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Here

:"„(12,1 2 ) =f 5(1 —2 )5(l '-2)V(l —1 )

—i 5(l —1 ) 6(2 —2")V(1 —2 ) (52)

is the approximation used in GRPA and RPA, the
first term in the expansion of ".
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A rigorous-bound calculation is performed of positron-hydrogen scattering below the posi-
tronium pickup threshold. The correlation function is a generalized Hylleraas function with
three nonlinear parameters which includes a virtual-positronium factor explicitly. Phase
shifts are calculated as a function of the number of linear parameters using up to 84 terms.
Converged phase shifts can be extrapolated to four significant figures. At three of the seven
values of k computed, the results are found to disagree slightly but significantly from
Schwartz's results, Final phase shifts are estimated to be accurate to + 2x10 rad.

I. INTRODUCTION

Assuming one has a basis set which is suitably
complete, one of the main advantages of a rigorous-
bound formulation is that it allows the application
of brute-force techniques with considerable con-

fidence that they will converge to the right answer.
The case of low-energy positron scattering from
atomic hydrogen is an important and interesting
case in point. The original application of a, bound
theorem to the scattering length by Spruch and
Rosenberg' (SR) yielded a negative (attractive)
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scattering length, as opposed to previous calcula-
tions which were in effect slight perturbations on
the repulsive Hartree potential and yielded positive
scattering lengths. This immediately showed the
importance of a bound principle, and since the SR
variational wave function was deliberately chosen
to include virtual positronium, it seemed also to
imply that virtual positronium was an indispensible
element of the dynamical problem. However, sub-
sequently Schwartz using a conventional Hylleraas
function obtained a significant lowering of the scat-
tering length. Implicitly the presence of powers
of r» does give some virtual positronium, but a
key element of the scattering-length calculation was
the additional incorporation of the correct descrip-
tion of the long-range polarization part of the wave
function —a fact which was previously known in
electron-atom scattering and was used to calculate
the first correct (triplet) electron-hydrogen scat-
tering length.

Thus, aside from the indisputable value of the
bound theorem, the role of virtual-positronium
formation was still unclear. However, the situation
was accented at nonzero energies where Schwartz's
procedure does not correspond to a rigorous bound
on the phase shift. It is the purpose of this calcula-
tion to settle in a definitive manner the uncertainties
with respect to the inclusion of both bound proper-
ties and virtual positronium in Schwartz's calcula-
tion for nonzero energies.

II. OPTICAL POTENTIAL, BOUNDS, AND SPECTRUM
OF QHQ

In applying bound techniques to nonzero energies
we are again relying fundamentally on the work of
the New York University group. ' The essence of
their original paper was to show that the optical
potential for a one-particle radial function whose
asymptotic form gives the correct phase shift is
negative definite below the energy of the lowest
resonance or inelastic threshold, thus implying that
the phase shift of the full problem is larger than
that coming from any approximation which in effect
yields a less negative definite potential. Prime
examples of this behavior are the natural sequence
of close-coupling calculations for electron-hydrogen
scattering, as was indicated. A characteristic
of these approximations is that the target state is
multiplied by an undetermined function which is
subsequently determined from an (integro-) differ-
ential equation derived from the variational prin-
ciple:

[Rydberg units will be used throughout; r, and ro
are the coordinates of the positron and electron,
respectively. yo(ro) is the ground-state wave func-
tion of the hydrogen atom, a.nd u(r, ) is the S-wave
scattering function, which has the well-known
asymptotic form limu(r, ) =A sin(kr, +p) as r, - ~. ]

Given an arbitrary form of the closed-channel
function 4, Ref. 5 does not really answer the ques-
tion of how one constructs a bound principle for the
phase shifts. A bound on the cotangent of the phase
shift was derived in a second paper by the same
authors, and it was subsequently used for both
positron and electron scattering from hydrogen.
The results of these calculations, while valuable,
were not definitive, partly we believe because the
formulation is not optimum for numerical calcula-
tion. A mathematically equivalent but calculation-
ally superior formulation was given by Gailitis. '
In essence he showed how to compute a bounded op-
tical potential from an arbitrary 4 again starting
from the projection operator and optical-potential
formalism of Feshbach. For the case in hand,
projection operators P and Q are defined as

P= Vo(ro)) «o«o) (2. 2a)

(2. sb)

such that P operating on the wave function does not
change its asymptotic form

lim P4'= lim4 .
00

This may be easily verified from (2. 2), keeping in
mind that the bra on the right-hand side in the def-
inition of P means multiplication and integration of
r2 of all functions standing to its right. (The def-
inition of 4 as a closed-channel function means
lim4 = 0 as r„ro - . ) Using the idempotency
[P =P, Qo=Q] and orthogonality [PQ=O], all of
which may readily be shown for P and Q defined
above, Feshbach has derived a formal expression
for the optical potential [which ultimately goes into
the equation for u(r, ) of Eq. (2. 2)]:

'U.,~
= »Q [Il(E —QHQ)] Q» . (2. 4)

Now the point of the recent work mentioned above
(which interestingly enough has come from the
atomic physics and not nuclear physics) is that

y f can be approximated in such a w ay that it yields
bounds on scattering parameters. Specifically,
Gailitis' has shown that if one substitutes a set of
variational approximations of the problem

5 f 4'" (H —E) 4' dt = 0, (2.1)
(2. 5)

4 = [u (r, )/r, ] yo (ro) + 4 (r„ro, r,o) . (2. 2)

where, to repeat in a form appropriate to e'-H
S -wave scattering, (the approximate solutions being labeled by 4 ~ and

$~) as intermediate states into 'U„„ then one ob-
tains



1330 BHA T IA, TE MEIN, DRAC HMAN, AND E ISERIKE

g(bouicl) &gopt - opt y

which implies

~ —~exact

(2. 6a)

(2. 6b)

.10

C „and S„are calculated from the Rayleigh-Ritz
variational principle

(eQHQe )
(eQe) (2. 6') 0.0—

where, as is well known, the number N of eigen-
solutions, &=1, 2, . . . , N, is equal to the number
of linear parameters in the variational ansatz for

Given the approximate set of 4 ~ S„one can
readily reduce p~~t"' ' to a transparent and gener-
ally calculable form as follows:

0' '~"-=QZPHQ4 ) (e„[1/(E—QHQ))c„. )

-.05-

—.05 .05
I

.10

834

.15

FIG. 1. Contours of 8 for N= 20 terms as a function
of band y(&=0.5).

x(4r QHP,

which, using the orthonormality of the 4„reduces
to

o„~) p PHQ4, ) (4,QHP
g„

(2. 7)

[A nondiagonal form of (2. 7) in connection with the
construction of bounds was first given by Sugar and
Blankenbecler. "]

From (2. 7) and (2. 6) it is easy to see that 'U„,
contains no singularities for E &h, (~ S,~ ~ - h„).
If QHQ has no discrete eigenvalues below the first
inelastic threshold at which its continuous spectrum
begins, then the bound theorem applies right up to
that inelastic threshold. %e shall find that that is
the case in positron-hydrogen scattering right up
to the positronium pickup threshold.

In fact the particular suitability of (2. 6) for our
calculations was occasioned by the fact that we had
been searching for eigenvalues of QHQ (i.e. , reso-
nances) in the positron-hydrogen system using a
generalized Hylleraas function'2:

g
&-&organ&+arga& P g &m &1 & N

lfftn 1 2 12
f, st, n

(2. 6)

The nontrivial problem of Q-projecting on the or-
dinary Hylleraas function has been solved by Bhatia,
Temkin, and Perkins' in connection with the prob-
lem of electron-hydrogen resonances. It turns out
that the same techniques are applicable here; on
the other hand, the basic trick is necessary even
though P and Q are of a simpler unsymmetric form
(2. 2).

The results of the search were negative as re-
ported. 12 In Fig. 1 we plot contours of constant 8
as functions of & and y for e =-,'. They are seen to
lie above 8=-0.5, the energy of ground-state posi-

e+y &0,

@+5&0,

y+g &0 .
(2. 9)

This means in particular that no two of the param-
eters can simultaneously be negative, but neverthe-
less the fact that one of them at a time can be neg-
ative shows that 4 of Eq. (2. 7) is a much more
flexible correlation function than might at first sight
be thought.

tronium, and to approach that value as y, 6-0 as
they should, since that limit represents an unper-
turbed ground-state positronium at infinity with re-
spect to the fixed proton. %e found that we were
unable to get nearly as close to the positronium en-
ergy unless we included the factor e "» explicitly.
(For comparison we found a lowest QHQ energy of
—0.4636 for N = 50 with e = 0 and y = 5 = 0. 35. This
leads to the suspicion that e "12 is also necessary
for the desired accuracy of phase shifts near the
pickup threshold. ) A similar result was calculated
by Rotenberg and Stein, '4 who additionally found by
extrapolation that only for a fictitious positron
mass less than 0. 7 of the electron mass would such
a resonance arise. These results together with an
independent calculation by one of us' which, albeit
not a rigorous Q-operator calculation, did include
the long- range positronium-proton polarization,
convince us that there are no Feshbach resonances
below the pickup threshold The ab. sence of any
local minima above 8 & —0. 5 also suggests that
there are no Feshbach resonances immediately
above the pickup threshold, it being understood
that all these calculations refer only to total S
waves. It should be noted in Fig. 1 that negative
values of the parameters a, y, 5 are allowed. The
only restriction in order that the integrals be con-
vergent is that the sum of all pairs be positive:
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TABLE I. Iterative convergence of solutions of Eq. (3.2) for N=84.

Iter rf fggi

k=0. 1; o. , 6, y =0.312,0.128,0.907

rf paar

k = 0.2; u, 6, y = 0.2, 0.230, 0.945

56.496 09
2 31.396 09
3 34.696 09
4 35.696 09
5 35.696 09
6 35.696 09
7 35.696 09

—21.232 38
3.914446
8.189429

— 9.810 514
9.806 863
9.807 108
9.807 091

—0.057 971 94
0.256 3156
0.137 256 5
0.148 721 9
0.147 8250
0.147 885 7
0.147 881 3

0.555790 6
0.431 415 8
0.444963 8
0.443 946 9
0.444015 2
0.444010 4
0.444 010 9

70. 296 09
39.896 09
45.696 09
45.696 09
45.696 09
45.696 09
45.696 09

16.168 15
8.566 021
1.124 356
0.982 803 9
0.994 273 8
0.993 44V 0
0.993 503 8

—0.1144660
0.306 429 8
0.175 2087
0.188469 7
0.1873811
0.187 459 8
0.1874543

0.307 762 8
0.239 5024
0.247 1773
0.246 540 2
0.246 586 6
0.246 5834
0.246 583 7

k=0. 6; n, 6, y =0.45, 0.354, 0.914 k = 0.7; o.', 6, &= 0.5, 0.415, 0.946

1 32.546 09
2 30.946 09
3 30.946 09
4 30.996 09
5 30.996 09
6 30.996 09
7 30.996 09

1.822 719
—Q. 918571 8
—1.188 874
—1.041 833
—1.043 761
—1.043 621
—1.043 631

—0.304 1954
0.006 804 8

—0.003 823 1
0.003 577 6
0.002970 4
0.003 016 6
0.003013 2

0.1567118
Q. 1314447
Q. 134036 6
0.133815 6
0.1338329
0.133831 5
0.133831 6

28.646 09
27. 596 09
26. 596 09
27. 621 09
27.621 09
27. 621 09
27. 621 09

3.146 683
1.710 569

—1,033 558
1.530 154
1.526 442
1.526 766
1.526 739

—0.340 019 8
0.002 530 7

—0.058 129 7
—0.051 858 7
-0.0523766
—0.052 344 5
—0.052 346 5

0.1181436
D. 100 681 7
O. 1025019
0.1023370
0.102348 9
0.102 347 8
0.102 348 1

III. SCATTERING PROBLEM

The form of the scattering equation as given by
Gailitis" is

[PHP ~ g'tbaund) E]y 0 (3. 1)

Given the form of 4 [Eq. (2. 2)], the projection op-
erators [Eq. (2. 3)], z,'~t~N [Eq. (2. 7)], and the
complete set of eigenfunctions 4„and S„associated
with Eq. (2. 8), one may straightforwardly reduce
(3.1) to the one-dimensional integrodifferential
equation

d 2„1
2

—2e '"' 1+—
~

+ k' u(r, )
dr) yq)

machine purposes.
Since the optical potential is a sum of separable

terms, one could in principle reduce it to a set of
uncoupled ordinary diff erential equations. How-
ever, the number of such equations is formidable
(N+ 1) when going to large N, and thus we chose to
solve it by iteration, with the expectation that the
vast number of terms would in fact aid the con-
vergence. That this expectation was borne out is
shown in Table I wherein the convergence for an

TABLE II. Search results to find optimized n, 6, &;
N= 10.

v, (r, ) (v„u)
X-1

(S.2)

The kernels V„are defined by

V„(r,) = f [qC(r„rg)](-2/rgg) q 0(ra)d'rg . (3 3)

k =0.2 0.24
0.264
0.264
0.264
0.288
0.312
0.312
0.312
0.312

0.27209
0.27209
0.227 929 9
0.227 929 9
0.248 650 8
0.248 650 8
0.269 371 7
0.227 929 9
0.227 929 9

0.726 958 V

0.726958 7
0.726 958 7
0.799 6546
0.8723504
0.872 3SO 4
0.872 350 4
0.872350 4
0.945 046 3

0.176 270 2
0.177 2185
0.177 740 7
0.179148 7
0.181310 9
O. 181506 9
0.181366 6
0.181523 8
0.181941 3

Using the device of Ref. 13 to evaluate Q@„with
4„of the form of Eg. (2.8), we find that V„can be
reduced to

V„(r,)=/8 E C,"'„rPe '&{f,„,(r,)

where

—[r& —e~'~ (1+r~ ~ )]I, „(r~)), (S.4)

(r ) ( dr f"dr '- +y)rm-ur&~ r i+1 m+1tn 1 Jo 2J~& & J
12t] f2 2 12

(S. 5)

I, „(r,) can be and is evaluated in closed form for

k =0.4
0.215 625
0.237 187 5
0.237 187 5
0.237 187 5
0.258 75
0.280 312 5
0.280 312 5
0.280 312 5
0.280 312 5
0.280 312 5
0.323 437 5
0.345
0.301 875
0.301 875
0.301 875

0.300 680 8
0.300 680 8
0.330 748 9
0.330 748 9
0.360 817 0
0.360 817 0
0.390 8850
0.330 7489
0.330 748 9
0.330 748 9
0.330 748 9
0.330 748 9
0.330 7489
0.360 817 0
0.300 680 8

0.802 515 6
0.8025156
0.802515 6
0.882767 2
Q. 963 018 7
0.9630187
0.9630187
0.963 018 7
1.043 270
0.88276V 2
0.882 VSV 2
0.882 767 2
0.882 V6V 2
0.882 V67 2
0.882767 2

0.106 1635
0.107 7943
0.108 518 8
0.112487 2
0.1124415
0.112513 1
0.1115152
0.1132225
0.109 816 2
0.113382 4
0.1133119
0.113030 5
0.113441 3
0.112813 1
0.1137879
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84-term expansion is exhibited. The integration
is automatically stopped as a function of r when the
phase shift is suitably constant as a function of r.
Table I shows that the value of r as well as the
radial function u(r) and a typical integral I, all do
converge after seven interations.

The phase shifts are of course functions of the
nonlinear parameters. The same search routine
which was used to minimize the energies S„could
be easily adapted to maximize the phase shifts as
a function of n, y, 5. Table II gives the results
of the search for two values of k with ten linear
parameters (N= 10). Such searches were too time
consuming for larger N, therefore, we fixed the
value of y and 5 from ten-term searches and varied
on & to get a maximum. Figures 2-4 show the
results for four different k's; they demonst. ate
that although the optimum value of & remains es-
sentially the same for k= 0. 1 as one increases N,
it can vary quite substantially for the higher values
of k. Clearly, then, even for 84 linear terms, one
achieves much higher accuracy with the presence
of the e "» term. Final results are given in
Table III.

As a valuable check of the numerical accuracy
we evaluated both sides of the following easily de-
rivable identity:

1 N

sin(q —gp) = Z up(r) V~(r) dr
AAok

.003

025I-

.002

k=0.6 (8 - ~ }

—N =84 op

o
N =56

.001-
D

N =35

—.001
0.1 0.2

N =20

0.3 0.4 0.5 0.55 0.6

FIG. 3. Same as Fig. 2 for k= 0. 6 (a. u. ).

u(r ) V„(r ) dr (E —8„) '.
0

(3. 6)

The up(r) and gp are the radial functions and well-
known phase shifts of the Hartree approximation,
respectively. The latter are listed under the col-
umn labeled 0 in Table III. The g and u(r) to be
used in (3.6) correspond to the subsequent columns
of Table III for whatever N one wants to make the
check. A and Ao are the amplitudes of the asymp-
totic solutions:

187

.186-

.185-

k=0 2 (.. i. ) N =84
Qo ~N=56

N =35

N =20

u = A sin(kr+ rl),
lim

up=Apsin(kr+rjp) .

The last two columns give the left- and right-hand
sides of (3.6) for the 35-term expansion. For
larger N the check tended to be less accurate owing
to large cancellations of terms in the right-hand
side of Eq. (3. 6). That such cancellations could
not be present in the optical potential itself follows'
from the iterative convergence of u(r) for all N,
exhibited in Table I for %=84.

147-

. 146—

.145-

k=0. 1(a ' ) N =84
a N=56

N =35

—.052

—.053-

-.p54[

—.055—

—.056$

k=0.7 (p .} N =84O

N =20

N= 56

N =35

I

0.2
I

0.3
a

l

0.4
—.057-

—.058-
FIG. 2. Curves of q {rad) for k=0. 1 and k=0. 2(a. u. )

as a function of n. Values of y and 4 are those which opti-
mized g for the N= 10 expansion. Note the change in
optimum ct as N increases for k=0. 2 {a.u. ).

0.1
I

0.2 0.3
I

0.4
I

0.5

FIG. 4. Same as Fig. 2 for k= 0. 7 (a u )

0.6
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TABLE III. Phase shifts vs number of linear parameters.
Check %=35

k tN 10 20 35 56 84

Left-hand Right-hand
side of side of
{3.6) (3.6)

0.124 16
0.163 92
0.14203
0.090 67

0.1 —0.057 97
0.2 —0.11447
0.3 —0.168 17
0.4 —0.21809
0.5 —0.263 53
0.6 —0.304 20 —0.026 23
0.7 —0.340 02 —0.079 64

0.141 58
0.18194
0.16163
0.11379

—0.00245
—0.058 63

0.145 53
0.184 81
0.165 41
0.11771
0.059 67

—0.000 12
—0.056 30

0. 147 56
0.186 83
0.166 45
0.11895
0.060 99
0.002 26

—0.053 37

0.147 77
0.187 35
0.166 94
0.11946
0.061 81
0.002 81

—0.052 59

0.147 88
0.187 45
0.167 15
0.11961
0.061 92
0.003 01

—0.052 35

0.20409
0.296 59
0.328 29
0.330 35
0.31842
0.30101
0.281 91

0.204 10
0.296 60
0.328 29
0.330 36
0.318 42
0.301 31
0.282 11

~The nonlinear parameters are approximately optimized for each N and k.

We found it necessary to go to N= 84, in order
that we might make extrapolations reliably to the
fourth figure after the decimal point in g. Such
reliability could be established by using two al-
ternate assumptions about the differences

~ co ~co-1 C

I
co-1 C 0

(3.7a}

(3.7b)

Here (d is the Pekeris index; it is the integer such
that N of Eq. (2. 7) includes all triples I, m, n of
C' [Eq. (2. 7)j, such that f+m+n c&d. The differ-
ence formulas lead to extrapolation formulas

Yfqxttto = 7j~+ c(p —1) K —a c~

+ 12 Cp(tt '+ O(tt1 }, (3.8a)

dextro@ q&u-1+ c a (l —a) (3.8b)

The coefficients c(c ), P, and a were determined
from the 35-, 56-, and 84-term results. The
g,„„~are listed in Table IV and they are seen to
agree with each other to four significant figures.

At this point, it is appropriate to compare these
extrapolated values to those of Schwartz given in
the first column of Table IV. The first observa-
tion to be made is that by and large his values do
stand up even after nine years. In somewhat finer

detail there are some discrepancies which should
be mentioned. Since his estimated accuracy is
one in the last figure, ' there are seen to be dis-
crepancies at k = 0. 1, 0. 6, and 0. 7. At the lower
k, since our values are below his, the bound the-
orem cannot be used to disprove his results; but,
since our correlation function includes his (when
o. = 0, y= 8), we can confidently rely on our value.
Secondly, the results of the following paper"
strongly suggest that Kohn-Hulthen-type methods
do not necessarily yield a lower bound at nonzero
energies. This, we believe, is basically the case
here too. At k=0. 6 the discrepancy is a factor of
2; but the absolute value of the difference from our
value is only slightly greater than at k = 0. 1, so
that this may also reflect the lack-of-a-bound
principle. At k= 0.7 our value exceeds Schwartz's,
so that his value is ruled out by the lower-bound
principle. Dynamically this probably comes from
the explicit inclusion of a positronium factor in
our calculation which was discussed in connection
with the QHQ calculation in Sec. II.

One can gain some confidence in the superiority
of these phase shifts by comparing them and
Schwartz's to those calculated by Drachman' using
a quite different (and less accurate) lower-bound
technique. Originally introduced to measure the
quality of the latter results as compared with
Schwartz's, a quality factor is defined as

TABLE IV. Final values of S-wave e+-H phase shifts.

Schwartz
(Ref. 3)

This calculation
Eq. (3. 8a) EQ. (3. 8b)

0. 1
0. 2

0. 3
0. 4
0. 5
0. 6
0. 7

0. 151
0, 188
0. 168
0. 120
0. 062
0. 007

—0. 054

0. 148 085
0. 187496
0. 167 407
0. 119724
0. 061934
0. 003 191

—0. 052 183

0. 147 999
0. 187 490
0. 167310
0. 119685
0. 061 934
0. 003 126

—0. 052 160

0. 000223
0. 000200
0. 000306
0. 000420
0. 000429
0. 000 689
0. 000 980

0. 1483
0. 1877
0. 1677
0. 1201
0. 0624
0. 0039

—0. 0512

A definitive value of the scattering length is calculated in the following paper (Ref. 15).
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where gn are the phase shifts of Ref 16. .Q(k) var-
ies with energy, but one does not expect anything
but smooth variations since Drachman's method
does not distinguish strongly between different en-
ergies. In Fig. 5 we display Q(k) for two values of
the "exact" phase shift g; the smoother curve cor-
responds to the present results. Including the scat-
tering-length values" at k = 0, we see that at exactly
those three points where a disagreement was found,
Schwartz's results produce abrupt deviations.

In order to evaluate phase shifts correct to four
significant figures, it is necessary to include a
correction for the long-range polarization potential
even at nonzero k. '7 The correction formula used
is

sin(aq)

4. 5 sin[k+ g(r) j sin[kr+ g(r) + sq(r) jj
k 4

"0

(3.9)

In (3. 9), nq(r) is the value of 4q with the upper
limit taken at the variable point r. Thus we have

n g = lim Sq (r) .

Fig. 5. Quality factor Q as a function of k for two

different sets of "exact" g. See text for further comments.

(3.9). Comparison showed that the point at which

the respective increments began to differ signifi-
cantly from each other depended inversely on k.
For k = 0. 1 the optical potential simulated the po-
larization potential out to r= 25, whereas for k
= 0. 7 differences were large beyond r= 10. This
inverse relationship accounts for the fact that net
increment coming from (3.9), listed as &g in
Table IV, actually increases as k increases.

The scattering-length calculation of the accom-
panying paper also included a dipole term varia-
tionally. Since a variationally included dipole term
carries with it an associated nonadiabatic term
which is effectively x~ in character, '~ it might be
thought that the nonadiabatic term, which is not
contained in (3.9), is also an important correction,
But the subsequent inclusion of the quadrupole term
in the accompanying calculation" had absolutely no

effect to this accuracy. Since the longest-range
part of this correction is an adiabatic quadruple
polarization potential'~ of order r~, and since our
correlation function makes no distinction between
any angular multipole factors, we can confidently
expect that all corrections of over r~ (and shorter
range) are in fact well contained in 4.

However, an examination shows that the r ~ effect
described by 4g would probably require hundreds
of terms in 4 of Eq. (2.7) to be adequately de-
scribed. This is the reason why that correction
cannot be expected to affect the convergence pattern
on g„„~and must be added on separately. This
circumstance is a nice reminder that convergence
arguments must always be subordinated to physical
arguments.

Our final error is based on the estimate that
residual effects could not alter hg by more than
25% and by an additional uncertainty of one unit in
the fourth place coming from the extrapolations.
We therefore believe gpss ) of Table IV is correct
within a 0.0002 rad.

Note added in manuscript. Dr. Schwartz has sent
us a more detailed statement of the error in his
e'-8 calculation; his assigned phase-shift error was
found to vary from + 0. 0005 to + 0. 0018 with the un-
certainties being largest at k=0. 1, 0.6, and 0.7.
He concludes that the discrepancy from our results
is minimal, but that our results are certainly more
accurate.
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Positron-Atom Scattering by the Kohn and Harris Methods
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The 8-wave scattering parameters have been calculated for the e'-H and e'-He systems
below the positronium-formation threshold. The phase shifts were computed using the Harris
variationa1 method, while at zero energy the scattering lengths were obtained by the Kohn

variational method. For hydrogen, a generalized Hylleraas wave function with three non-
linear parameters was used, giving an upper-bound scattering length a ~ —2.10278, agreeing
with Schwartz's result a~ —2.10. An extrapolation procedure gives an estimate of a=- 2.1036
+ 0. 0004. At nonzero energies, agreement with the lower-bound results of Bhatia, Temkin,
Drachman and Eiserike, to better than 0.004 rad is achieved. Since the exact atomic-helium
wave function is not known, the situation for helium is less clear; various model-target wave
functions are examined using a genera1ized Hylleraas function with two nonlinear parameters.
For the exponential model used by Drachman, the scattering is in close agreement with
previous results, but the annihilation-rate parameter Z&& is higher by 15% in poorer agree-
ment with experiment at zero energy.

I ~ INTRODUCTION

In the study of positron interaction with atoms at
low energies, the positron-hydrogen system is
most tractable theoretically, while the positron-
helium system is much more accessible to experi-
ment. Enough similarity between these two sys-
tems exists for the calculational techniques that
succeed in the former to be expected to succeed
also in the latter. It is thus useful. to test proposed
theoretical methods in the e'-H system, and then
to apply them to the e'-He system.

In recent years this has been done several times,
using different methods. ' None of these methods
was both simple enough to apply to helium and real-
ly accurate enough, as judged by comparison with
the most definitive work in hydrogen. In addition,
the serious yroblem of the inexactness of the atom-
ic-helium wave function remained unresolved.
Nevertheless, the best of these calculations' are
now roughly in agreement with the best recent mea-

surements, ' ' and there is considerable interest in
more extensive and exact calculations of cross sec-
tions and annihilation rates.

In this paper we report some new results for
positron-atom scattering systems, calculated vari-
ationally. In Sec. II, the generalized Hylleraas
type of scattering function is described and apylied
to Kohn variational calculations for zero energy
and Harris calculations for higher energies. In
Sec. III, S -wave scattering from atomic hydrogen
below the positronium threshold is considered, and
the results are compared with previous ones. In
Sec. IV, the corresponding problem for helium is
treated. Since the helium ground state is not known
exactly, ambiguities in the formulation of scatter-
ing approximations exist. A technique is described
which involves a model Hamiltonian corresyonding
to the approximate ground-state wave function as-
sumed. Using this technique, the S-wave scatter-
ing parameters are computed and compared with
previous results; at zero energy only, the annihila-


