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The 8-wave scattering parameters have been calculated for the e'-H and e'-He systems
below the positronium-formation threshold. The phase shifts were computed using the Harris
variationa1 method, while at zero energy the scattering lengths were obtained by the Kohn

variational method. For hydrogen, a generalized Hylleraas wave function with three non-
linear parameters was used, giving an upper-bound scattering length a ~ —2.10278, agreeing
with Schwartz's result a~ —2.10. An extrapolation procedure gives an estimate of a=- 2.1036
+ 0. 0004. At nonzero energies, agreement with the lower-bound results of Bhatia, Temkin,
Drachman and Eiserike, to better than 0.004 rad is achieved. Since the exact atomic-helium
wave function is not known, the situation for helium is less clear; various model-target wave
functions are examined using a genera1ized Hylleraas function with two nonlinear parameters.
For the exponential model used by Drachman, the scattering is in close agreement with
previous results, but the annihilation-rate parameter Z&& is higher by 15% in poorer agree-
ment with experiment at zero energy.

I ~ INTRODUCTION

In the study of positron interaction with atoms at
low energies, the positron-hydrogen system is
most tractable theoretically, while the positron-
helium system is much more accessible to experi-
ment. Enough similarity between these two sys-
tems exists for the calculational techniques that
succeed in the former to be expected to succeed
also in the latter. It is thus useful. to test proposed
theoretical methods in the e'-H system, and then
to apply them to the e'-He system.

In recent years this has been done several times,
using different methods. ' None of these methods
was both simple enough to apply to helium and real-
ly accurate enough, as judged by comparison with
the most definitive work in hydrogen. In addition,
the serious yroblem of the inexactness of the atom-
ic-helium wave function remained unresolved.
Nevertheless, the best of these calculations' are
now roughly in agreement with the best recent mea-

surements, ' ' and there is considerable interest in
more extensive and exact calculations of cross sec-
tions and annihilation rates.

In this paper we report some new results for
positron-atom scattering systems, calculated vari-
ationally. In Sec. II, the generalized Hylleraas
type of scattering function is described and apylied
to Kohn variational calculations for zero energy
and Harris calculations for higher energies. In
Sec. III, S -wave scattering from atomic hydrogen
below the positronium threshold is considered, and
the results are compared with previous ones. In
Sec. IV, the corresponding problem for helium is
treated. Since the helium ground state is not known
exactly, ambiguities in the formulation of scatter-
ing approximations exist. A technique is described
which involves a model Hamiltonian corresyonding
to the approximate ground-state wave function as-
sumed. Using this technique, the S-wave scatter-
ing parameters are computed and compared with
previous results; at zero energy only, the annihila-
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tion-rate parameter Z,« is also evaluated.

II. VARIATIONAL METHODS

CfXk ~

where

e-(+ P+ tv+ 6~(:) l e nx(=e

i represents the set of integral exponents (Imn), and

the three parameters (cz, y, 6) can be adjusted to
optimize the results, subject to the inequalities
n + y & 0, n + 6 & 0, y+ 5 & 0 that guarantee conver-
gence of all integrals. (In the case of helium, not
all the possible coordinates are used in @for sim-
plicity; the details are given in Sec. IV)

At zero energy (k = 0), the Kohn variational prin-
ciple gives an upper bound on the true scattering
length a. In this limit, Eq. (1) becomes

Cr =[1—(ar/x)(1-e '")]g,+4,
and the quantity a& is stationary with respect to var-
iations of all the parameters including a~. Here
we have

a & a„=ar +(4v) ' J 4r[H —Ez] 4'rdr, (4)

Eo is the ground-state energy of the target, and dT
represents integration over the coordinates of the
positron and all the electrons.

The Harris method was introduced to overcome
a defect in the Kohn variational method at nonzero
energies. Schwartz' found that, since the method
does not give bounds for A w 0, variation on the non-
linear parameter could yield unreasonable values
of the phase shifts. Nesbet" has examined the en-
tire question in detail and concludes that the Harris
method is a Hulthen variational method, adjusted to
eliminate the unsatisfactory phase-shift values.
[There has been some confusion concerning this
point: The identity with the Hulthen method must

Both of the variational methods to be discussed
here use trial functions of the following form:

C z = '(I') + tanqr gq + 4'

g, =(kx) 'sinkxgo,

Pz = (kx) 'coskx(1 —e '")Pz,

where x is the positron coordinate, go is the wave
function of the atomic target, g& is an approximate
8-wave phase shift, k is the mome@turn of the posi-
tron in atomic units, and C is a closed-channel cor-
relation function that vanishes rapidly as x- ~.
(We use atomic units, with energies in rydbergs. )

In the simple case of a hydrogen target, the S-
wave function depends only on the three coordinates
x, r, p=jx-r (, where r is the atomic electron co-
ordinate, and tjt)0= n ~~e ". Then the generalized
Hylleraas correlation function takes the form

III. POSITRON-HYDROGEN SCATTERING

A. k'-0

For zero energy, we have repeated Schwartz's
calculation, ' but with the more flexible trial func-
tion of Eq. (2), which contains three nonlinear pa-
rameters; Schwartz's function corresponds to the
case [a =0, 5=y =e]. The results are summarized
in Table I, and show the dependence of g~ on N when
e = 0, y = 0. 8, and the other nonlinear parameter is
optimized, (We follow the tradition of reporting
results at only certain values of N; these correspond
to including all non-negative exponents E, m, n, in

g, such that I +m +n ( m, where u is an integer. )
Even for H= 84 (&o = 6) the calculation had not con-
verged well enough, and we improved the conver-
gence' ' by adding one more term to represent the
long-range dipole polarization of the form

y„„=c„„(1-e '*)'x (r+-,'r )P,(x ~ r)gz(r) . (8)

This strikingly accelerated the convergence, al-
though further addition of an analogous quadrupole
term of the form

y„, =z„c, (zl —e ") x ( ,'r + ,'r )Pz(x ~ r—)gz(r) (8)—

TABLE I. Convergence of the e'-H scattering length
with increase in N: @=0, &=0.8, optimum 6 (near 0.3).

10 20 35 56 84

—~y 1.0297 1.5279 1.7881 1.8989 1.9635 1.9933

be demonstrated by a limiting process as the energy
approaches a Harris eigenvalue Z.z (see below),
since at such an eigenvalue an indeterminate situa-
tion occurs. ]

The first step in the Harris technique is to diag-
onalize the Hamiltonian in the space spanned by the
N approximating functions defined in Eq. (2). That
is, we solve the finite matrix equation

[H XS]c-=0, (5)

where Hc~= &g» IHllt~) and S;~—- &)(~lit~ &.

eigenvectors c' ' with corresponding eigenvalues A.~

define N functions 4z . If we require 4'~ to satisfy
the Schrodinger equation in the space defined by the
N functions 4z then

&c, l[H-E]lq, & =0, (6)

and if we further choose E = Xz, then it follows that
the phase shift at that energy satisfies

t~0 =-&4z
I
[H- ~zl I V|&&&4z I

[H- zz] I Vz &.

Equation (7) thus gives the phase shift in terms of
quadratures, but only for those energies that are
determined by the matrix equation (5). By varying
the nonlinear parameters in Eq. (2) we can effec-
tively cover the energy region of interest.
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TABLE II. Convergence of the e'-H scattering length
with increase in N; dipole (N+1) and quadrupole (Ã+2)
terms included. The nonlinear parameters used were
essentially optimized. The consistency parameter b
is defined in the text.

N 10 20 35 56 84

—~v(& =0)
4 (a=0)

—&v(«0)
a (0.~0)

1.3267
—0.022

1.9682
0.057

1.$195
0.061
2.0621
0.130

2.0544
0.077
2.0939
0.069

2. 0920 2. 1006
0.048 0.054
2.10138 2. 10229
0.066 0.043

2.1027
0.048
2.10278
0.034

0.2—

0.1

had no effect except when N was small.
In Table II the results for n =0 and o. WO including

g~.1 and y&,2 are shown. The convergence in the
latter case is faster, but the final result is seen to
be about the same: Thebest value we obtain is a~
= —2. 10278 (for + =0.35, y=0. 9, 5=0. 15) to be
compared with Schwartz's value of —2. 10. A mea-
sure of internal consistency in Kohn variational cal-
culations is 6 = (av- ar)/ar, which in some sense
measures the over-all accuracy of the wave function.
A necessary, but not sufficient, condition for an ex-
act result is the vanishing of this quantity. The con-
vergence of 4 with increasing N is also shown in

Table II. Besides giving us experience in handling
the generalized Hylleraas function which will be use-
ful in computing the scattering length for helium,
this calculation confirms the result obtained by
Schwartz for hydrogen with a less general trial
function.

With the additional speed of convergence afforded
by the inclusion of the nonlinear parameter a, we

TABLE III. Convergence of a typical e'-H phase shift
q as a function of Ot: k=0. 4.

N 20

0, =0 0.110
n = 0.25 0.123
0. =0.50 0.129

35

0.113
0.123
0.127

56

Q. 115
Q. 123
0.127

84

0.116
0.123
0.126

can hope to extrapolate the entries in Table II to
N= ~ and obtain more significant figures in the
scattering length. We used the two difference-fit-
ting formulas

a„((o) —a„((u- 1) = c(g ~,

a„(s))—av(~- 1) =cP

(loa)

(10b)

where c,p in each case are fitted to the last three
entries in Table II. The extrapolated values are
a(~) = —2. 1038 and —2. 1034, respectively, and we

feel justified in quoting a final result a = —2. 1036
a 0. 0004.

B. 0(k
We applied the Harris method to the S-wave elas-

tic scattering of positrons from hydrogen at nonzero
energies. The wave function used was the same as
that in Eqs. (1) and (2), with the minor difference
that e appearing in g2 was kept fixed and equal to
unity. We first explored the general behavior of the
phase shift as a function of 5 with @=0and y=1,
which gave a fairly smooth dependence on energy
when N& 20. Since E=k2 —1, only those eigenvalues
A. ———,

' were in the elastic scattering region; for
each value of 5 about five eigenvalues lay in this
range. (No stabilization of eigenvalues was found, "
confirming the conclusion' '" that no e'-H reso-
nances exist below the positronium threshold. )

The phase shifts are shown in Fig. 1, where the
individual points were obtained for different values
of 5 and N as well as different eigenvalues; for
small N only the lowest eigenvalue gave reasonable
results. A smooth curve representing the phase
shifts of Bhatia et al."is also shown, and the agree-

-01
TABLE IV. Positron-hydrogen S-wave phase shift

n as a function of k

-0.2—
I

0.1

I I I I

0.2 0.3 0.4 0.5
POS(TR0N MOMENTUM (atomic units)

4
I

0.6
I

0.7

FIG. 1. Positron-hydrogen phase shifts 0 calculated
by the Harris method. Results are shown for the two
extreme cases N=4 and N=84, with 0. =0, p=l, and 5
varied to vary the energy. For a given value of (5 sev-
eral eigenvalues fall within the elastic scattering range;
the various symbols identify their ordering. Lower
eigenvalues give more reliable phase shifts than higher
ones. The curve represents the result of Ref. 15.

Present work

0.1
0.2
0.3
0.4
0.5
0.6
Q. 7

0.149
0.189
0.169
0.123
0.065
0.008

—0.049

Reference 10.
Reference 15.

Schwartz
(+Q. 001)

0.151
0.188
Q. 168
0.120
0.062
0.007

—0.054

Bhatia et al. ~

(+0.0002)

0.1483
0.1877
0.1677
0.1201
0.0624
0.0039

—0.0512
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H =H, —V,'- 2/p, —2/p, +4/», (12)

where p q
=

) x - r, ~, and the index i = 1,2 denotes the
two atomic electrons.

ment is quite good.
To make a more direct comparison with other

results which are conventionally given at intervals
bA = 0. 1, it is desirable to keep k fixed while in-
creasing the expansion length ¹ For each value
of a it was possible to adjust 5, so that k remained
constant to at least three decimal places over the
full range k = 0. 1-0.7. %e consider the best value
of a to be the one producing the best convergence
with

¹ To Qlustrate, we show the results for k
=0.4 in Table III for three values of a: 0. 0, 0. 25,
and 0. 50. Notice that the phase shift remains al-
most constant for a = 0. 25, while it converges from
below and above for a =0. 0 and a =0. 5, respective-
ly. %e have adopted the values obtained at a = 0. 25
and N=84 as our best. In Table IV we give these
optimum phase shifts along with those of Schwartz'
and Bhatia et al. ' for comparison. These latter are
extrapolated to N = ~ from rigorous lower bounds
and are the most accurate e'-H phase shifts obtained
to date. The present results are seen to deviate
from the others in the third significant figure, but
we consider this sufficiently accurate for the appli-
cation to helium to be considered below.

IV. SCATTERING BY HELIUM

Since the Kohn variational method at zero energy
and the Harris method for positive energies have
given satisfactory results for scattering by hydro-
gen, we would like to apply these methods directly
to scattering by helium. However, we cannot follow
exactly the same procedure because the ground-
state wave function go(r„rz) for heliumisnotimown
exactly. This means that the Kohn approximation
to the scattering length is no longer an upper bound
and it is also not clear that we would obtain reliable
phase shifts from the Harris method,

Instead we have used a certain technique previous-
ly employed by Drachman. '4 It restores the zero-
energy bounds and the good convergence at nonzero
energies by assuming that whatever approximate
target wave function we use is an eigenfunction of
the atomic-helium Hamiltonian. Formally, we are
replacing the true Hamiltonian of the helium system
by a model Hamiltonian

2 2Ho=- V, —&o+U(rg, ro),

where the equation

(Ho —Eo)ko(ri ro)=0

determines the model potential U in terms of the
approximate wave function $0. Then the complete
Hamiltonian of the model scattering system is

In principle, one envisions a program consisting
of ever more accurate models eventually converg-
ing to the true ground state of helium, with the scat-
tering parameters eventually approaching the exact
ones. In practice, computational difficulties forced
us to use fairly crude models defined by the follow-
ing five functions in two classes:

Class I:

Po(r„ro) =Xu(rg)u(ro),

Class II'

go(ri ro) =St[u(n)v(& )+u(o'o)v(&s)1 ~

Three models of class I were examined:

Models A (Ref. 16) and B (Ref. 4):

u(r)=e '", z„=1.68?5, zs=1. 5SS2;

Model C (Ref. 1?):

u(r)=e "+ce ", z=1.4558, c=0.6.

Two models of class II were examined:

Models D (Ref. 18) and E:
u(r)=e o", v(r)=e ~, Ps=2. 1832, qv=1. 1886;

Pg = 1.9007, qg = 1.3457.

Functions of class I may be called Hartree-Fock
or product functions, while those of class 0 are
known as open-shell functions. Model A gives the
lowest variational energy of any exponential form,
while model 8 gives a good value of the helium po-
lartzability' (a=1.3?6). Model C is also deter-
mined variationally and fits the numerical Hartree-
Fock function well. The parameters in model D
minimize the variational energy while permitting
the two electrons to occupy different single-particle
orbitals. The parameters in model E were chosen
by a different procedure, discussed below. It is
probable, at least for low positron energies, that
the polarizability is the single ground-state proper-
ty that is most important for obtaining accurate
scattering results.

Accordingly, we would like to emphasize those
functions giving good values of a; model 8 gives a
exactly, while model A is in error by about 25%.
For the other three models, the value of (r ) is
easier to evaluate and is related to n (For A and B
one can show that (ro) =a . ) In Table V we collect
data concerning the five models. On the basis of
(o.o) alone, we expect models A and D to be poor,
while models B, C, and E should give similar (and
better) scattering results; model E was adjusted to
give (r') exactly.

The last entry in Table V gives the value of @30,

the positron energy at the first inelastic threshold
as predicted by the model. The lowest such thresh-
old for the real positron-helium system is for posi-
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TABLE V. Various properties of the five helium-atom models (energies are in rydbergs, polarizabilities in units
of 4s a and (y ) in units of a20)

Model

Variational energy
Polarizability
b')'

inelastic threshold
energy

—5.695
1.110
1.053

2.14

—5.680
1.376
l.173

1.92

—5.723

1.180

—5.751
404

1.238

0.91

—5.717
+04

1.19

1.31

Exact

—5.807
1.376-1.395b
1.193

1.31

'C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
Reference 19.

'Y. K. Kim and M. Inokuti, Phys. Rev. 165, 39 (1968).

tronium formation, occurring at k =1.31. If we
take the model potential seriously, we can let one
electronic coordinate approach infinity and compute
the ground-state energy E, of the model He' ion
containing the remaining electron. Then we have

gkp, =E, —Eo- ~,

where the true threshold is obtained from Eo
= —5. 807 and E, = —4. [Notice that Eo is not gener-
ally the same as Eo, the variational (Rayleigh-Ritz)
energy corresponding to the given wave function
and the true Hsmiltonian. ] For models of class I
we have E.= & Eo, since the two electrons are inde-
pendent and hence k~, =z ——,'. For models D and

E, one electron is more weakly bound than the
other; one finds k»=q' —&. For models A and 8

(and probably C) the positronium threshold lies
above the first atomic excitation energy k„=-,'z~,
and this lower energy appears in the table. For
model D the positronium threshold lies below the
true threshold and we cannot expect reasonable re-
sults between these two energies. The parameter
q in model E was adjusted to give k» exactly, leav-
ing P free to give (r ) correctly as mentioned above.

A. ki=0

We have used essentially the same trial function
as in Sec. III with the exceptions that $0 was re-
placed by one of the approximate forms for helium,
the short-range correlation functions y &

given by
Eq. (2) were made symmetric with respect to the
coordinates r, and ra of the helium electrons, and

TABLE VL Zero-energy positron-helium results for five different models. For each model, the convergence of
avvs N is shown, and for some cases Zyff and d are also given. Note especially the improved convergence of av when
the long-range polarization term is added and the similarity between models 8, C, and D. Quantities marked (*) were
computed without the long-range polarization term I, Eq. (15)], those marked (+) included this term, and those marked
(f) also took account of the x 2 term of Eq. (17). This last term only improved 6 but did not affect av orZef f.

av(*)
av(f)
Z
~(t)

av(*)
av(+. 4)

Z ff(+, f.)
g(+)
a(g)

av(*)

av(*)
Z~r(*)

av(+}

—0. 025
—0, 236

2.203
—0. 006

-0.165
—0.302

2. 242
2.323
0.347
0. 067

—0. 157

—0. 186
2. 182

—0. 199
2. 192

10

-0, 226
—0.376

3.326
0, 043

—0.288
—0.488

2. 677
3.695
0. 107
0.035

—0.303

—0.399
2. 766

—0.349
2, 671

20

Model A (s =1.6875)
—0.277
—0.396

3.621
0. 002

Model B(s = 1.5992)
—0.413
—0.516

3.583
4. 039
0. 114

—0.003

Model C (Hartree-Fock)
—0.435

Model D (Open shell)
—0.516

3.740

Model E (New open shell)
—0.446

3.493

35

—0.313
—0.401

3.809
0.006

—0.444
—0.522

3.745
4.251
0. 084
0. 008

—0.471

—0.559
3.969

—0.481
3.679

—0.327
—0.402

3.843
0. 000

—0.473
—0.524

4. 112
4.289
0. 077

—0. 002

—0.580
4.347

—0.499
4. 016

84

—0.340
—0.402

3.878
0. 003

—0.485
—0.524

4. 126
4.326
0.063
0. 005
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we omitted the e ' factor to simplify the integrals.
In the first instance we used

X;=e *x'(e &rpp,"+e e"&r2 pz)$0(r, , ra). (14)

Later we made this slightly more general by includ-
ing factors like r",z where x»= ( rq —r2 I, but this did
not make any significant difference to the final re-
sult.

Various explorations were made at zero energy
of the five models described above. We discuss
them in general here and give the results in Table
VI. Most thorough work was done on models A and

B; models C and E were indeed very similar to B
as we anticipated while model D seemed to be less
satisfactory (see Table V). The following describes
the sequence of calculations:

(i) Keeping the parameter P fixed at zero, we

varied 5 with up to 84 terms in the trial function and

found slow convergence of a~ as in the case of hy-
drogen (Table I).

(ii) We then added a term to represent the long-
range dipole polarization of the form [see Eq. (8)]

XN+1 eg+1(1 e ) z [(rg+f +f)+J(+' rg)

+ (K2 +O'Ya) Pg(x ~ r2)] $p( rg, r2)

0.06

0.04

0.02

-0.02—

-0.04—

t=
-0.06—

-0.08—
CL

-0.10—

-0.12—
I

-0.14—

-0.16—

-0.18—

-0.20—

-0.22
0

Z = 1.6875
Z = 1.5992
OPEN SHELL ———
DRACHMAN x

0.2 0.4 0.6 0.8
POS ITRON MOMENTUM (atomic units)

1.0

where perturbation theory gives b =
& z for models

A and B. Including this term again accelerated the
convergence to a satisfactory degree.

(iii) We also calculated Z,«, an effective electron
number which is proportional to the annihilation
rate of zero-energy positrons in helium. This pa-
rameter is more easily measured experimentally
than the scattering length (or cross section) so we
compute Z« in order to compare with experiment.

Z, ff essentially measures the probability that the
positron and one of the electrons are at the same
point and is given by

Z„,= j ~
4 r (x, r„r,)

~

'[5(x —r, ) + 5(x —r, ) ] d7 .

FIG. 2. Positron-helium phase shifts g calculated
by the Harris method, for the following three models:
A (z = 1.6875), B (z = 1.5992), D (open shell). The
crosses are the results of Ref. 4 for model B. No
results are given above the spurious threshold for
model &, while model E was omitted for clarity; it is
very similar to model &.

knowledge of the wave function. Although the addi-
tion of X„„gives excellent convergence for g~, the
wave-function quality parameter 4 is not as satis-
factory. We therefore added the long-range open-
channel term

f= d(1 —e '*) x P~(r, , ra)

These are also listed in Table VI and are seen to
converge from below to values close to 4.
(iv) The computation of Z,«requires detailed

TABLE VIII. Positron-helium S-wave phase shifts
for model B, compared with previous results (Ref. 4).

Nonvariational Variational Present Kxpt

+etf

—O. 659~
6 3c

—0. 511
3.7

—0. 524
4. 3 3.677 + 0. 025

Reference 4.
Reference 5 (see also Refs. 6 and 7).

'R. J. Drachman, Phys. Rev. 150, 10 (1966).

TABLE VII. Comparison at k = 0 of the present posi-
tron-he1ium results for model B with previous variational
and nonvariational resu1ts. The experimental value of
Z&& also appears.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

Present

0.035
0.049
0.039
Q. 020

-0.003
—0.034
—0.069
—Q. 106
—0.143
—0.177
-0.211

Variational

0.Q36

0.047
0.039
0.020

—0.007
-0.039
—0.073
—Q. 107
—0.141
- 0.174-Q. 205

Nonvariational

Q. 050
0.072
0.071
0.056
0.032
0.002

—0.031
—Q. 066
—Q. 100
—0.133
—0.166
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and obtained much better convergence of ~ towards
zero. No change was observed in a& or Z,«when
this term was added. c„„and d were treated as
free variational parameters and the fact that they
turned out very close to the perturbation values is
another indication of consistency.

(v) We then permitted the parameter P of Eq.
(14) to take nonzero values, but found the minimum

a& to differ only in the fifth significant figure from
its value at P =0. As mentioned above, inclusion of
factors like r",~ changed a& very little.

We have already indicated that we consider model
B to be the most satisfactory of those treated here,
at least for low energies. Drachman has previously
examined this model both nonvariationally' and by a
less extensive variational method. ' In Table VII we
show comparisons between these methods and the
present method for the scattering length and Z«,
a good recent experimental value of the latter is
also shown. ' (Notice too that model 2 gives Z,« in
better agreement with experiment. )

B. k~ 40

We applied the Harris method to models A, B,
D, and E in the manner described in Sec. IIIB, us-
ing the function of Eq. (14) with P=0. The results
are given in Fig. 2 and Table VIII and compared
with those of Ref. 4. When we examined the values
of X obtained, we found one stabilized eigenvalue, "
representing a resonance at A = 1.05 for model D;
this lies between the exact and model thresholds
(see Table VII) and is to be disregarded. For mod-
els A and 8, one resonance appeared just below the
inelastic threshold. This represents the first of the
well-known hydrogenic resonances which lie below
the n = 2 states; here they are of academic interest
only, since the models distort the level structures
considerably.

The argument favoring model 8 (or C) at low en-
ergy may not hold at higher energy. Nevertheless,
model E is very similar to B at all energies up to
the positronium threshold, and there is no indica-

tion of any unusual behavior; for clarity we have
omitted the results from Fig. 2. We consider that
the envelope of the curves shown in Fig. 2 should
be considered to be the result of the present calcu-
lation at the higher energies above the point where
the curves cross the horizontal axis.

V. SUMMARY AND CONCLUSIONS

The Kohn and Harris methods have been applied
successfully to the problems of positron scattering
from hydrogen and helium atoms at low energies.
In hydrogen, good agreement with previous results
was found, and an improved scattering length was
obtained.

In helium, the problem of the inexact target wave
function was approached by introducing a sequence
of model atomic Hamiltonians corresponding to cer-
tain simple variationally obtained wave functions.
Those functions whose polarizability is close to the
correct value are expected to give good low-energy
scattering results. At higher energies, the excita-
tion spectrum may also be important.

We note that our scattering results for the helium
model previously treated in Refs. 1 and 4 are in
very close agreement with the variational treatment
rather than the nonvariational method. Although
we have treated the S-wave phase shifts only, this
result reduces the low-energy cross section by a
factor of about 3 and raises the high-energy cross
section significantly, compared to those reported
in Ref. 1. Nevertheless, the model is crude, and
better ones become progressively more difficult to
handle.
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Sum rules for the asymptotic Born cross sections have been applied to the evaluation of var-
ious inelastic-scattering cross sections of metastable He (2 S and 2 3$). The ionization cross
sections for the two species are similar in magnitude, and each constitutes only a small part
of the total cross section for inelastic scattering. Although the first Born approximation is
inappropriate for the scattering of slow charged particles, the energy dependence exhibited in
the recent experiment by Long and Geballe for the ionization of He (2 IS) by low-energy elec-
trons (~ 16 eV) i.s compatible with the high-energy behavior predicted by the theory. The ex-
change correction evaluated from the Mott formula has been included in the ionization cross
section by electron impact. Optical oscillator strengths for the first three transitions to doubly
excited states f2 IS (2gnL')~P] are also given.

I. INTRODUCTION

Rigorous applications of the Bethe procedure'
to obtain various inelastic-scattering cross sec-
tions so far have been restricted to one- and two-
electron atoms in the ground state. The theory
is not restricted to the ground state, and in this
paper we present an example of its application to
metastable He in the 23S and 2'5 states. More-
over, these metastable species have open-shell
structure, and serve as a prototype for the appli-
cation of the theory to complex atoms.

The Bethe procedure in its extended form4 pro-
vides an asymptotic expression for the total cross
section for inelastic scattering

o„,=A (lnT)/T+B/T+C/T + ~, (1)

where A, 8, and C are constants determined solely
from the properties of the target atom and T is
proportional to the square of the incident particle
velocity. The constants A and C are readily cal-
culated from the initial-state wave function of the
atom. To determine B, however, the oscillator-
strength distribution (OSD) must be known, in
addition to the initial-state wave function. ' When
the croes section is given in the form of Eq. (1)
with only two constants A and B, we shall refer to
it as the Bethe cross section.

For metastable He, various wave functions and
expectation values derived from them are available

in the literature. ' We have used the correlated
wave functions determined by Weiss. s As was
shown earlier, the Weiss wave functions are in
many ways as reliable as the Pekeris wave func-
tions.

The OSD of metastable He, however, has many
uncertainties. Theoretical or experimental data
on the OSD of higher continua such as
(He~ -He" + 2e) are not available. The data for
the autoionizing states are very scarce. On the
other hand, there are many qualitative aspects
which are shared by the 2 Sand 2'8 states of He,
particularly in the OSD. These features. including
the uncertainties in the OSD's, are expected to be
common in complex atoms, and the experience
gained in the present investigation should provide
a valuable guide for future applications.

Individual cross sections can also be written in
the form of Eg. (1) with three constant —we shall
call such expressions the Born asymptotes —which
are determined from the generalized oscillator
strength (GOS). ' By subtracting the sum of the
Born asymptotes for the discrete excitations from
the total cross section, we get the Born asymptote
for ionization. The ionization cross section thus
obtained represents a simple sum of cross sections
for all events leading to ionization and is known
as the counting ionization cross section. The
Borh asymptotes for ionization have been further
improved by adding the correction for electron


