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Sum rules for the asymptotic Born cross sections have been applied to the evaluation of var-
ious inelastic-scattering cross sections of metastable He (2 S and 2 3$). The ionization cross
sections for the two species are similar in magnitude, and each constitutes only a small part
of the total cross section for inelastic scattering. Although the first Born approximation is
inappropriate for the scattering of slow charged particles, the energy dependence exhibited in
the recent experiment by Long and Geballe for the ionization of He (2 IS) by low-energy elec-
trons (~ 16 eV) i.s compatible with the high-energy behavior predicted by the theory. The ex-
change correction evaluated from the Mott formula has been included in the ionization cross
section by electron impact. Optical oscillator strengths for the first three transitions to doubly
excited states f2 IS (2gnL')~P] are also given.

I. INTRODUCTION

Rigorous applications of the Bethe procedure'
to obtain various inelastic-scattering cross sec-
tions so far have been restricted to one- and two-
electron atoms in the ground state. The theory
is not restricted to the ground state, and in this
paper we present an example of its application to
metastable He in the 23S and 2'5 states. More-
over, these metastable species have open-shell
structure, and serve as a prototype for the appli-
cation of the theory to complex atoms.

The Bethe procedure in its extended form4 pro-
vides an asymptotic expression for the total cross
section for inelastic scattering

o„,=A (lnT)/T+B/T+C/T + ~, (1)

where A, 8, and C are constants determined solely
from the properties of the target atom and T is
proportional to the square of the incident particle
velocity. The constants A and C are readily cal-
culated from the initial-state wave function of the
atom. To determine B, however, the oscillator-
strength distribution (OSD) must be known, in
addition to the initial-state wave function. ' When
the croes section is given in the form of Eq. (1)
with only two constants A and B, we shall refer to
it as the Bethe cross section.

For metastable He, various wave functions and
expectation values derived from them are available

in the literature. ' We have used the correlated
wave functions determined by Weiss. s As was
shown earlier, the Weiss wave functions are in
many ways as reliable as the Pekeris wave func-
tions.

The OSD of metastable He, however, has many
uncertainties. Theoretical or experimental data
on the OSD of higher continua such as
(He~ -He" + 2e) are not available. The data for
the autoionizing states are very scarce. On the
other hand, there are many qualitative aspects
which are shared by the 2 Sand 2'8 states of He,
particularly in the OSD. These features. including
the uncertainties in the OSD's, are expected to be
common in complex atoms, and the experience
gained in the present investigation should provide
a valuable guide for future applications.

Individual cross sections can also be written in
the form of Eg. (1) with three constant —we shall
call such expressions the Born asymptotes —which
are determined from the generalized oscillator
strength (GOS). ' By subtracting the sum of the
Born asymptotes for the discrete excitations from
the total cross section, we get the Born asymptote
for ionization. The ionization cross section thus
obtained represents a simple sum of cross sections
for all events leading to ionization and is known
as the counting ionization cross section. The
Borh asymptotes for ionization have been further
improved by adding the correction for electron
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exchange evaluated from the Mott formula. ' The
ionization cross sections of metastable He based
on the first Born approximation have not been re-
ported in the literature.

So far the ionization cross sections for meta-
stable He have been measured with slow electrons
only, ' '3 in which case the first Born approxima-
tion is not appropriate. Nevertheless, comparison
with the theory will provide a consistency check,
and our results may eventually be used to normalize
experimental cross sections when high-velocity
data become available.

II. OPTICAL OSCILLATOR-STRENGTH DISTRIBUTIONS

To evaluate B in Eq. (1), it is necessary to know
the value of

L( 1)=Z„-(f„R/E„)In(E„/R), (2)

where f„ is the optical oscillator strength for the
transition to state g, F,„is the corresponding exci-
tation energy, R is the rydberg, and the summation
is over all states, both discrete and continuous.
The use of differential oscillator strength d//dE
is implied in Eq. (2) for the states in the continua.
Many aspects of the OSD's for the singlet and triplet
excitations are common. Therefore, the discus-
sion below for the singlet excitations is limited to
the aspects which are sufficiently different from
those in the triplet excitations.

A. Triplet Excitations

The quantity L(- 1) was calculated from an OSD
adopted from data largely available in the literature.
The distribution was chosen so as to satisfy the
sum rules for the moments

S(k) =Z„f„(E/R)'

for k= -2, -1, 0, and 1. The moment S(-2) is
proportional to the polarizability, S(0) is equal to
the number of electrons, and the other moments are
initial-state properties. ' The values of these
moments are known to high accuracy and are given
in Table I (labeled as "Total"). An OSD constmcted
in this way is designed to provide an accurate value
of L( 1), -which is strongly influenced by low-

lying states. The distribution will not necessarily
give a reliable value of other quantities, for ex-
ample S(2), which are decided largely by the tran-
sitions to highly excited states. An adoption of
the OSD for metastable He was made by Dalgarno
and Kingston in 1958. Our revised version uses more
accurate data which have become available since
that time and will provide more reliable values
for the spectral moments with 4 &0.

Transitions to the low-lying discrete states,
in particular to 2 P, dominate the moments with
k&0 as may be seen from Table I. This results
from a combination of large oscillator strength
and low excitation energy. Accurate values of f„
for the first two excitations have been evaluated
by Schiff and Pekeris. " Fairly reliable values for
other discrete excitations are also available. '6
An extrapolation formula as a function of the effec-
tive quantum number for excitations to n & 5 states
was adopted (Table II), guided by the f„calculated
by Green et al 'e and th.e quantum-defect method
of Bates and Damgaard. '7 The quantum-defect
method provides surprisingly accurate f„even for
the 23P and 3 P excitations, "so that the extrapo-
lation is likely to be equally reliable.

TABLE I. Contributions to S(k) and L(-1).~

Final state

2~P
3, n'P (1s np)

1st continuum (1s &p)

Doubly excited (2l nl')
Remainder b

Total'

21P
n 3, n'P (1s np)
1st continuum (1s cp)
Doubly excited (2l nl')
Remainderb
Total

S(- 2)

76.17
1.83
0.80
0.04
0.06

78.90

192.10
6.43
1.43
0.05
0.48

200.49

S(-1)

6.408
0.477
0.441
0.126
0.152
7.604

8.503
1.290
0.631
0.135
0.126

10.685

s(o)

Triplet transitions

0.539
0.126
0.314
0.367
0.654
2.000

Singlet transitions

0.376
0.265
0.354
0.402
0.603
2.000

S(1)

0.015
0.065
0.428
1.072
4.241
5.821

0.017
0.056
0.390
1.199
4.086
5.748

L(-1)

—15,86
—0.82
—0.22

0.14
0.18

—16.58

—26. 51
—2.06
—0, 46

0.15
0.07

—28.81

~See Eqs. (2) and (3) for definitions.
The contributions from the "remainder" were adjusted so that the accurate values of the "total" S(k) were reproduced.

The values of the "total" S(k) were obtained from K. T. Chung and R. P. Hurst, Phys. Rev. 152, 35 (1966) for k= —2,
and C. L. Pekeris, ibid. 126, 1470 (1962); 115, 1216 (1959) for k= —1 and 1.
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TABLE II. Dipole oscillator strengths for the 1s 2s-
1snP transitions of He.

Initial state

Final state
n=2'

3a

) 5d

0.5391
0.0645
0.0259
1.338 (n*)

+3.80 (n+}-'

0.6654

0.3764
0.1514
0.0508~
2. 271 (n~)

+12.1 (n*)
+43.8 (n+)-'

0.6415

'Reference 15.
bReference 16.
Reference 6.
n* (triplet) =n —0.068, n*(singlet) =n+0. 0121.

The extrapolated quantum-defect method of
Burgess and Seaton, ' combined with recent spec-
troscopic data, "was used to compute df/dE from
threshold to E„/A -2 for the (ls&P) P continuum,
beyond which the df/dE of Huang' was used. Huang
used a six-term Hylleraas wave function for the
bound state and hydrogenic wave functions for the
free states The. df/dE of the quantum-defect
method and that of Huang are in closest agreement
(- 3%%uo) around EJII = 2.

The positions of the lowest members of the auto-
ionizing series of doubly excited states converging
on the He'(n =2) threshold have been well estab-
lished. ' The detailed shape of the continuum
OSD in this energy region for the metastable
species has not been calculated, nor has the photo-
absorption or electron-impact spectrum been ob-
served. However, the widths of these levels are
small" and it is not expected that the coupling to
the background (Isep) continuum will affect signifi-
cantly their contribution to L( 1). Conseque-ntly,
the oscillator strength of these autoionizing states
has been estimated by treating them as stationary
states.

Knox and Rudge' have calculated the positions and
oscillator strengths of the doubly excited triplet
states using wave functions represented by a. super-
position of Sturmian functions. We have also
evaluated the f„ in both length and velocity form
using the 2'8 wave function by Weiss and the wave
functions of Lipsky and Russek for the doubly ex-
cited states. For the first few states the results
agree with those of Knox and Rudge. However, for
higher transitions our results do not agree as well.
We have used the f„by Knox and Rudge for the
doubly excited triplet states. We note from these
results that the first autoionizing state (2s2p) has
an unusually large fraction (14%) of the total oscil-
lator strength and should show up as a prominent
peak in the photoabsorption spectrum. As may be
seen frown the data of Ref. 8, the members of the"-"series have larger f„than those of the "+"

series, unlike the situation in the absorption from
the ground state. Although the sum of f„ for the
autoionizing levels amounts to almost 20%% of the
total (Table I), their contribution to L( 1)-repre-
sents only - 1% of the tota, l because of the large
energy denominators involved.

From Table I, we see that the sum of f„ for dis-
crete states (Isn't) and the first continuum (Is&/)
is almost unity. The autoionizing states below the
He'(n = 2) threshold contribute about 0. 37 so that
to satisfy the Thomas-Reiche-Kuhn sum rule' we
must assign about 0. 65 (out of 2) to all other exci-
tations. There are no data for these higher exci-
tations. However, their contribution represents
less than 0. 1/0 of S(-2) and only 2%%uo of S(-1). We
expect the relative importance of the contribution
of the higher excitations to L( 1) and -to S(-1) to
be similar. Therefore, we have adopted two
artificial discrete states, whose f„and E„have
been chosen so a,s to satisfy the accurately known
values of S(k) for k=1, 0, —1, and —2, when com-
bined with the known f„and E„. With this model,
the higher excitations contribute only about 1%
of L( 1}. -

As shown in Table I, L(-1}depends heavily upon
the discrete excitations, particularly the first
one (2'P). This relative importance of the discrete
excitations in the evaluation of L(-1) is also ex-
pected to hold in other atoms with low-lying states
such as the alkali atoms. Finally, from Table I,
we conclude that L(-1)=16.58+0. 18 for the 2'S
state.

TABLE III. Oscillator strengths for the 2 S—(2lnl') P
transitions of He.

Final state

282P
(23)—
(24)—

E„/R

2.920
3.100
3.200

fn

0.268
0.116
0.018

~Based on the velocity results evaluated from the 2~$
wave function by Weiss (Ref. 6) and the doubly excited
state wave functions by Altick and Moore {Ref. 22).

B. Singlet Excitations

Principal results for the OSD are given in Table
I. The singlet f„rweeadopted from the same
source as the corresponding triplet f„, except in
the case of the doubly excited states. For these
states the f„were calculated from the 2 'S wave
function of Weiss and the excited-state wave func-
tions of both Refs. 22 and 23. The two sets of re-
sults agree to within 1% for the low-lying states.
The length and velocity f„a,re in closer agreement
than in the triplet case. The value of L( 1)is-
unaffected by the use of either the length or velocity
f„. W'e used the velocity results calculated from
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the excited-state wave functions of Ref. 22. In

Table III, we present those f„which are larger than
0.01. For the singlet excitation, we have L( 1-)

= —28. 81+0.15.

where ao is the Bohr radius, ze is the charge of
the incident particle, and T= &me with m the elec-
tron mass and v the velocity of the incident parti-
cle.

The first constant M„, in Eq. (4) is an initial-
state expectation value defined as3

M~0~ = ( @grg)'),
where the summation is over all atomic electrons
and r& is the position vector of the jth electron.

The second constant ln c„, is defined as

M„, ln c„,= —2L(- I) I,+—I2,

where L(- 1) is given by Eq. (2), and I, and Iz are
integrals which are evaluated from the initial-state
wave function (see Ref. 3 for definitions). The in-
tegrands for I, and I2 contain the incoherent-scat-
tering function, which is sensitive to electron cor-
relation.

The third constant y„, has different values de-
pending on the type of incident particle;

N[ ,'+ S'-(1)/-4N] for positrons

y„, = -N[-', +S'(1)/4N] for electrons

( Ia)

(~b)

N[ ,'+ S'(1)/, -4N] -for heavy particles, (Vc)

where N is the total number of electrons in the

TABI.E IV. Constants for the total cross section. +

23S 2 S
2%0t

I-(- 1)
Ig

I2
S'(1)
Mtot ln 4ctot2

~tot
(a)

(b)
~tot

(ce )
tot

7.604
—16.58 +0.18

1.444
11.262
1.912

33.88+0.36
—3.48
—5.48
—0.978

10.685
—28. 81 +0.15

1.463
18.387
2. 113

55.51+0.30
—3.53
—5.53
—1.03

~See Eqs. (7a)-(7c) for the definitions of p+~, p
and p~"', respectively.

"The values of I&, I2, and S'(1) were calculated from
the gneiss wave functions (Ref. 6).

III. CROSS SECTIONS FOR INELASTIC SCATTERING

A. Total Cross Section

In the notation used previously, '4 the total cross
section for inelastic scattering [Eq. (1)] is given
by

o„,= 4zazo z'(R/ T) [M,'„ln(4c„, T/R) + y„,(R/ T)],

atom. In Eqs. (7), S'(1) is another initial-state
expectation value defined as

a2
S'(1) =N +2K 2 (z~ —z„)

j k It)

where z is a Cartesian component of r and the
summations are over all electrons of the atom.
As is shown in Ref. 4,

S'(1)=N+small correction terms,

where the correction terms depend on the electron
correlation.

The values of the atomic constants in Eqs. (4)-
(8) are given in Table IV. The uncertainties in
the values of M„, ln4c„, arise entirely from those
in the values of L( 1). -

8. Discrete Excitations

The Born asymptote for a discrete excitation to
the state n is written as

o„=4zao z (R/T) [M„ln(4c„T/R)+ y„(R/T)] (10a)

for a dipole-allowed transition, and

o'„= 4za z (R/ T) [h„+y„(R/ T) ) (10b)

S(-1)=Z„M„=M„,.

Therefore, the data in the "S(-1)"column in Table
I represent the sums of M'„over different types of
transitions.

The constants for several excitations to the low-
lying states have been reported earlier. ' For
higher-P excitations, the quantum-defect method"
has been used to extrapolate the values of M„, and
inc„has been assumed independent of n for n &4.
This near constancy of inc„ is observed in the
excitations of He and Li' from the ground state.
The constants for higher-D excitations have been
extrapolated as functions of the effective quantum
numbers, based on the values obtained from the
Weiss wave functions for the metastable states and
the hydrogenic wave functions for the excited states.
For the excitations to S states, correlated wave
functions by Perkins ' have been used. The results
are given in Tables V and VI.

As can be seen from the values of M„inc„and
b„ in Tables V and VI, and also from the values
of GOS in Ref. 7, the cross sections for the 30
excitations are larger than those for the 3$ excita-
tions (at all T) and for the 3P excitations (for T/R
- 100), contrary to the situation in the excitations
from the ground state of He. ' This abnormality is

for a forbidden transition, where the constants
M'„, inc„, b„, and y„are determined from the GOS
for the excitation. ' z' In particular, M'„=f„R/E„-
and, by definition, S(- 1) is related to M„, [see
Eq. (3)]:
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n —2
3
4

E(a~5)
Sum

6.408
0.275
0.091
0.111
6.885

16.228-Q. 242
—0.082
—0.100
15.804

—Q. 195
0.100
0.024
0.014

—0.057

0.075
0.132
0.036
0.032
D. 275

Forbidden transitions

TABLE V. Constants for the triplet excitation cross
sections.

Allowed transitions

Final state (n P) M„M„inc„

TABLE VII. Constants for the ionization cross section.

M2 ~~4c ~(a) ~(b) ~('e))

Triplet 0.719 ~0.014 5.30+0.45 —3.01 —5.01 —0.84
Singlet 0.892 a 0.014 7.49+ 0.45 —3.10 —5.10 —0.92

~For positrons

users

@, for electrons y' ', and for
heavy particles y "'. The uncertainty in the values of p
is estimated to be +0.02.

Final state
(n 38)

n-3
4

P (a~5)
Sum

0.705
Q. 141
0.132
0.978

—Q. 088
—Q. Q18
—Q. Q16
—0.122

3
4

P(s-5)

1.419
0.343
0.389
2.151

Final state b„
(n &)

-Q. 213
—Q. 041
—0.036
—D. 290

ly nearby states. A similar situation also exists in
the transitions between the excited states of H.

By summing the constants in Eqs. (10) for all
(singly excited) discrete states, we can express
the cross section for the discrete excitations in
the same form as Eq. (4):

Sum of discrete excitations+

M2~ln 4c~
c„=4zaz z'(R/T) [Ma„ln(4c„T/R) + y (R/T)],

6.885+ 0, 014 28. 58+ Q. 1Q —0,47 +Q. 02 —Q. 14+Q.02

~For electrons and positrons, use p ', and for heavy
particles y ",

gz, &&(tL) is estimated to be-0. 10. $~&y(L)=0
(see Ref. 4).

where

Y'. )1A'"'ex ~discrete '"'n ~ (lib)

(1lc)

y =Z„.„„.y, . (lid)
a direct consequence of the minima in the GQS
of the 3P excitations, which is normally expected
to have the largest cross section. %'e can interpret
it as the Bethe sum rule' [g„f„(K)=N for any K]
operating locally; the missing part near the mini-
mum of a GOS is taken up by the GOS of energetical-

TABLE VI. Constants for the singlet excitation cross
sections.

Allowed transitionse

Final state (n 'P) M~2 Ms~ lac„

The values of Ma„, M„ln4c„, and y„are also
listed in Tables V and VI.

Note that the contribution from the superelastic
transition (2'S- 1'S) must be added to other cross
sections to obtain o„, unlike the situation in the
stopping power where its contribution must be
subtracted.

C. Ionization Cross Section

By subtracting Eq. (lla) from (4), we obtain
the counting ionization cross section

o, =4vas z (R/T) [M, ln(4c, T/R)+ y, (R/T)], (12a)n=2
3
4

$(n~ 5)
Sum

8.503
0.833
0.221
0.236
g. 793

30.188
—0.552
—0.156
-0.160
29.320

—0.153
0.159
0.035
0.Q21

—0.062

0.035
0.232
Q. Q61
0.054
0.382

where

2= 2 2~& =~tot ~ex 7 (12b)

Final state
(n'S)

Forbidden transitions

Final state b„
(n '&)

M, ln4c& = M«t ln4c«t —M,x ln4c„,

stot yex '

(12c)

(12d)

n=l
3

T(s~s)
Sum

0.045
0.974
Q. 202
0.194
1.415

—0.032
-0.101
—0.023
—0.021
-0.177

3 2.630
4 0.446

P (s —5) 0.487
3.563

—0.267
—Q. 033
—0.018
—0.318

Sum of discrete excitations~b

M~2 ln 4c~ $ eO)

9.793+0.014 48.02+0.15 -0.43+0.02 —Q. 11+0.02

See Table V, footnote a.
gs~b(L) is estimated to be 0. 15. gt&y('L) -=0 (see

Ref. 4.

The values of M'„M, ln4c„and y, are given in
Table VII. It is clear from the values of the con-
stants for the total and discrete-excitation cross
sections that a major part of 0„,comes from o,x.
It is important, therefore, to determine 0„,and
o„accurately to obtain reliable o, by our method
in this case.

A few points should be noted here about the ion-
ization cross section: (a) The magnitude of c, for
the triplet excitation is about 3 larger than that
for the singlet excitation for T/R ~100. (b) The
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correction to the Bethe cross section represented
by y, is almost entirely from y„,. This is also
true for the ionization of He and Li' in the ground
state. (c) The first autoionizing state (2s2p) has
an unusually large cross section because its
M„(equal to f„R/E„) is more than I+ of M, (Table
III). For the excitation from the ground state, 32

the (2s2p) state accounts for only 0. 2% of the
corresponding M2, .

For incident electrons, a further correction for
electron exchange must be included, for the ex-
change effect contributes to the order (InT)/T
and I/T in o, . The exchange correction based
on the Mott formula is given by

(13)

where I is the ionization potential (IP) of the atom.
Each orbital in metastable He contributes al-

most equally to the sum of the optical oscillator
strengths [see S(0) in Table III] as if the atomic
electrons were independent of each other. Hence,
tentatively we evaluated e„~by summing the con-
tributions from each orbital with appropriate orbital
energy and electron occupation number. The cross
sections for the ionization of He(2 S) by electron
impact, with and without the exchange correction,
are plotted in Fig. 1, along with the Bethe cross
section. In Fig. 1, o& times T is plotted as a func-
tion of lnT, whereby the Bethe cross section is
represented by a straight line, and the Z, term is
shown as the departure from the straight line.

D. Comparison with Other Data

Recently, Long and Geballe' measured the cross
section for the ionization of He(2~S) by electron
impact for T &16 eV. The measurement was
relative and was indirectly normalized at T= 12 eV
through a theoretical cross section for the ioniza-
tion of He in the ground state. Their results are
included in Fig. 1. Although the incident energy
used in the experiment is too low to permit a direct
comparison with the Born cross section, the exper-
imental data are certainly compatible with the high-
T behavior of cr, given by Eq. (12a) combined with
the exchange correction (13).

Earlier, Fite and Brackmann' and Vriens"
measured cross sections for the ionization of a
mixture of the triplet and singlet metastable He of
unknown composition. The uncertainty in the con-
centration of the two metastable species, however,
is largely offset by the similar magnitudes of a,
for the two species as mentioned in Sec. III C.
Again, these experiments were done at low T and
a comparison with the Born cross section is not
appropriate. The cross sections measured by
Fite and Brackmann' are almost a factor of 2
smaller than those by Long and Geballe, whereas
those by Vxiens" lie in between these two experi-

T(ev)
50 IOO 500 1000

He (2'S)

OI 00

4
I-
b

g0
~4

~I
Olj
-I

I I I I I

0 I 2 3
IA(T1R)

FIG. 1. Cross sections for the ionization of He (2 S)
by electron impact. Theoretical cross sections are (a)
the Bethe cross section, (b) the Born asymptote for elec-
trons (known as the "Born 5"or "modified Born" in the
literature), and (c) the Born asymptote with the Mott ex-
change correction. Uncertainty in the theoretical cross
section is common to (a)-(c), and is almost independent
of the incident energy T in this plot (OT vs lnT). Dots
represent the experiment by Long and Geballe (Ref. 12)
and the error limits indicate statistical error only.
Normalization of the experimental cross section is sub-
ject to an error of +30%.

ments.
Vriens also calculated the ionization cross sec-

tions for metastable He by using a "classical"
theory. Despite the inconsistencies in the classical
theory as used by Vriens, his cross sections are
in reasonable agreement with our result (for elec-
trons) for T up to a few keV.

A. Oscillator-Strength Distribution

The uncertainty m the f„ for the singly exerted
discrete states (2s -np) is amplified in the evalua-

IV. CONCLUDING REMARKS

Using the sum rules for the Born asymptotes, we
have determined various cross sections for the
inelastic scattering of charged particles by meta-
stable He. For the ionization of ground-state He,
the Born asymptote agrees very well with experi-
ment for T- 20~I(I=24. 6 eV). For metastable He,
however, the Born asymptote is not expected to
be as good because the excitation of the 1s core
electron shares a substantial part of M~ [see Table
I, S(- 1) column]. We estimate that our o, will be
reliable for T2'100I(I-4 eV). When the inner-
shell excitations contribute substantially to S(-1),
the first ionization potential alone is not an appro-
priate parameter to estimate the region of appli-
cability of the Born asymptote.
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tion of I (-1)because of their small g„[see Eg.
(2)j. Moreover, the excitation (including ioniza-
tion) of the inner-shell (ls) electron contributes
almost one-half of the sum of f„but very little is
known about its QSD. Similar problems are ex-
pected to occur, for instance, in alkali atoms.
The uncertainty in Q-1) is carried over to the
total cross section, and, for the atoms whose o„
is very large compared to o, , the uncertainty be-
comes large in 0, though it may be only a small
fraction of o„,. Our method (o, =o„,—o„) in such
cases will be ineffective unless o„, and o„are
determined very accurately.

8. Discrete-Excitation Cross Sections

For metastable He, we used excellent wave

functions for the first few discrete states, ' and con-
sequently obtained very reliable cr,„. For more
complex atoms, we may not be as fortunate. On

the other hand, we find that inc„ for high n can be
considered constant without introducing large
errors. Combined with the M~ values from optical
data and the fact that y tends to be rather smal1,
it should be possible to estimate the cross sections
for optically allowed discrete transitions within

reasonable accuracy, even when reliable wave func-
tions are not available. The occurrence of unusual-

ly small cross sections for optically allowed transi-
tions due to minima in the GQS is accompanied by
correspondingly large cross sections for the forbid-
den transitions. The same phenomenon is expected
to be common in complex atoms.

To alleviate some of the difficulties mentioned
in Secs. lVA and IVB we may partly use experi-
mental cross sections on photoabsorption and dif-
ferential (angular) inelastic scattering by fast elec-
trons as well as spectroscopic data through the
quantum-defect method. A careful application of
the sum-rule method will still provide for a reli-
able test of the compatibility of various inelastic-
scattering cross sections.
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