solu-
tion. At the origin we have, for the lth partial
wave, )f,'- 0 and asymptotically (R- ~) the boundary
condition for scattering in terms of the R matrix

For this two-level system then, no inelastic chan-
nels are open. The matrix elements U„and U»
are just the symmetric matrix elements of the ex-
ternal distortion potentials. These potentials were
obtained in the relative coordinate R by angular
average of the two-body (H, Hz) potential of Tang
and Karplus. "

Q(R - R )The Gaussian form Ae Q' ~ "&' was taken for
the resonance energy e~(R,), where R, is the radial
distance in R, corresponding to the position of the
saddle point. From the H, surface' we set A =0. 28
eV, R, =1.2A, and let @=36. The integration of
Eq. (3. 2) then gave the coupling matrix element
U„(R) which is shown in Fig. 3, along with the
U„(R) potential. For the present system U~(R)
= U„(R) and U (R) = U»(R). The difference between
U„at its maximum R and the matrix element U„
at that point should be proportional to the activation
energy of the system. Thus increasing R would,
in effect, reduce the energy of activation and in-
crease the reactive cross sections.

VI. METHOD OF CALCULATION

Kith the potentials defined, the two-level equa-

3.0-

+(k~/kq. )
i

Rqq. cos(k~. R —Rlv) (6. 1)

xo- JX- NY (6. 2)

where J and N are the diagonal matrices of the
asymptotic forms of the spherical Bessel and Neu-
mann functions for the various channels j. The co-
efficient matrices X and Y are constants and may
be written in terms of the amplitudes and phase
shifts of the numerical solutions. However, the
asymptotic boundary condition Eq. (6. 1) may be
written in the matrix form

(6. 3)

where k is the diagonal matrix of the wave numbers
k J. And as Gordon has shown, the actual phase
shifts and ampIitudes themselves need not be com-
puted. Instead, the matrices X and Y are deter-
mined by matching the numerical solution matrix
go and its derivative Xo at large R through the equa-
tions

where j may be either a or b. Most numerical
algorithms (including that of deVogelaere) require
the derivative of X~(R) at R=O. Taking N linearly
independent sets of derivatives at R =0 will allow
us to generate X independent solution vectors into
the asymptotic region. The matrix of initial deriv-
ative vectors must be nonsingular in order that the
generated solution vectors be linearly independent. '

The collection of solution vectors is the solution
matrix which may be written asymptotically as

X = (JN N J) (N 10—N)('0) (6. 4a)

Y= (JN' —NJ') '(J'y(&- Jy(')). (6. 4b)

10.

Having obtained X and Y, the R matrix is found by
comparing Eq. (6. 2) with Eq. (6. 3) to be

(6. 6)

Having obtained R, the unitary and symmetric S
matrix is given by

I.O l.5
R (A)

2.0 2.5 S= (1+iR)(1—(!R) '
(6. 6)

FIG. 3. The matrix-element potential U~(B) and the
spherically symmetric resonance-coupling potential U
(R).

for each partial wave. The elastic and reactive
differential cross sections are the sums over partial
waves~'
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FIG. 4. Elastic differential cross section of D with
H2 at 0.33 eV calculated with (solid line) and without
(dotted line) the resonance coupling U,&(R).

FIG. 6. Elastic 0~ and reactive 0~ total cross section
for the D+ H2 DH+H system as a function of energy.
E~ is the assumed energy of activation (0.33 eV).

The total cross sections are the sums

z2 l g2 lf4' 0 ~ tg = kytggyg

was also monitored.

(5. O)

VII. COMPUTATIONAL RESULTS

Using the potentials of Fig. 3, the scattering
cross sections have been calculated for the
(v, = 0, J, =O) to (v~=0, J~ =0) reaction of D+Hz

0.25-

0.20

OJ0+—0.15
Cb

0
0.10

8 (degrees)
150

FIG. 5. Reactive differential cross section of the DH
product from the D+H2 collision at various energies.

lwhere T~~. = 5». —8&&..

The deVogelaere algorithm has been programed
in FORTRAN IV for the CDC 6500 computer and
the numerical solutions checked against analytic
solutions for the coupled oscillator. The sym-
metry of the R matrix provided a check of the com-
putations. The detailed balance relation from time-
reversal invariance2'

- DH+H and its isotopes. The elastic scattering
of D on the diatom H~ computed at 0, 33 eV with and
without the coupling term is given in Fig. 4. The
effect of coupling is minimal in the forward quadrant
while reducing the differential by as much as one-
half of a log unit in the back quadrant (90 —150').
The total elastic cross section without coupling
(45. 7 A ), however, is only slightly greater than
that with (45. 3 A2).

Figure 5 shows the reactive differential cross
section for the DH product from the D+ H2 reaction
at three energies. At the assumed energy of acti-
vation of 0. 33 eV, the scattering is predominantly
in the back quadrant. The variation of incident
energy from subthreshold to superthreshold illus-
trates an interesting result similar to that observed
by Karplus and Tang' in their weak-coupling model
for H+ H~ reactive scattering. They observed a
reactive peak of constant magnitude which shifted
smoothly from back- to frontscattering while build-
ing up a new peak at 180'. We also find a shift in
scattering mode with increasing energy but one of
a slightly different character. It is found that as
the back peak moves forward to the 90' region, a
new peak develops at 0 instead of at 180'. This
0 peak is not observed by Karplus and Tang even
up to 1. 5 eV. In the present work this peak is
sharply defined at 0. 4 eV with a magnitude that
dominates the residual backscattering as the en-
ergy is further increased.

The elastic and reactive total cross sections for
D+ H2- DH+ H are plotted in Fig. 6 as a function
of energy. Characteristically, the elastic curve
tails off slowly with slight undulations. The reac-
tive curve contrasts with the similar curve from
classical trajectory calculations' in that our quan-
tum model predicts one large undulation and a con-
siderable amount of tunneling beginning at 0. 22 eV.

Another contrast with classical calculations is
the probability of reaction as a function of impact
parameter b. In Fig. 7 we show the quantum-me-
chanical counterpart which is the transition matrix
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FIG. 7. Reaction probability for the D+H2- DH+H
as a function of orbital angular momentum E for various
incident energies.
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FIG. 8. The reactive differential cross section for the
systems a D+ H2 DH+ H, b H+ H& H2+ H, and c
H+Q-DH+D at 0.33 eV.

element squared (I T~l ) as a function of orbital
angular momentum /. The classical curve is a
monotonically decreasing function with a maximum
at b = 0. From our model (making the correspon-
dence I =bk, ) we see, in Fig. I, that at a given en-
ergy, certain E values are highly preferred, while
others contribute little to the reaction. It is also
noted that at low energies, low E values are prefer-
red, corresponding to "head-on"-type reactive
collisions, and at higher energies, high / values are
favored which correspond to "stripping" reactions.
This explains the shift in the reactive differential
cross section from back- to frontscattering.

With the same potentials as above the scattering
cross sections for the isotopic systems H+ H~- H~+H and H+D~- DH+D have been calculated at
0. 33 eV. Considerable confusion exists in both the
theoretical and experimental work on the H+ H2

system. The theoretical calculations have univer-
sally neglected the effect of nuclear symmetry and
the experiments have been interpreted on the basis
of symmetry factors from an activated complex
formulation. We have made these calculations
primarily for theoretical comparison and the cor-
respondence with experiments should not be taken

FIG. 9. The reactive probability as a function of or-
bital angular momentum at 0.33 eV for the systems a
D+H2 DH+H, b H+H2 H2+H, and c H+ D2 DH+D.

too seriously. In Fig. 8 the reactive differential
cross sections of the three systems (including
D+Hz- DH+H) are compared. The transition {or
reaction) probabilities are given in Fig. 9. It can
be seen that the D+ H3- DH+ H reaction takes place
preferably at higher l values, and is more front
scattered. The total reactive cross sections are
1.62 A, 1.45 A, and 1.09 A for the systems
D+Ha»DH+H, H+H~- H~+H, and H+D~-DH+D,
respectiveIy. A crude correlation can be made with
the experimental rate constants ' at 1000 'K. They
are 2. 5, 2. 2, and l. 2 in units of 10 ' cm'/mole sec.

In the present model no consideration has been
given to the possible existence of virtual states in
the form of long-lived complexes of (A 8 C). Hav---
ing obtained the S matrix as a function of energy,
the delay-time (or lifetime) matrix may be calcu-
lated by

(kt)q( =Re( —N(Sqq )
' ~

)
For the reactive collision D+ H~- DH+ H at 0. 33
eV, at the most probable quantum number (l = 6),
the delay time is -10 '4 sec which is of the same
order as that required for an elastic collision.
This justifies the assumption of a direct mechanism
for reaction and is consistent with experimental
observation.

The experimental differential cross sections~'~
for the D+ H~- DH+ H system have been transformed
to the center-of-mass system using an H2 velocity
of 1.12x10' cm/sec (most probable for a Maxwell-
ian beam at 100 K) and a D velocity of Sx105 cm/
sec. More recent data are available for this sys-
tem; however they are qualitatively the same as
the original work of Fite. The original data are
compared to the calculated cross section at 0. 24
eV in Fig. 10. The data are from a distribution of
energies near the threshold for reaction, and since
they are relative they have been normalized to the
theoretical curve at 180'. At 0.33eV the computed
reactive total cross section is 1.62A . Extrapolating
the preexponential factor from the kinetic data of
Ridley, Schulz, and Le Roy~~ to the temperature of the
experimental D beam (2600) 'K gives across section
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FIG. 10. The solid line is the computed differential
cross section at 0.24 eV. The bars are the data of Fite
(Ref. 6) and the triangles the data of Datz and Taylor
(Ref. 5) transformed to the center-of-mass system.

of -1.0 A3. The weak-coupling model of Micha2

gives a mean cross section which is considerably
lower than this (-0.33 A ).

The absolute elastic total cross section for H on
H~ has been measured by Harrison to be - 50 A
at a relative velocity of 9&10' cm/sec. For this
system, at this velocity, we calculate 46. 8 A~.

Our model predicts a reactive total cross section
of 1.45 Am (at 0. 33 eV) while the weak-coupling
models" report values lower by a factor of 10 in
the same energy region.

The experimental elastic scattering data for H

upon D~ have been transformed to the center of mass
using the most probable velocity of H at 3000 K
and D2 at 77 K. These data along with the calculated
curve at 0. 33 eV are shownin Fig. 11. The open
circles are the originally reported data, while the
solid circles are the same data revised as a resu)t
of a systematic experimental error. The computed

0

elastic total cross section is 47. 1 A2 while the ex-
perimental data are reported as having been normal-

0
ized to a value of -50 A~. Even so, the inconsis-
tency still seems to be a matter of a scaling factor.
No correction due to the velocity distributions in
the beams has been made in converting the data to
the center of mass, and this may be an explanation
of the difference, However, the elastic scattering
of H upon H2 calculated by Tang and Karplus' has
been compared to these data in the laboratory sys-
tem with a similar discrepancy.

From their measurements in the laboratory sys-
tem, Fite and Brackmann have estimated the re-
active DH product from this system to be back
scattered in the center of mass with an absolute
value of 0. 2-0. 3 A~/sr. The present model gives
a 180' peak of 0. 19 A2/sr at 0. 33 eV and is com-

The acceptability of the present model rests
largely with the validity of the major assumptions
regarding the use of the "common" radial coordinate
and the approximation of the coupling with a matrix
element of the resonance energy. The coordinate
problem is essentially that of the three-body prob-
lem in classical mechanics and some approximation
must be made to be able to describe the radial mo-
tion of both configurations simultaneously. Preav-
eraging the relative-motion wave functions no doubt
destroys the exact dynamics of the exchange pro-
cess; however, we expect the qualitative features
to remain unchanged.

The assumption involving the introduction of the
resonance coupling is largely a matter of practical-
ity, although based on a physically acceptable idea.
This approximation produces a feasible three-di-
mensional model, the validity of which might par-
tially be determined by an exact one-dimensional
calculation of the total cross section.

The degree of approximation necessary to pro-
duce a tractable three-dimensional model is cer-
tainly disconcerting from a theoretical point of view.
If, however, the model is consistent with observa-
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FIG. 11. The solid is the computed elastic differential
cross section for H upon D2 at 0.33 eV. The data are the
original (open circles) and the later revised (solid circles
with error bars) results of Fite and Brackmann (Ref. 8)
transformed to the center-of-mass system.

pletely backscattered. The calculated total cross
section for this system is 1.09 Am while the weak-
coupling model of Micha was again lower than this
figure by nearly a factor of 10.

For both systems D+H&-DH+H and H+D~-DH+ H a sharp forward peak begins to build up
beyond 0. 33 eV. This would correspond to the
stripping mode for these systems which has not been
observed experimentally. However, the experimen-
tal work to date has been predominantly at or below
threshold energies. There is also concern that this
forward peak may be obscured by impurities (un-
dissociated HD) in the primary beam.

VIII. DISCUSSION
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tion, it is at least partially justified. Our compar-
ison to experiment has been made within the two-
state approximation. The lack of coupling is hope-
fu11y not overly restrictive for the D+ H~- DH+H
system since no product excitation is observed ex-
perimentally and also since only ten partial waves
contribute significantly to the reactive sections near
threshold. Our comparison to experiment in Sec.
VII is at least qualitative and in the only two in-
stances of absolute measurements (the H upon HI
elastic total and the reactive differential for DH
from the H+D2 reaction) it is reasonably quantita-
tive. From an experimental point of view the pre-
dicted cross sections appear to be reasonable; how-
ever, nothing definite may be said until more abso-
lute data are available. By comparison, the models
of Micha and Karplus and Tangs tend to give ex-
tremely low cross sections (in many cases a factor
of ].0 below our values). Presumably this is a re-
sult of the weak-coupling nature of their models.

The observed isotopic effects are an interesting
measure of the sensitivity of the model. %'ith the
change in reduced masses and dissociation energies,
measurable effects are observed in the cross sec-
tions. The differential cross sections and the re-
action probabilities indicate changes in the dynamics
consistent with what one mould expect for the re-

spective changes in nuclear masses. Ea addition,
the total reactive cross sections are interrelated
in a manner consistent with the observed rate con-
stants for the various isotopes.

The resonance -coupling ayyroximation provides
an interesting heuristic study of the relationship
between the radial position of reaction and the mode
of scattering. This relationship is seen through
the transition (or reaction) probability as a function
of external angular momentum E. The coupling at
small radial distances gave a maximum transition
probability at low l values (low-impact parameters,
classically) and produced a backscattered reactive
differential cross section (correspondingto head-on
reactive collisions). For resonance-coupling terms
defined at large radial distances, high l values were
preferred for reactions giving predominantly front
scattering (which correspond to stripping-type re-
active collisions).

The next level of approximation for the yresent
model will be to introduce angularly dependent yo-
tentials and thus investigate the effects of coupling
of internal and orbital angular momentum. Of con-
siderable interest also will be the effectiveness of
the resonance-coupUng approximation in predicting
cross sections for @&symmetric systems involving
product excitations.
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