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(16)

if 1" «I', . (17)

(18)

and since 1 = n&o+terms of order f, we can re-
place I', in the coefficient off in (18) by «u and
solve for I' to this order; we obtain

(19)

which is an approximate expression for the desired
value of I' in terms of the measured Hanle-effect
width and the, hopefully, known values of f and I'~ .

Finally, we shall consider the case which we

expect to be most nearly like (3) and (4) in which
the upper level has a small comparative population,
i. e. , f«1. Expanding (11) to first-order terms
in f, we find that

VI. DISCUSSION

The examples we have just discussed for this
special semiclassical case for collisional excitation
show quite clearly that when cascade or other pro-
cesses affecting the time dependence of the level
of interest are possible, then the relation between
the Hanle-effect width and the lifetime is no longer
as simple as (4), and that a use of (4) in such a
situation can lead to large errors in the lifetime
deduced from the measurement. In fact, we have
seen an extreme example in which the width gives
the lifetime of the cascading level and not that of
the one being studied.

In the quantum-mechanical treatments of this
problem there is generally a step analogous to
using (2) and (6), and one will have to look at all
of these cases with care. The most complete quan-
tum treatment of similar problems seems to have
been given by Macek' and possibly one can adapt
his very general results to specific situations of
interest.

I wish to thank Professor S. Bashkin for bring-
ing this problem to my attention.

*Work supported in part by NASA, ONR, and Aerospace
Research Laboratories, Office of Aerospace Research,
United States Air Force under Contract No. F33615-70-
C-1007. This manuscript is submitted for publication
with the understanding that no limitation shall exist on
the reproduction and distribution of its published or un-
published form in whole or in part for any purpose of the
U. S. Government.
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Accurate Numerical Hartree-Fock Self-Consistent-Field Wave
Functions for Rare-Earth lons*
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(Received 2 June 1970)

Accurate numerical Hartree-Fock (HF) self-consistent-field (SCF) wave functions have been

Tb, Gd, Dy, Tb, Ho, Dy, Er, Ho", Tm, and Er rare-earth ions having anf electron configuration in their ground-state manifolds. Calculations, in general, have an
accuracy of seven significant digits in the total energy. Values of several Hartree-Fock pa-
rameters have also been obtained from these wave functions.

INTRODUCTION

The rare-earth ions are of great importance from
the point of view of laser activity and the develop-

ment of the magneto-optical solid-state devices. '
In order to obtain the electronic energy levels of a
rare-earth ion accurately, one must include, apart
from the electrostatic interaction, the magnetic
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interactions such as spin-spin, orbit-orbit, spin-
orbit, and spin-other-orbit interactions. Recently
work has been in progress' on the evaluation of the
general expressions of the above-mentioned mag-
netic interactions in terms of certain interaction
parameters for f~ electron configurations. In order
to obtain theoretically accurate values of the inter-
action parameters for a particular atomic system
one needs accurate wave functions for the atomic
system. This need has led us to the project of
evaluating accurate numerical HF SCF wave func-
tions for atomic systems having f" electron con-
figurations.

In the present work, we have obtained accurate
numerical HF SCF wave functions for the triply
and doubly ionized rare-earth systems mentioned
in the abstract. Use has been made of the double-
precision numerical HF SCF wave-function program
written by Fischer. 4 The computations were per-
formed on IBM 360/50K computer. All the config-
urations are established normal f" configurations
except for Gd" (4f8), for which the normal config-
uration is actually 4f'5d( D). Also, all the calcu-
lations correspond to the ground-state manifold of
the systems. Using the present wave functions,
we have also obtained the values of the additional
Hartree- Fock parameters:

ao(nl) = Iim[P(nl, r)/r" ]j as r 0;

the screening numbers; &I/y )„,; &I/~)„, ; &y)„, ;
&r )„&,' E (4f, 4f), the Slater integrals; g,z, the
spin-orbit parameters'; and Mr(4f, 4f), the spin-
spin parameters.

Work on the evaluation of accurate numerical
HF SCF wave functions and the corresponding Har-
tree-Foek parameters for actinide ions having a
normal f" electron configuration is in progress and
will be published subsequently.

RESULTS AND DISCUSSION

The tables of all the numerical HF SCF wave
functions and the various Hartree-Fock parameters
are much too long to be presented here. There-
fore, they are given in a supplementary technical
report. It contains two tables, the first of which
lists the radial wave functions given to six digits
after the decimal point. We also give there the
maximum error for each wave function, and this
effectively tells us the number of significant fig-
ures to which a particular wave function is self-
consistent. The orbital wave functions are assumed
to be self-consistent to at least four significant
digits. However, the inner wave functions are
much more self-consistent than the outer ones;
for example, all the 1s wave functions are self-
consistent to at least six significant figures. Oc-

casionally, there are nodes in the tail of the inner
wave functions beyond those required by the orthog-
onality conditions. However, within the accuracy
of the present calculations, such oseillations were
confined to 1s, 2s, 2p, 3s, 3p, and 3d functions
only. The magnitudes of such oscillations of

P(nl, r) in the tail region (called "wobblings") were
always less than 0. 000146. Thus, the orbital wave

functions are without tail oscillations to three dec-
imal places.

The second table of the above-mentioned technical
report gives the total energy (E), the one-electron
energy parameters (e„, „,), and the additional Har-
tree-Fock parameters mentioned earlier for all the
systems.

In the present paper, Table I gives the values of
the Hartree-Fock parameters for Pr '(4f~), 'H

and Nd"'(4f 3), 4I, and Table II presents the total
energy (E in a. u. ) and the virial-theorema ratio
for all the systems.

The convergence tolerance in e„, „, iterations
were specified to be 2(Z —v„,}'X10', where v„,
is the screening number of the shell and Z is the
atomic number. Since a„, increases as we go to
the outer shells, the convergence tolerance in the
corresponding ~„, „, iterations decreases. However,
it is to be noted that l~„, „,l also decreases as we

go to the outer shells, I~„„)being the largest.
The ~„„values are self-consistent to almost seven
significant digits. Furthermore, the accuracy of
the total energy E largely depends on the accuracy
to which e„„can be determined. As can be seen
from the Table II, the virial theorem is satisfied
to at least six significant digits, and in most cases
to seven significant digits. Convergence tolerance
in the normalization iterations was specified to be
4& 10'" ' where n is the principal quantum number.

As has been pointed out earlier, the computer
program used is a double-precision (sixteen sig-
nificant digits} program. Thus the accumulative
round-off errors, affecting the last significant fig-
ure in the results of the present calculations, which
would have occurred in a single-precision (eight
significant digits) computer representation, have
been avoided.

The program used puts special emphasis on the
accuracy of the inner-electron distribution. There-
fore, the Hartree- Fock parameters which depend
more on the outer-electron distribution are expected
to have lesser numerical accuracy, especially for
complex atomic systems.

Since the self-consistent-field procedure is an
iterative procedure, one requires initial estimates
of the wave functions. In the program used, as
the calculation proceeds, the convergence criterion
is relaxed. Thus, with poor estimates the pro-
gram may stop with results less self-consistent
than those obtained with good estimates. The pro-
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0. 025 731
0. 109963
0.093 574
0.286 055
0.276 295
0, 247 558
0.650 578
0.670 253
0.721 786
1,557 03
1.718 27
0.924 501

58.463
13.539
13.M7
5.0599
4.982 8
4. 8559
2. 1267
2. 0309
1.8187
0. 831 89
0.748 58
1.367 4

—2951.401
—470. 504 5
—444. 706 3
—106.378 3
—95. 042 21
—74. 187 48
—24. 230 53
—19.780 75
—ll. 846 82
—5, 252 789
—3.835 885
—3.290 174

ls
2s
2p
3s
3P
34
4s
4p
4d
5s
5p
4f

1368.72
228. 040

40. 5803
5.527 06

TABLE I. Hartree-I'ock parameters for Pr (4f ), H and Nd' (4f ), I tone-electron energy parameters &„& „& in
rydbergs; ao(nl), a„&, (1/2)„&, (1/r)„&, (r)», (r )„&, total energy E, and Slater integrals E (4f, 4f} in atomic units;
and spin-orbit parameter f4& and spin-spin parameters I (4f, 4f) in cm ].
SheH ~nr &1/~'). g

P (4f'), 'a, Z=59
898. 064 6 0.705 0. 000 885
293. 772 8 0.014 195

4743. 134 5. 57 6883.65 0.010 632
133.666 4 11.8 0. 093 306

2263. 074 13.8 0.088 302
7414. 512 16.6 0. 071 994

63.325 01 22. 1 0.476 315
1050.583 24. 7 287. 295 0.509 328
3405. 426 29. 9 39.5681 0.602 084

25. 500 12 34. 9 2. 708 80
395.620 5 37.8 3.31555

1806.551 39.5 1.063 24

E = —8919.8340
F'(4f, 4f) =D. 9953251
g~= 923. 445

F~(4f, 4f ) = 0.478 944 6
M(4f, 4f) =2.261

F4(4f, 4f) =0.3016848
~2{4f, 4f) =1.267

F6(4f, 4f) =0.2174157
M(4f, 4P =0.8601

Nd (4f }, I, Z =60

ls
2s
2P
3s
3P
3d
4s
4p
4d
5s
5p
4f

—3056.725
—489. 128 0
—462. 800 5
—110.959 1
—99.338 40
—77.960 73
—25. 148 96
—20. 560 30
—12.367 96
—5.361445
—3.904 695
—3.481 826

921.121 1
301. 6617

4S57. 528
137.667 0

2374. 264
7957. 056

65. 393 07
1105.765
3676.566

26. 182 52
413.093 9

2058. 581

0.707
4. 45
5. 58

11.8
13.8
16.6
22. 3
24. 9
30. 1
35.5
38.4
39.7

7264. 30

1454. 53
243. 423

307.198
42. 660 4

42. 705 8
6. 185 49

59.463
13.786
13.775
5. 1665
5.0904
4. 966 1
2. 1760
2. 0800
1.8679
0. 847 00
0.761 68
1.423 4

0.025 2S8
0. 108 006
0. 091 872
0.280 314
0.270 509
0.241 S30
0.636 408
0.654 910
0.703 067
1,529 01
1.688 19
D. 886 259

0. 000 856
0. 013 692
0.010247
0.089 594
0.084 638
0.068 726
0.455 857
0.486 368
0.571 421
2.613 04
3.202 02
0.975 660

F = —9282. 5251
F (4f, 4f) =1.037941
f~ ——1070.85

F (4f, 4f) =0.5006535
M (4f, 4f) =2. 553

F4(4f', 4f) =0.3156171
M2(4f, 4f) =1.433

F'(4f, 4f) =0.2275324
~(4f, 4f) =0.9731

gram accepts the initial estimates of the wave func-
tions either as input data or as screened hydrogen-
like functions. In the latter case, estimates of the
screening numbers are required as input data. In
the present calculations, we first used the screened
hydrogenlike wave functions as the initial estimates.
Values for the screening numbers were obtained us-
ing the Hartree-Fock-Slater (HFS) wave functions of
Herman and Skillman. ' In order to further improve
the results, the wave functions thus obtained were
used as initial estimates and the calculations were
repeated. However, it was found that the improve-
ment gras not significant enough so as to encourage
one to recycle again. This indicates that HFS val-
ues of the screening numbers are fairly reliable.

The first SCF calculations on rare-earth ions
were done by Ridley" for Pr"' and Tm' . How-
ever, these calculations did not include the "ex-
change*' which is known to produce significant
changes in the wave functions. Later, Freeman

and atson' obtained approximate a,nalytic HF SCF
wave functions for Ce ' (4f), 'F; Pr"' (4f'), 'H;
Nd'" (4f'), 'I; Sm'" (4f '), 'H; Eu" (4f'), 'S;
Gd"' (4f ), 'S; D '" (4f ), H; Er"' (4f"), 'I; and
Yb"' (4f '), 2F. Accuracy of their wave functions
was quite limited in the inner regions owing to the
small size of the s and P basis sets used. They
only reported the 4f orbitals which are in terms
of four basis functions, Sovers' obtained numerical
tabulations of the 4f wave functions from the cor-
responding analytic expansions of Freeman and
watson. " Synek and Corsiglia" performed analytic
calculations for Pr"'(4f~), 'H, and Nd"'(4f'), 'S,
'D, 'F, 4G, and 4I with minimum basis sets for s
and p wave functions, with five basis functions for
d wave functions, and with six basis functions for
f wave functions. Recently, Synek and co-workers"
have carried out more accurate analytic HF SCF
wave function calculations for Pr"'(4f ~), 'H, and
Nd"'(4f'), 'I, describing the s, P, d, and f sym-



ACCURATE NUMERICAL HARTREE- FOCK SELF. . . 1281

TABLE II. Total energy 8 (a.u. ) and virial theorem
for various rare-earth systems.

S System Term E Virial Theorem

58 Ce (4f2) 3H —8 566.4243 —2. 000 0002
59 Pr (4f 2) H —8 919,8340 —2, 000 000 9

59 Pr (4f ) I —8920. 6931 —2. 0000006
60 Nd (4f3) 4I —9 282. 5251~ —1.999 999 9~

60 Nd (4f ) 5I —9283.3752 —2. 000 0003
61 Pm (4f ) ~I —9653.7230 —1.999 999 17
61 Pm (4f ) H —9654.5840 —1.999 9991
62 Sm (4f ) 6H —10033.518 —1.999 9996
62 Sm {4f~) ~y' —10034.440 —2. 000 000 2

63 Eu (4f~) 7y' —10422. 032 —2. 000 000 8
63 Eu (4f7) 8$ —10423. 022 —1.999 999 5
64 Gd' (4f ) $ —10819.364 —1.999 9995
64 Gd (4f ) ~y' —10820. 092 —1.999 999 9
65 Tb (4f 8) 7+ —11225. 235 —2. 000 000 8
65 Tb (4f i 6~ —11226.035 —1.9999995
66 Dy (4p ~If —11640. 063 —2.000 000 1
66 Dy (4f ) I —11640. 914 —2.000 000 0
67 Ho {4f ) I —12 063.899 —1.999999 5
67 Ho (4f ) 4I —12 064. 757 —1.999 998 7
68 Er (4f ) I —12 496. 782 —2. 000 000 4
68 Er (4f ) 3H —12 497. 614 —2. 000 002 1
69 Tm (4f ) H —12 938.732 —1.999 999 6

'Synek and Timmons (Ref. 15) in their analytic HF SCF
wave functions obtained E=- 8919.8142 and virial theorem
ratio =-2.000 003 7.

"Synek and Grossgut (Ref. 15) in their analytic HF SCF
wave functions obtained E=- 9282. 5000 and virial theorem
ratio = —1.999 9999.

metrics with ten, eight, five, and six basis func-
tions, respectively. For the states considered,
this work provided significant improvement over
the previous work of Synek and Corsiglia, "espe-
cially for the s and p wave functions.

In the present work we have presented accurate
numerical HF SCF wave functions for the triply
and doubly ionized rare earths listed in the abstract
in their ground states. The important results,
which have been presented in Tables I and II, can
be used for comparison with the calculations of
Synek and co-workers" for Pr"' and Nd"'. It can
be seen that we have lower energy values and a
better virial-theorem ratio for Pr'". It may be

pointed out that a lower total energy only does not

imply greater variational accuracy since system-
atic errors can be introduced in a numerical com-
putation. Regarding the tail wobbling of the P(nl, r)
functions for Pr"' and Nd'", it may be noted here
that as compared to the wave functions of Synek
and co-workers, "the presently obtained functions
have smoother tails.

The "tail procedure" used by Fischer has been
described by her in an earlier paper. ' However,
in connection with the wobbling, it is important to
mention here that Handy, Marron, and Silverstone"
have recently claimed that the choice of the slope
of the wave function at the outermost point in Fi-
scher's tail procedure' neglects exchange. This
does not seem to be correct. In the notation of

Fischer, ' when a boundary condition is applied at
r„„, a value of y„,&

is guessed by assuming y„„
= cy„. One could sety„., = 0 (which is actually done
later by Fischer' } and then back substitute for y„,
p N f . , etc. The wrong value of y „+, introduces an

error in the boundary condition, but as shown by
Fischer and Usmani, ' the effect of this error de-
creases as one moves away from the boundary. It
may also be remarked here that Synek and co-
workers" did not impose the cusp-condition re-
striction" on the choice of their basis functions.
This implies that the wave functions obtained by
these workers cannot be regarded to be quite ac-
curate near the nucleus. On the contrary, in the
numerical Hartree-Fock calculation, a series ex-
pansion is assumed near the origin which automat-
ically satisfies the cusp condition. As a result,
more emphasis has been placed on the inner-elec-
tron distribution in the present calculations.

In conclusion, we hope that the present results
of the Hartree-Fock calculations on the rare-earth
ions will further facilitate the research in the ap-
plied solid-state physics concerning these ions.
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The effect of the electromagnetic polarization of the nucleus is considered on the energylevels
of the high orbital states in a muonic atom. A simplified calculation is carried out to estimate
the approximate dependence of the shifts of the energy levels on the atomic number Z for the
orbital states 3s, 3p, and 3d. To do this, a formulation is proposed in which the energy shift
is regarded as the amount of energy which flows into the system when the approximatedsecond-
order electromagnetic interaction between muon and nucleus is adiabatically switched on. The
many-body property of the nucleus is formally expressed as the correction term to the photon
self-energy part which represents the dielectricity of nuclear matter. Then the formal paral-
lel holds between the present treatment of nuclear polarization and that of vacuum polarization
in field theory. The applicability of the theory is restricted to the high orbital state, in which
the bound-state wave function is less sensitive to the nuclear polarization effect, and its energy
fluctuation is much less than the energy attributed to the muonic state.

I. INTRODUCTION

Because in some respects the muon can be con-
sidered as a heavy electron, the measurements of
x rays from muonic atoms have provided much
useful information in the study of nuclear struc-
ture. However, among several corrections nec-
essary to make the information precise, the largest
uncertainty has been in the theoretical estimates
of the nuclear polarization effect, as pointed out
by Ravenhall. Nuclear polarization by electrons
was first considered by Breit et al. as a possible
cause of even-odd straggling, and also by Reiner
and Wilets, ~ who found that the effect was too
small as far as the monopole, dipole, and quadru-
pole interactions were concerned. In a muonic
atom, Fitch and Rainwater pointed out this effect
as a possible correction to muonic energy levels.
For shifts of the 1s level, some theoretical esti-
mates had been made by Cooper and Henley,
Lakin and Kohn, and Nuding. The predicted
values were considerably high, while later calcula-

tions based on the collective excitations of the
nucleus gave smaller values. The giant resonance

10was taken into account by Pieper and Greiner,
and the effect of a valence proton was considered
by Scheck. '

By much effort and improvement of experimental
technique, accurate measurements have been
achieved with better statistics and higher precision.
In particular, the Chicago group has been able to
assess the discrepancy between their experimental
energy value and the calculated one, which is tenta-
tively interpreted as the shift due to nuclear polar-
ization effects in-Pb . The shift for the 1g level
extrapolated from Cole's result' is compatible with
the measured value. In his calculations, the giant
dipole resonance and the quasielastic peaks in
electron inelastic scattering are considered as in
nuclear excitation spectra. The result is consistent
with Chen's recent calculations' which refer
specifically to Pb

The purpose of the present paper is to estimate
the energy shift in higher orbital states. It is


