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The self-energy of K electrons in atoms with atomic numbers in the range 70 CZ( 90 is
determined numerically. Detailed theoretical evaluations of K-electron binding energies in-
cluding all effects of O(0.'mc ) are given for the four heavy closed-subshell atoms —W, Hg,
Pb, and Rn —in the range considered. With the present values of the electron self-energy,
the theoretical K-shell binding energies for these elements are found to agree with experi-
mental determinations to better than 1 part in 10 .

I. INTRODUCTION

Since the appearance of the first Dirac-Hartree-
Fock (DHF) calculations of atomic energy levels for
heavy atoms, ' various attempts have been made to
understand quantitatively the discrepancies between
theoretically determined eigenvalues2 ' for inner
electrons and experimentally determined inner-
electron binding energies. A great impetus has been
added to this work over the last few years because
of the highly accurate analysis of electron binding
energies by Bearden and Burr based on precise
electron spectroscopy~ (ESCA) measurements

It is the purpose of the present paper to analyze
the electromagnetic effects of lowest order in the
fine-structure constant a, in an attempt to bring
the theoretical and experimental understandings of
these inner-electron binding energies into closer

agreement. The (somewhat surprising) result of
our study is that, considering only lowest-order
electromagnetic corrections to the K-shell binding
energies, we are able to reduce the discrepancy
between theoretical and experimental values to less
than 0.4 Ry (1 part in 10~) for each of four closed-
subshell atoms —W, Hg, Pb, and Rn —in the range
of atomic numbers considered (2= V0-90).

For these heavy atoms the principal electromag-
netic effect on inner-electron binding is certainly
the nuclear Coulomb field. The Coulomb binding
energies are appreciably modified by electrostatic
screening; these screening effects are accurately
described for heavy closed-shell atoms by DHF cal-
culations. We take as a basis for the discussion of
electromagnetic effects the bound-interaction rep-
resentation of quantum electrodynamics, in which
it is assumed that the electron-positron field satis-
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FIG. 1. Lowest-order corrections to electron binding

energies. (a) and (b) represent the retarded Breit inter-
action; (c) and {d) represent the electron self-energy and

vacuum-polarization parts of the Lamb shift for electron
A. The electrostatic contributions to (a) and (b) are to
be omitted from the perturbation, and the interactions are
to be summed over occupied orbitals nto give the energy
shift of electron A.

fies the Dirac equation in a predetermined DHF
potential. That is, we apply the usual Feynman
rules to compute the energy shifts, but consider
the el ectrostatic el ectron-electron interaction
together with the nuclear Coulomb field to be in-
cluded in a self-consistent potential V(r), which

governs the noninteracting fields. To lowest order
in the fine-structure constant, the corrections to
the orbital energy of an electron A (i.e. , to the
DHF eigenvalue of A) are represented by the dia-
grams of Fig. 1.

Figures 1(a) and 1(b) represent direct and ex-
change interactions between the electron under con-
sideration (A) and another electron in an occupied
orbital (n). It is, of course, understood that the
unretarded charge-char ge interactions represented
in Figs. 1(a) and 1(b) are to be excluded from the
perturbation [since they are already included in
the self-consistent potential V(r)] and that the per-
turbation is to be summed over all occupied orbit-
als n. An elegant derivation of the interaction re-
sulting from Figs. 1(a) and l(b) is given by Bethe
and Salpeter. The energy shift represented by

Figs. 1(a) and 1(b) is composed of two distinctparts:
The larger effect is the magnetic energy shift which

results from the current-current interaction and the

remaining part is the retardation correction to the
charge-charge interaction. We expand the magnetic
and retardation corrections in powers of oZ and

retain only the lowest-order contributions (a pro-
cedure which is justified to within several percent
for elements in the range Z = 70-SO). The re-
sulting interaction is then identical to the Breit
interaction. ' To compute the magnetic and re-
tardation energies we reduce the Breit interaction
to Slater radial integrals using techniques which

are equivalent to, but somewhat simpler than, the
methods discussed previously in the literature by
Grant~ and by Kim. "

Figure 1(c) represents the electron self-energy.
For a 1s&qa state in hydrogen this represents a
small fraction (3&&10 ) of the electron binding.
Since the electrostatic energy grows as Z~ while

the self-energy grows as Z', the self-energy rep-
resents a sizable fraction (- 2&& 10~) of the binding

in heavy atoms. For light atoms, the Bethe for-
mula'3 allows an accurate determination of the elec-
tron self-energy. For heavier one-electron atoms,
the generalization of the Bethe formula developed by

Erickson and Yennie, ' giving corrections up to
order a(aZ) mc2, would appear to provide a useful

representation of the self-energy. One finds, how-

ever, that the various terms in the oZ expansion
in the Z = 70-90 range are all of the same order of

magnitude and that the corresponding determination
of the self-energy is inaccurate due to the poor con-
vergence of the perturbation series.

As an alternative to the series expansion we

adopt the method developed by Brown, Langer, and

Schaefer' to study the self-energy in heavy atoms.
These authors use an angular momentum decom-
position of the electron propagator to reduce the

self-energy to a form amenable to numerical
evaluation. Application of the technique to E elec-
trons in Hg (Z = 80) has been given by Brown and

Mayers, "who obtain an energy shift ~E=41 Ry
with an estimated error of 2 to 3 Ry. We have re-
examined the Brown-Mayers calculation for an

electron in the Coulomb field of a Hg nucleus and

find a value 4E=15.0 Ry or about one-third of
the previous result. In Sec. II we outline the self-
energy calculation and make detailed comparisons
between our values and the corresponding values of
Brown and Mayers. For our later applications to
one-electron binding energies in heavy atoms, we

generalize the previous technique slightly to include
electrostatic screening effects in the unperturbed
states.

Figure 1(d) represents the energy shift due to
vacuum polarization. For the case of an electron
in a nuclear Coulomb field, the vacuum polarization
has been studied to all orders in aZ by Wichmann
and Kroll, who establish that to within several
percent the vacuum-polarization shift can be rep-
resented as the expectation of the Uehling potential.
In Sec. III we present numerical results determined
from the Coulomb field Uehling potential' and dis-
cuss the question of electron screening corrections
to the corresponding energy shifts.

In addition to the effects considered above, there
are two other important corrections of order e to
be considered. The first of these corrections is
rearrangement. In comparing the binding energy
with experiment, it is necessary to compute the
total energy difference between the atom and the
inner-electron ion after rearrangement. If there
were no effects of charge redistribution on the one-
electron orbitals after ionization, then, according
to Koopmans's theorem, ' the atom-ion energy dif-
ference would equal the DHF eigenvalue of the
ionized electron. The small difference between the
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atom-ion energy and the DHF eigenvalue due to
charge redistribution is called the rearrangement
energy.

The second effect of order o not included in Fig.
1 is the departure of the nuclear potential from a
Coulomb potential at small distances. We treat
this nuclear finite-size effect by replacing the
nuclear Coulomb field by the field of a spherically
symmetric charge distribution with a Fermi shape

( )"I/f" "'+11
where c is the half-density radius determined from
electron scattering experiments, ' and t = 2 in9a is
the 90-10% fallout distance. The values of
e=1.07A ~10 cm and t=2. 4~10 ' cm were
used, where A is the atomic weight of the nucleus.

Second- and higher-order corrections to the
electrostatic DHF energy of the atom are termed
correlation effects. There are several methods of
estimating correlation effects in atoms, all leading
to energy shifts in the K-electron binding of about
-0.1 Ry. A summary of various studies of cor-
relation effects in atoms is given by Cowan. a

%'hile we recognize the speculative nature of the
precise value of the correlation energy deduced
from the empirical analysis of Ref. 20, we never-
theless include this particular higher-order effect
with our first-order calculations to illustrate its
sign and order of magnitude. Omitting correlation
entirely from the theoretical effects considered
worsens the agreement with experiment from
0.4 Ry to 0. 5 Ry for the examples considered. It
must be emphasized that there are other effects of
order a which we have not included, such as the
higher-order corrections to the self-energy and
vacuum polarization, as well as polarizationeffects
resulting from symmetry breaking in the ion which
would give direct contributions to the magnetic
energy in the ion. "

As an indication of the relative sizes of the effects
discussed above, we list, in order of decreasing
importance with respect to a K electron in Hg, ap-
proximate values of the various contributions:
(a) electrostatic energy - -6000 Ry, (b) magnetic
energy- + 25 Ry, (c) electromagnetic self-energy
-+15 Ry, (d) rearrangement energy- —7 Ry,
(e) nuclear finite-size effect -+4 Ry, (f) vacuum-
polarization energy- —3 Ry, (g) electric retardation
energy- —2 Ry, and (h) correlation effects- -0.1Ry.

Detailed values of the above effects are given for
K electrons in the closed-subshell atoms %, Hg,
Pb, and Rn, together with a comparison with ex-
perimental energy levels in Sec. III.

II. SELF-ENERGY

In this section we generalize the work of Brown,
Langer, and Schaefer' to include electrons in ex-
cited states in a non-Coulomb, but spherically

symmetric, potential. Below we compare the various
terms of the self-energy calculated by Brown and
Mayers" for the case of a K electron in the Coulomb
field of Hg nucleuswithour results, andgivenumeri-
cal values for the self-energy of K electrons in a
pure Coulomb field as well as a screened Coulomb
field for atoms with atomic numbers in the range
Z = 70-90.

A. Formulation

iG„x,E„A„x
x i F„(x,E„)0 „(x)j (2)

The radial functions G„and E„are the large and

small components, respectively, of the Dirac wave
function. The quantities Q„(x) are spherical
spinors which are eigenfunetions of J, J„ the
orbital angular momentum L, and the electron
spin S~. They can be expressed as

(3)fl„(x)=+C(f,a, j;m-~, &)y'P '(x)Xi

where C(l, &,j;m —&, &) is a Clebsch-Gordan coef-
ficient, I'P(x) is a spherical harmonic, and y„ is a
two-component Pauli spinor. The quantity K is
given by

z = a (j +-', ) as l =j+ —,
' .

If we express Ho in a spherical basis, Eq. (1)
takes the form

K

„—+- G„(x, E)+[m+E- V(x)]F„(x,Z)=0,
(4)

——— F„(x,Z) + [m -Z+ V(x)]G„(x,Z) = 0.d K

In the numerical calculations presented later,
V(x) is chosen as a nuclear Coulomb potential for
comparison with the previous calculations of Refs.
14 and 15, and replaced by a Dirac-Hartree-Foek-
Slater (DHFS)' potential to determine the influence

To clarify our notation and conventions we write
down the Dirac equation for an electron in a time-
independent external field,

H,u„(x) = Eu„(x),

where

Ho = —i a ~ V + Pm + V(x),

a and P are the convential Dirac matrices, and
V(x) is the potential energy. Natural units
(5 =c= 1, unit of length = I cm) are used throughout.
For an electron in a pure Coulomb field, V(x)
= —n&/ I x I, where a=e /4v= ~ (thefine-structure
constant). Since H, commutes with J, the total
angular momentum, and with J, its projection, we
are able to classify solutions of Eq. (1) according
to angular momentum, and can write u(x) in the form
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of screening and nuclear size on the self-energy.
The terms contributing to the renormalized self-

energy of an electron in an external field as given

by Brown et al. [see Eq. (28) of Ref. 14] are

= t).EO —EE, —(1/2vi) (Xs+Xc —Y~),
(5)

where ~0 —~„is the difference between the self-
energy graph of Fig. 1(c) and the same graph with
a free-electron propagator in the intermediate
state; X~ and X& are the charge renormalization
and finite parts, respectively, of AE„; and Y~ is
a spurious term which results from performing
the evaluation of AE0 —b E„noncovariantly. In our
notation the last part of Eq. (5) is given by

-(1/2vi)(Xs+Xc —Yr, ) = dE '+n.E, ,

where

~'"=-—«(*)) -&+~f&'u *(i)
4m

m 1 — in)

-(m (y„g ((, ( &() ~ (u), (&)
2 —$

CRnE, = ——
& V(x)) g a 3 )Ja ) (9)2r ((o +m )

]=(p E'„+m-')/m', P„=(p, iEz),
y„= (-ipo(, p), and ux=u~p.

The quantity ( Y(x))&is the expectation of the poten-
tial energy over the state of interest A, and u&(p)
is the Fourier transform of the wave function of
state A, given by

ug(p) =
3 d x8 ug (x)2v

Since we will be interested in using numerically
determined self-consistent field wave functions for
uz(x), it is necessary to reduce nE'~) to a form
convenient for numerical evaluation. Using Eqs.
(2) and (9), and expanding e "' *in terms of spher-

ical harmonics it can be shown that

~"'=-—«( )).-~ O (t) j'dj
4m

"
m $-1

+p
) ) fo ())+ ())+(()p

+ Q (p)Z($)j) dj)

where

o'(j) =G!„(t)+&)p),

G„(p) j G (x)j,„(t)x)xdx,

E„„(p)= f E.„( ).j;.(I.).d .

t(()= (( ln() .

The quantity /& is the orbital quantum number of
state A, and l&=2j &-l&, where j& is the total
angular momentum quantum number of A. The
spherical Bessel function is denoted by j,(px).

Evaluation of AEO was carried out using the same
general technique as Brown et al. ' Specifically,
the intermediate-state electron propagator was ex-
panded in terms of angular momentum solutions
of the Dirac equation; integration over angles as-
sociated with the photon momentum k was performed
followed by integration over d I k I, leaving an inte-
gral over the photon energy ~ to be carried out
numerically. Integration over angles was facili-
tated by expanding u„(x) aus(x) in terms of spheri-
cal vector harmonics which are discussed, for
example, by Akhiezer and Berestetskii. 3'

The co integration was reduced to a form con-
venient for numerical purposes by rotating the in-
tegration path from the real to the imaginary ~
axis. Generally, pole terms appear when the in-
tegration is transformed from the real co axis to
the imaginary axis in the complex co plane. These
pole terms arise from intermediate-state transi-
tions to states more tightly bound than the state of
interest. %e find that the general result for AE0
can be expressed as

a S„(x,r, i(u)
&ud&u ( dr dxRe g " ' ' . +ivEO+2viE2' )) ((

0 0

where

S„(x,r, &())=4v(2j+1)Z (2J+ 1)A „~„" Bzg '(r)go'(x)
gas0
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~ (2J ~ 1)A, „& B ~(q (r)+ " () '(r))(()' (x) ~
&

q''(x))

+ 8 ( Q" y+ Q"'y Q g+ Q'x —&~P rP x (12)

Q"' ~(x) = G„„(x,E„)F„s(x, E„—(o)

+F„„(x,R„)G„"'(»,E„-~),

I' '(x) =G„„(»,&~)G". '(», &~-o))

+ F„„(x,&„)F"„'(»,&a —(d),

R, = h ,("((dr)j,((o»),

[C(jn, ft,j„;—,', 0)]' „

l g+ k+ lg = even
Il

0, l&+ k+ l& = odd.

The quantities G„'s (x, E„—c)) and F„"s (x, E„—(o)

are solutions of Eq. (4) which are bounded at in-
finity (zero) but not at zero (infinity) for an energy
& = &a —&, and &„(E„—(d) is the Wronskian of these
solutions. The spherical Hankel function of the
first kind is represented by it~( '(a)r), and the quan-
tum numbers j, l, ~, and j„, l„, ~„refer to the
intermediate state and the state of interest, respec-
tively. It should be noted that S„(»,r; i(d) in Eq.
(11) is defined by Eq. (12) with the replacement
(d ~ i'd.

The term imRO is given by

Q
it(Rs = —— dr dx S„(»,r, 0),

where S„(x,r, 0) is defined by setting (d equal to zero
and making the replacement

h~ '((dr)j ((dx)- 2J+ 1

in S„(x,r, c)) and

2t(iR„= —Z (d„dr
~

d»ImS„(x, r, (u„),
n 0 ~0

where co„=K„—E„&0, and the sum over n is over
all those subshells more tightly bound than state A.

The term b, E, is obtained from ~ED —i~Ra —2miR„
with the potential energy set equal to zero for the
intermediate-state wave functions but not for the
bound-state wave functions describing state A.

For the special case of a 1s,&2 electron in a pure
Coulomb field, our general expression reduces to
that given by Brown et al. '4 except for a factor of
2 in the term AEO —imR~. The expression for
b, EO —imRo given in Ref. 14 is clearly in error as
one can see by following the calculation from Eqs.
(20)-(»).

B. Numerical Details

For the case of a 1s,&2 electron in the field of a
nucleus with Z= 80, we carried out the numerical
evaluation of the self-energy. In Table I we show

TABLE I. Integrand of —(nEO —nE„—i»RO) as a function of the angular momentum I and photon energy &u for a 1s&ft
electron in the pure Coulomb field of a Hg nucleus, Values are given in units of &mc and powers of ten.

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15
16

0. 07

0.2114 +0
0. 19S5 -1
0. 1445 -1
0. 9989 -2
0.7009 -2
0.5094 -2
0.3834 -2
0.2975 -2
0.2368 -2
0. 1926 -2
0. 1596 -2
0. 1342 -2
0. 1144 -2
0.9860 -3
0.8585 -3
0. 7541 -3
0.6677 -3

0.34

0.7265 -1
0.2164 -1
0. 1366 -1
0.9222 -2
0.6530 -2
0.4811 -2
0.3664 -2
0.2869 -2
0.2299 -2
0. 1881 -2
0. 1564 -2
0. 1319 -2
0. 1127 -2
0. 973g -3
0. 8493 -3
0.7470 -3
0.6621 -3

0.2162 -1
0. 1350 -1
0. g398 -1
0.6842 -1
0.5139 -2
0.3964 -2
0.3128 -2
0.2518 -2
0.2063 -2
0. 1716 -2
0. 1447 -2
0. 1234 -2
0. 1064 -2
0.9259 -3
0.8124 -3
0.7182 -3
0.6393 -3

1.30

0. 8597 -2
0.6616 -2
0.5498 -2
0.4461 -2
0.3615 -2
0.2953 -2
0.2437 -2
0.2035 -2
0. 1717 -2
0. 1463 -2
0. 1259 -2
0.1091 -2
0. 9548 -3
0. 8408 -3
0.7453 -3
0.6647 -3
0.5962 -3

1.83

0.4421 -2
0.3284 -2
0.3250 -2
0.2912 -2
0.2526 -2
0.2172 -2
0. 1867 -2
0. 1611 -2
0. 1397 -2
0. 1218 -2
0. 1069 -2
0.9433 -3
0. 8369 -3
0.7464 -3
0.6690 -3
0.6025 -3
0.5450 -3

2.26

0.2826 -2
0. 1S73 -2
0.2151 -2
0.207S -2
0. 1895 -2
0. 1692 -2
0. 1498 -2
0.1325 -2
0. 1172 -2
0. 1041 -2
0. 9271 -3
0. 8288 -3
0. 7438 -3
0.6702 -3
0.6060 -3
0.5502 -3
0.5012 -3

2. 53

0.2211 -2
0. 1331 -2
0. 1684 -2
0. 1701 -2
0.1597 -2
0. 1455 -2
0.1311 -2
0. 1175 -2
0. 1053 -2
0.9437 -3
0.8479 -3
0.763S -3
0.6902 -3
0.6255 -3
0.5687 -3
0.5188 -3
0.4746 -3



A. M. DESIDERIO AND W. R. JOHNSON

TABLE II. Final contributions as functions of &.

~0 —~„—rR() Extrapolated Total
integrand

Counter
term'

0. 07
0. 34
0. 77
1.30
1.83
2. 26
2. 53

—0. 2863 +0
—0. 1465 +0
-0.7673 -1
—0. 4555 -1
—0.3007 -1
—0.2238 -1
—0. 1895 -1

—0. 1092 -1
—0. 1089 -1
—0. 1078 -1
—0. 1061 -1
—0. 1037 -1
—0. 9997 -2
—0. 9794 -2

—0.2972 +0
—0. 1574 +0
—0. 8751 -1
—0.5615 -1
—0. 4044 -1
—0. 3238 -1
—0.2875 -1

0. 6666 -1
0.6333 -1
0. 5287 -1
0.4073 -1
0.3207 -1
0.2699 -1
0.2453 -1

Sum of angular momentum terms from Table I.
Extrapolated remainder of angular momentum series.

Counter term ~~ from Eq. (8).

the integrand of r/Eo —nE„—ivR0 (2viR„ is zero for
a 1s„2 electron) as a function of /d and f. For val-
ues of ~ greater than 16, an extrapolation procedure
was employed. Brown and Mayers' have shown
that the angular momentum terms in Eq. (11) be-
have as I/f~ in the asymptotic region. To avoid
numerical cancellation in the extrapolation and to
assure that the extrapolated values behaved as I/l
for large values of l, the last three evaluated terms
(l = 14, 15, 16) in the series were inverted and fitted
to a, parabola. The angular momentum terms in
the range l =17-100were then extrapolated. At
l =100 the series was assumed to have taken on a
pure I/l behavior and the remainder CP, ',0, 1/l
was added to the sum, where the constant C was
determined by C = (100) /A, oo with A, M being the
extrapolated value for l = 100. This procedure was
tested on the series

2P+ 3l+ 1
)4

and was found to give the exact answer to an ac-
curacy of better than 1 part in 10 . As can be seen
in Table I, the angular momentum terms diminish
as 1/l' for la, rge l and a given value of &o.

The integrand of aEO —hE„—imRO was evaluated
along with the counter term at seven values of ~,
and integrated from 0 to 2. 6 usingaGauss-Legen-
dre quadrature formula. This formula was
chosen because of its great accuracy for a com-
paratively small number of points. The remaining
part of the integral was extrapolated by fitting the
reciprocal of the last three values of the integrand
to form an expression of the form A&d +B~+C//d.
This form was chosen because the difference be-
tween the integrand and the counter term behaves
as I//d in the a.symptotic region and consists only
of odd powers in co. The values of the integrand
from 2. 6 to infinity were evaluated using the ex-
trapolated form, and then these values were inte-
grated. This technique was tested on the integral

j [(I + ~2)-1/8 (2 2)-1/2]d

TABLE III. Various contributions to the self-energy
of a X electron in the Coulomb field of a heavy nucleus
as a function of the nuclear charge Z. Values are in Ry.

Term Z =70 Z=75 Z =SO Z=85 Z=90 Z=SO~

i~RO
~(2)
Main
term

+43.8
—8. 0

+47. 1 +50.4
6. 6 — 4. 7

+53.8 +57.4 +50.4
2. 4 + 0.4 + 6.9

—26. 7 —28. 6 —30.7 —32.3 —34.3 —16.2

Total + 9. 1 +11.9 +15.0 +19.1 +23.5 +41.1

~Previous results of Brown and Mayers, Ref. 15.

and gave the correct answer to better than 2 parts
in 10.

In Table II we show the sum of the angular mo-
mentum terms given in Table I, the extrapolated
values of the remainder of the angular momentum
series, the resulting total value of AEO —hE„—imRO,

and the values of the counter term in Eq. (8), all
as functions of co. As can be seen, the integrand
behaves as I/u& in the asymptotic region and ap-
proa. ches the negative of the counter term. These
requirements had to be met in order for the nu-
merical calculations to be correct.

To check our computer progra, m we ran it for
a 1sg/2 electron in a pure Coulomb field for atoms
with atomic numbers in the range Z= 70-90. The
results obtained were found to behave dominantly
as Z and are given in Table III along with the re-
sults of Brown and Mayers for 7=80. As is evi-
dent, the present value of the self-energy for 7= 80
is smaller than the Brown-Mayers value by a factor
of a.pproximately 3. The two terms b,E' ' and
"main term" in Table III which disagree with Ref.
15 have been carefully checked for numerical ac-
curacy.

It is hard to judge the accuracy of our numerical
calculations, but changing the upper limit on the
~ integration from 2. 6 to 2. 5 reproduced the same
answer to 0. Ogp. This would then have to be a
lower bound on the error in our numerical work.

In Table IV we present values for the "screened"
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TABLE IV. Self-energy and vacuum-polarization en-
ergy of a K electron in a screened Coulomb field as a
function of the nuclear charge Z. Values are in Ry.

Self-Energy Vacuum Total Lamb
polarization shift ~

70
71
72
73

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

+ 8. 95
+ 9.43'
+ 9.92
+10.44
+10.96
+11.53
+ 12.10
+ 12.70
+13.33'
+13.98
+14.65
+15.35
+16.09
+16.85'
+17.64
+18.47
+19.33
+20.23
+21.16
+22 ~ 13
+23. 14

—1.70
—1.82
—1.89
—2. 08

2, 23
—2. 38
—2. 54

2 ~ 71
—2. 89
—3.08
—3.29
—3.50
—3.74
—3.98
—4. 24
—4. 52
—4. 82
—5. 14
—5.47
—5.83
—6.21

+ 7.25
+ 7. 61
+ 8. 03
+ 8. 36
+ 8. 73
+ 9. 15
+ 9.56
+ 9.99
+ 10.44
+10.90
+ 11.36
+11.85
+12.35
+12.87
+ 13.40
+13.95
+14.51
+15.09
+15.69
+16.30
+16.93

~Screening was accounted for in the vacuum polariza-
tion by reducing the Coulomb field value by 2/0 as ex-
plained in the text.

Sum of self-energy and vacuum-polarization energy.
'Value obtained by using a Lagrange four-point inter-

polation formula and the values at the points Z = 75, 80,
85, 90. Interpolated values were found to agree to
better than 0. 05/o with the calculated values.

III. COMPARISON OF THEORETICAL BINDING
ENERGIES PATH EXPERIMENT

In this section we make use of the values of the
K-electron self-energy just discussed, and numer-
ical values of the other electromagnetic effects
discussed in Sec. I to give theoretical values for
K-electron binding energies in four heavy closed-
shell atoms —W, Hg, Pb, and Rn. In Table V we
list numerical values of the various effects, and

self-energy in the range 70-90. Screening and
nuclear finite-size effects are included in the self-
energy calculation by replacing the Coulomb wave
functions and potentials by numerically determined
DHFS wave functions and potentials. One finds that
throughout the range considered, the effects of
screening and nuclear finite size on the electron
self-energy can be represented approximately by
reducing the Coulomb field value by 2%%up. Interpo-
lation was carried out for several values in the
table because of computer time limitations. In-
terpolated values mere found to agree mith several
calculated values to an accuracy of better than
0.0$fp.

compare the resulting theoretical binding energies
with experiment. We will now review how each
effect listed was determined.

A. Electric Energy

The electric energy was computed using a stan-
dard DHF technique in which magnetic and retarda-
tion effects were neglected. The electric energy
results from the electrostatic Coulomb interaction
of the electron with the nucleus and with all the
other electrons. The effects of rearrangement are
included in the electric energy by computing the
total atom-ion electrostatic-energy difference.
Since a nuclear model mith a Fermi shape was used
in the DHF program, the effect of finite nuclear
size was automatically included in the electric
energy. The DHF values for the electric, mag-
netic, and retardation energies were communicated
to us by Mann of Los Alamos. As a check on the
DHF energies, we computed DHFS values for the
electric, magnetic, and retardation energies and
our values differed very little from those given to
us by Mann. The largest difference was in the
electric energy of Pb and that amounted to approxi-
mately 0. 2 Ry. We give Mann's DHF values in
Table V because they are, in principle, more ac-
curate than our DHFS energies.

B. Magnetic and Retardation Energy

The Breit operator which contains both magnetic
and retardation terms wastreatedas a first-order
perturbation using the DHF wave functions as the
unperturbed mave functions of the system. In order
to take into account the effect of rearrangement,
total magnetic and retardation atom-ion energy
differences were computed. The Breit operator
is correct up to order (v/c) . In a forthcoming
paper, Mann and one of us (W. R. J. ) discuss the
technique used to evaluate the magnetic and re-
ta.rdation energy, and calculate higher-order (oZ)
corrections to the Breit interaction, which, for
heavy atoms considered in this paper, amounts to
a shift in the sum of the magnetic and retardation
energies of approximately 2%.

C. Self-Energy

The self-energy was evaluated using DHFS wave
functions and potentials. It is estimated that the
error made in using DHFS wave functions instead
of DHF wave functions is much less than the in-
herent error in the numerical procedures used to
evaluate the self-energy.

The effect of rearrangement on the self-energy
was neglected. This effect should be exceedingly
small because the self-energy is a one-body oper-
ator as contrasted with the tmo-body operator in-
volved in the magnetic and retardation energies
and, consequently, a slight change in the K-electron
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TABLE V. Comparison of theoretical and experimental binding energies for K electrons in heavy J= 0 atoms in Ry.

Effect considered

Electric energy ~

Magnetic energy
Self-energy
Vacuum polarization
Retardation energy
Correlation energy ~

W Z=74

—5135.99
+ 18.53
+ 10.96

2 ~ 23
1,39
0. 08

Hg Z=80
—6141.65
+ 24. 09
+ 14.65

3.29
l. 80
0. 08

Pb Z=82

—6504. 80
+ 26. 21
+ 16.09

3.74
1.96
0. 08

Rn Z=86
—7275. 37
+ 30.87
+ 19.33

4. 82
2. 30
0. 08

Theoretical K energy

Experimental K energy '
—5110.20 —6108.08

—5110.46+0. 02 —6108.39+0.06

—6468. 28

—6468. 67 + 0. 05

—7232. 47

—7232. 73 + 0, 89

J. B. Mann (private communication).
An order-of-magnitude estimate based on the empirical work of R. D. Cowan, Ref. 20.
J. A. Bearden and A. F. Burr, Ref. 6; corrected for photoelectric work function, Ref. 24.

wave function would induce an even smaller change
in the self-energy.

D. Vacuum Polarization

The vacuum-polarization energy was computed

by evaluating the Uehling' potential with Coulomb
field wave functions. The effect of screening and
finite nuclear size on the vacuum polarization was
approximated by reducing the Coulomb field values
by 2% —an empirical rule which applied to the self-
energy. Since Wichmann and Kroll have estab-
lished that the dominant contribution, in powers of
a~, to the vacuum polarization is given by the ex-
pectation of the Uehling potential, we believe that
the vacuum-polarization values are in error by no
more than 10%. The resulting screened values
for the vacuum polarization are listed in Table III
for all elements in the range considered together
with the self-energy and total Lamb shift.

E. Correlation Energy

Correlation energy is the correction added to
the DHF approximation to account for the error
involved in approximating the many-electron state
by a product of one-electron states. Correlation
energy was taken to be —0. 08 Ry/electron from
the semiempirical analysis of Cowan. The effect
of rearrangement on the correlation energy is ex-
pected to be negligible.

F, Modification of Experimental Energies

The experimental binding energies were taken
from a table of electron binding energies by Bearden
and Burr. We corrected the experimental values,
which are given relative to the Fermi level, by
adding to them the photoelectric work function in
all cases except Rn which is a gas.

For the four elements considered, we find that
the theoretical binding energies, which include all
effects of O(nmc~), agree to better than 0. 4 Ry with
the experimentally determined values. This is

somewhat unexpected considering the fact that
second- and higher-order effects have been ne-
glected. Presumably, if these other effects are
properly evaluated, they will account for part of
the discrepancy; the remaining part will be due to
numerical inaccuracies in our value of the self-
energy.

Further corrections to the theoretical binding
energy which should eventually be considered are
(a) polarization corrections in the IC ion which will
have the effect of breaking the symmetry of the ion
and will give direct (as contrasted with exchange)
contributions to the magnetic energy of the ion;
(b) higher-order corrections to the Brett interaction
which are presently being investigated; prelimi-
nary results indicate that the higher-order correc-
tions to the Breit interaction yield a combined shift
of —0. 44 Ry in the magnetic and retardation ener-
gies «Hg; this correction improves agreement
between theory and experiment to 0. 13 Ry for Hg,'

(c) higher-order nZ effects on vacuum polariza-
tion; techniques similar to those employed in
Refs. 14 and 15 could, in principle, be applied to
the vacuum-polarization calculation to obtain ac-
curate (nZ) corrections to the Uehling potential
values, as well as reliable estimates of nuclear
size and screening corrections; (d) higher-order
radiative corrections. These corrections which
are of order n (nF) mc would require an enormous
amount of computation and probably will not be fea-
sible until the next generation of computers.

It is difficult to estimate the validity of relating
the experimentally measured binding energies in
liquids and solids to the theoretical values in free
atoms. We have attempted to do so by adding
experimentally determined work functions to the
measured binding energies. Ideally, experiments
should be performed on free atoms to make direct
comparison possible. As an alternative, theoreti-
cal energy-level differences should be computed.
This would have the effect of minimizing the solid-
state effects in making comparison with experiment.
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A semiclassical discussion is given of a simple case of the Hanle effect when the population

of the level of interest varies with time because of decays to it from higher levels excited by

collisions. It is found that the width of the intensity-vs-applied-field curve is no longer simply
related to the lifetime of this single level, but depends on the relative populations and lifetimes
of all other participating levels. It is shown by examples that, unless these effects are taken

into account, the lifetimes deduced from the measurements can be greatly in error.

I. INTRODUCTION

Many of the methods used to measure lifetimes
of excited atomic levels are based on the changes
of intensity and polarization of the emitted light
which occur when levels of different radiating prop-
erties are made degenerate, or nearly so, by
varying an external parameter such as a magnetic
field. Principal examples are various level-
crossing experiments' and the Hanle effect (zero-
field level crossing). ~ Observable effects are
noted in a range of parameters corresponding to

the overlap arising from the natural widths of the

levels, thus enabling one to obtain information on
the corresponding lifetimes.

A large number of these experiments are based
on resonance fluorescence in which the system of
interest is irradiated by light of the wavelength
corresponding to the transition to be investigated.
The incident light is usually broadened enough by
the Doppler effect to ensure that the levels of in-
terest are excited without, however, there being
any danger that higher levels will also be excited.
However, when excitation is produced by more


