3 PHOTOEMISSION AND ELECTRON DETACHMENT

less than gas kinetic eross sections.
In our calculation, 7, represents a hard-core
interaction range, analogous to the classical dis-

tance of closest approach for two colliding particles.

While a determination of 7, from cross sections ob-
tained in monoenergetic collision experiments
would, in theory, be possible using the equations
presented above, in practice it would be difficult
since 0, and 0, vary within at most only one order
of magnitude over the range of expected values of
7,. In the case of Ca*, H- collisions, for instance,
one expects 7, to be in the neighborhood of 2-3 A.
From the restrictions placed upon the theory by
the approximations employed, it is evident that our
method of calculating Penning detachment and
photon-emission cross sections will be useful in
gaining an order of magnitude estimate of the rela-
tive importance of these two processes when nega-
tive ions and metastable atoms collide. The cross
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sections associated with the H*, H~ system indicate
that quenching of H(2!S) by ions, even H-, is far
more important than Penning detachment in regions
such as the solar chromosphere where H- is known
to be abundant. In any neutral-ion collision system
for which AE,,, is so small that diabatic contribu-
tions become dominant, quenching of the metastable
state will dominate over Penning detachment even
if adiabatic approximation indicates that o, >0,.

On the other hand, interaction of H- or other negative
ion with atoms in metastable excited states as-
sociated with large AE,,, will result in Penning de-
tachment (see Table II) and may be an important
channel for deexcitation of such metastables.
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It is demonstrated that the pure-Coulomb ¢ matrix satisfies a modified unitarity condition
and that its discontinuity is not zero, as has been asserted elsewhere.

Recently several attempts® have been made to
evaluate the scattering amplitude for three charged
particles via the impulse approximation applied to
the Faddeev equations, All of these approaches
rely on a result due to Nutt, 2 who contends that the
discontinuity of the off-shell-Coulomb ¢ matrix
along the unitarity axis is zero. We will demon-
strate here that this result is, in fact, wrong, so

that those results based upon it are probably also
incorrect.

To formulate the problem precisely, we follow
Nutt and define the Coulomb ¢ matrix by the integral
representation derived by Schwinger?:

o> 2\ | o - ez 1
<K2|T(K )‘K1>— Pr3 W
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4in 1 -in 1 ) 1 ,[ 1
X |1l = == dt t™" — in ___ ~ )
( -1 ¢€Jg, (t=t)(t=¢)) "’ (0 Teo g codtt "(t_tf)(t-tf)) @
where This is almost the same as Eq. (25) in Ref. 2, with
the exception that in the second integral we have
2 2 _ p2\( K2 _ K2).
n=2% K:-2mE, « - I_{.‘)(i_{. sz) poles at ¢=t¥, whereas Nutt has placed them at
K K*| K, - Ke | t=t,. A careful examination of the paths of ¢, as E
goes from K2+ 16 to K%~ 6 will show that our ex-
1 _(ex1)¥-1 ion is th t We will
bzt T2 pression is the correct one. We will suppose, as
T (e+)2y 1

The integration contour C, begins at {=1+ {0, moves
to the origin, circles it once, and continues to
t=1-i0. With this prescription, (K, | T( I_Sz)l K,) is
a mathematically well-defined function of K, ﬁz,
and K2, At this point, it is worth noting that while
the integrand in Eq. (1) is a multisheeted function
of ¢, the poles at ¢t=#, are present on every sheet,
Thus, it is not possible to argue, as is done in Ref.
2, that one of these poles can disappear from the
“principal ” sheet by sliding through the branch cut,
since it will be immediately and continuously re-
placed by a corresponding pole from another sheet.

The integral in Eq. (1) can be evaluated, as was
done by Nutt, to show that

1 n
[k’l_ Ealz e?_ 1

<§2|T(K2) |§1>="i_2

((Kz-Kf)(Kz— KZ))""
4K K, - K| ?
+analytic function of K2
for €= 0. (2)
We will demonstrate that the representations given
in Egs. (1) and (2) satisfy a modified unitarity con-
dition and therefore that the discontinuity of 7-

across the unitarity cut is not zero. The unitarity
relation may be written as

(K| T(K2+i8) |K,) = (K,| T(K2=-i8) |K)=T-T"'
= [d°K' (K,| T(K2+i8)| K" (K| T (K- i8)| K,)
x2m[ (K- K'2+i8) = (K*~ K'2-i5)1], (3)

where the limit 6 -0 is to be taken only after the
evaluation of either side has been accomplished.
We will evaluate both sides of Eq. (3) exactly and
thereby demonstrate that they are, in fact, equal
and, moreover, are not equal to zero,

We begin with the left-hand side of Eq. (3) since
its evaluation is almost trivial. Using the integral
representation, Eq. (1), we find

S S 1]
on? |[K,- K, |2 e

x( ml /dt o1
e~ 1Jc, (t=t)(t=1¢)

T-T"

does Nutt, that we have chosen the labels ¢, such
that |¢,|<1and |£.|>1. Then, taking 0 < arg(¢)
<27, we find

arg(t*) =27 - arg(t,). (5)

The contour C, may be distorted into an integral
around the unit circle plus an integral around the
pole at ¢=1{, in the negative sense. It is easy to
show that the integral around the unit circle is
zero, so we are left only with the residues at the
poles t=t, and t=t*. Since as 60, arg(¢,)~0,
we are left with

T- T':-zm—ei*—l*— 40

21 |K,-K,;|?

g2 (L)-in )
YT 4- -

@ 1
T e¥-1 Ii{’l-ﬁzlz

( 1 @)
X
e _1t, -1t

11
€(t,-t)
It is obvious that this will, in general, not be zero.
To evaluate the right-hand side of Eq. (3), we
first realize that the only contributions will come

from the product of the singular terms in 7 and 7",
We must therefore consider the integral

21’)164 n 2/ 3,7 1 1
ame_ EK e,
T <ez'"— 1> [K-K'} [K,-K'[?

K,-K'P\' (k- k2\" (Ki-K'2-i5\"
(BB (£ (sokios

|K,-K'[? K- K246

[(£) = ()], (6)

1 1
X -
(KZ-K"“+i5 KE-K'%- i6>' )

We have deliberately not replaced the discontinuity
of the free-particle resolvent with a § function, as
was done in Ref. 2, since it is not the only factor
which is singular near K'= K., Rather, both the last
two factors are singular in this region and must be
treated together in performing the integration. Since
the last factor does approach a § function as 60,
we may rigorously replace K' by K except where it
appears in the combination K’ - K, Thus, we write
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K—K'%+i6—=2K(K-K')+i6=—re'®
0<6<27m.
K2 —K'2—i6—~2K(K - K') - i6=—re?i-i0

(8)
Using 6 as our variable of integration, the integral
over the singular terms becomes

f‘” I@—K'z—i5>‘"( 1 _ 1 )
o (1{2—1{’24»1'6 KP-K'?+i6 K*-K'®-ib

<K'k’ =ike [ o ag =i7rK(eam_1>
2m

T
(9)
We note that when n—- 0, this becomes the usual
factor associated with short-range forces.
When the result in Eq. (9) is inserted in Eq. (7),
we are left with

1

met 7 1K, —KI2\i"
L L Kf(@,-KIE) IR, - K|?

1 K2 - K2 \i" .
—=TTTSE L 5 . 10
x IK,-KI? (KE—K§> ald (10)

If we use the definition of # and define a new vari-
able by
Zayﬁa‘ﬁ'z/[-ﬁl‘fﬂz: (11)

we can write this as

_ez 772 o Kz—Kf in
1;2' 21'1_1 KZ_Kg

e

1 1
X 7 e 5, 12
J-7 K,-KIZ TR-R? IR (12)

From the definition of Z, we have
(K,-K,Z)- K=4(K2+K2) - 4(K®+K2)Z.  (13)

For Z =const, this represents a plane normal to

-

K; - I-ZIZ and at a distance & from the orgin where
h=[(K*+K}) - (K*+ KD 2] /2|K, - K, 2| . (19)

The limits on Z are determined by taking h=+ K
with the result that the extreme values of Z are
given by

Z=[(K®-K3) /(K* - K}]t, . (15)

It is not difficult to show that as Z ranges between
its limits, the family of planes defined by Eq. (13)
all intersect the sphere |K|=K and are related to
one another by a simple rotation about a fixed
axis. If we consider the region of the sphere be-
tween planes corresponding to Z and Z +dZ, we
obtain the situation depicted in Fig. 1. Here 72
=K*-1? da is the angle between the vectors I-Ez

-K,Z and K, - K,(Z +dZ) which is determined to
be

da=[|R;xK,| /|R,-K, 2|*]dz, (16)

and 6 is an angular variable which goes from 0 to
21 as we travel once around the strip enclosed by
the two planes. The shaded element of area is
found to be

K?dQz=K[dh+v sinfda]db, 17

where 6 is measured in an appropriate fashion. If
we use the definition of Z to eliminate | K, - K2
and express ﬁl -Kin terr‘p_s of_.G and the angle be-
tween the vectors ﬁl and K, - K; Z, which we shall
call ¢, we find that the integration over 6 may be
done rather easily, leaving us with the expression

2t 7P (K"’ —K2>"’f in-1adh = brda
i K2~K§ @y
where

a=K%+ K% - 2hK,cos¢,
b=2vK,sing. (18)
Realizing that
|KyxK,| = |Kyx (K, - K, 2)| = K,|K, - K, 2| sing
(19)
we see that
rda=[b/2|K,-K,Z|]dz . (20)

Also, using the definition of & and after performing
some manipulations, we find that

dn=[a/2|K, -k, Z|]dzZ , (21)
so that our integral becomes
i_ej nz K(KZ_K% in Zf'l-le
7 e -1 \K?-K; ) ) |K,-K,Z|(@®-p®)V2"

(22)

Using the definitions of @ and b, it is not very diffi-
cult to show that the denominator in our integrand
is independent of Z and is, in fact, given by

FIG. 1. Intersection
of adjacent planes with
sphere of radius K. Sym-
bols are described in
the text.
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IR, - K, 2| (a? - 822 =1 K?| R, - K,|€(t, - 1) .
(23)
With this fact, the integral over Z becomes trivial
and recalling the limits on Z, we finally obtain the
expression
4® 7 1 1 1 n n
T e -1 If, —f(zlz €(t,-t) [e) (€)% ]
(24)
which is identical to the result obtained in Eq. (6).
It thus appears rather obvious that the Coulomb ¢
matrix does posses a branch cut along the unitarity
axis, contrary to previous assertions. The crucial
error in Ref. 2 is that the limit 6~ 0 was taken in-
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|0

correctly to yield the result
0= T(K?) - T(K?)# lim [ T(K? +15) — T(K? - 5)]
(25)

We note that T(K?) does not satisfy the usual uni-
tarity condition owing to the singular factor in the
integral in Eq. (7) which gives rise to the extra
multiplicative factor shown in Eq. (9). We may ob-
tain a relation which looks more like ordinary uni-
tarity if, like Schwinger,® we remove a factor
(K2 =K '2+48)" " (2am)¥2(e®™ - 1)"Y2 from T(K%+i6)
and a similar factor of (K2 —K "2 —§8)" (2rm)¥?

x (2™ -1)Y2 from T(K?-i6) before performing the
integral in Eq. (3).

as 6-0.
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A strong-coupling model for the simple exchange reaction A+BC— AB+C is developed by
considering the atom-diatom inelastic problems A+ BC and AB + C separately and then intro-
ducing coupling between these configurations to allow for reaction. The inelastic systems are
developed in the form of self-coupled differential-integral equations and are recoupled by the
matrix element over internal states of the resonance energy between the adiabatic surfaces for
the separate configurations. The model is applied to the D+H,— DH + H system and its isotopes
in a two-level approximation. At the threshold energy (0.33 eV) for the D+H,— DH +H system,
the calculated reactive total cross section is 1.62 A% and the DH product is backscattered in
the center-of-mass system.

I. INTRODUCTION termined in its integral form for the two-state case.

In the present paper, a strong-coupling model from

Advances in the technique of experimental molec-
ular beams has renewed interest in the microscopic
theory of chemical kinetics. In the present paper
the dynamics of the simple exchange reaction
A+BC-AB+C will be considered. To date, the
appropriate equations of motion have been consid-
ered mainly in the classical case.! Quantum me-
chanically, the dynamics of the reaction may be
considered within the framework of scattering
theory. Weak-coupling (e.g., distorted wave)
models®? have been developed with the approxima-
tion of a linear alignment of A, B, and C; however
they tend to underestimate the observable cross
sections.

In these models the scattering amplitude is de-

the coupled-differential-equations approach will be
investigated also using a two-state approximation.
The coupled radial Schrodinger equations will be
solved exactly and the R matrix determined numeri-
cally.

To begin our model, the relative motion of both
configurations A + BC and AB +C is expressed in a
common radial coordinate. The self-coupled sets
of radial equations for each configuration are de-
veloped similar to the atom-diatom inelastic prob-
lem.* In Sec. III, coupling is introduced to account
for the reactive process. The supposition is made
that the self-coupled sets of radial equations for the
separate configurations are recoupled by a matrix
element over internal states of the resonance en-



