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fit the region of importance, it requires a trial
wave function which is an exact eigenfunction of a
demonstrable Hamiltonian. Consequently, this
method becomes difficu]t to employ when dealing
with wave functions using different variational
parameters for inequivalent electrons, whereas
the technique discussed in Sec. II can be modified
to treat this situation. '

A distinct advantage of the Aranoff and Percus
method is that a minimum rather than a stationary
point must be determined. A better function for
g, ~ can be obtained by choosing a form with a large
number of parameters and minimizing M' numer-
ically, if necessary. Another promising possibility
is to use a more accurately tabulated function for
lt)0~ which is not parametric. For example, the
Hartree-Fock solution for helium could be used,
and P&& determined by numerical integration. If
the average value of the operator taken between the
Hartree-Fock states is in error by O(5), the vari-

ational expression should generate a result in er-
ror by O(5~). This work is currently in progress.

A disadvantage of the procedures discussed here
is that they do not provide a bound for the expecta-
tion value. Techniques for calculating rigorous
lower bounds have been developed by Weinhold, '

and although such investigations are vital and de-
serve thorough study, his results are generally
much farther from the correct value than are those
given here. Furthermore, to obtain a good lower
bound, his calculation requires the use of wave func-
tions whose overlap integral (iflor I pp) l which,
especially for many-particle systems, is a difficult
condition to satisfy.
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Minima in Atomic Continuum Generalized Oscillator Strengths
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Minimaincontinuum generalized oscillator strengths for atoms are found to exist, and their
position as a function of energy is discussed. It is shown that at increased energy loss they
occur at larger momentum transfer. Calculations are performed for the Na 3s- &p, K 4s- &p,
and Ar 3p —ed transitions.

I. INTRODUCTION

A knowledge of the details of inelastic collisions

between fast charged particles and an atom or
molecule is important in a number of areas, in-
cluding astrophysics, plasma physics, space and
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atmospheric physics, and radiation physics. The
theory for such a process was developed by Bethe
nearly forty years ago' ~; it was here that the
idea of the generalized oscillator strength f„(K),
hereafter referred to as GOS, was introduced as
an essential factor in the differential (first) Born
cross section3 der„ for the inelastic excitation of
an atom or molecule from the initial state 0 to
the final state n by particles of charge ze and
velocity v:

8~a', z' f„(K)
mv R E„R

where ao is the Bohr radius, m the electron mass,
R the rydberg energy, E„ the excitation energy,
and Kh the momentum transfer. The GOS is de-
fined as

f„(K)= (z„/R)(Ka,)-'l f„(K)l',

where

d(~/R)
f"( } = "(K—g-'lI(K)l'

with the state n interpreted as a continuum wave
function normalized per unit energy in rydbergs,
and I„(K) as defined in Eq. (3). The sign of I„(K)
depends upon the wave functions and K. Assuming
the continuity of I„(K), if it changes sign as K
varies, the GOS f„(K) [or df„(K)/d(e/R) for ion-
ization] must go through a zero minimum.

Such minima have been known for some time in
the case of excitation but only recently has it
been demonstrated how often they occur. ' It
was also pointed out that minima would be expected
in continuum transitions as well. For discrete
transitions the limit of f„(K) as K-0 is just the
optical oscillator strength' f„; for continuum
transitions this becomes

where the matrix element

(3)

df„(K) df„
d(~/R) d(~/R) '

8 ', *' df.(E) E
)m v'/R d(e /R)

x din(Ka, )' de, (4)

r& being thepositionvector of the jth electron of the
target.

We can extend the definition of the GOS to con-
tinuum (ionizing} transitions where the Born cross
section is differential in both K and e, the kinetic
energy of the ionized electron:

which is related to the photo-ionization cross sec-
photo by14

photo 4& & 3 nd' d(e/R}

Recent studies' ' have shown that photo-ioniza-
tion cross sections in many cases exhibit minima,
known as Cooper minima, at certain energies cor-
responding to the change of sign of the dipole
matrix element. This in turn implies a minimum
in the GOS at K= 0 at the same energy. The be-
havior of this minimum as a function of energy
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which have proved to be adequate for photo-ioniza-
tion. "'~ The initial state for the electron under-
going ionization, P„,(r), is taken directly irom the

tabulation while its final continuum state of energy
e, P„.(r), is obtained by numerically integrating
the Schr5dinger equation with the same potential

I4 I I 1 I I

l2-

CO

Lal

O
K

IL

l0-

8-

0
O

6-
FIG. 5. Trajectory of the minimum

in the generalized oscillator strength
of Na for the 3s- &p transition.

4 a

0

2-

0
.Ol



STEVEN TRENT MANSON

fNTEGRANO (X)O) —~ e j ( (Kr}
~ ~ ~ ~ fP

~ ~
e

~ ~
e ~
0 e

~ ~

~ ~

~ e
~ ~

~ ~

~ ~

~ ~

p I
Il' sl

~
J"

i
] ~

e X,~

e

~ ~
'+ ~ % m a

e

e +ice ~

FIG. 6. Integrand of the matrix
element [Eq. (8)] of the generalized
oscillator strength of Na for the
3s-ep transition for Kao=0. 4,
E/R =1. Also shown are the 3s and

&p wave functions in Na and j&(Kr).
The product of these three funct;ions

is the integrand.

-5
e

e
e

~ ~
~ ~
~ e ~ ~

e e
~ ~
~ ~
~ ~

I I I I I I I I I I I I I

5 IO t5

r/ao

as the initial state. The details of this integration
and subsequent normalization of the continuum

wave function can be found in Refs. 14 and 15.
In order to carry out the integration of the

matrix element [Eq. (3) ] we use the well-known

expansion

= 3N„,(f+ 6„,)[R„, , (K, e)] (Kao) (9)

= N„, (e e) ( [2Z„', „(K,e)]'

e'R ' = Z„(s)'(2).+ l) j„(Kr)P, (cose), + 3[a„',„,(K, e)]')(Ka,) ', (lO)

where 6 is the angle between K and r, P„ is the
Legendre polynomial of order A, and j„(Kr) is the
spherical. Bessel function of the first kind of or-
der X. Then, since we are using one-electron
wave functions, when the angular variables are
integrated out, the matrix element becomes a
linear combination of

Jt„, , , (K, e) = f P„,(r)j~(Kr) P„.(r) dr, (8)

where X is limited to l + l, l + l —2, . . . , 1 l - l l

+2, t l —l I . The general expression for the
GOS of a transition nl - el (or n i ) is quite
messy so we present the results only for the types
of transitions we calculate, ns- «p and np- ed.
In these cases

where N„, is the number of electrons in the initial
state and e„, their binding energy. To obtain
these equations we have averaged over the degen-
erate initial magnetic substates and summed over
the final which are also degenerate. The calcula-
tions were carried out on an IBM 7094 computer.

III. RESULTS AND DISCUSSION

The results of our continum GOS calculations for
the 3s - cp transition in Na and the 4s- ep transition
in K are shown in Figs. 1 and 2. In each case the
GOS at threshold has no minimum, but it has a zero
minimum at energies 0. 5 and 1 By above thresh-
old. This minimum occurs at higher momentum
transfer E at the higher energy. Between threshold
and 0. 5 Ry there is a minimum at K= 0 as indicated
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by the Cooper minimum in the photo-ionization cross
section just above threshold in each case. Thus we
see that, in these cases, the minimum moves to
larger momentum transfer at increasing outgoing
electron energy. This is further substantiated by
calculations at many more energies; the results
are shown in Figs. 3 and 4 in which the path of the
minimum in the K plane for Na and K near thresh-
old is plotted and Fig. 5 where the path of the min-
imum is shown for Na to much higher ionized elec-
tron energies.

To explain this behavior, it is first necessary to
investigate the conditions which produce minima in
the GOS, in this case the vanishing of the matrix
element R„', ,~ (K, c). This can be understood by
considerations similar to those employed in ex-
plaining the minima in photoabsorption cross sec-
tions. ' ' The initial- and final-state radial wave
functions as we1l as the spherical Bessel functions
are oscillatory so that the product of the three can
be either positive or negative. If the positive con-
tribution to the integral (S) is just equal to the neg-
ative, the net result is the vanishing of the matrix
element. This is illustrated in Fig. 6 for the zero
in the Na 3s - ep GOS at e/R = 1, Kao = 0. 4. At
higher energy the nodes in the eP function occur
at smaller r, i. e. , the continuum wave function
becomes more oscillatory. This tends to destroy
the equality of the positive and negative contribu-
tions to the matrix element so that it no longer
vanishes. However, with increasing Kao, j,(Kr)
moves in toward the nucleus as well, restoring
the balance and causing a minimum at this new
(higher) value of Kao.

This argument is not restricted to the particular

case we have discussed since all spherical Bessel
functions move in with increasing momentumtrans-
fer. Further, this argument can be easily extended
to minima in discrete GOS's where increasing en-
ergy means increasing principle quantum number
n which leads to more oscillatory final-state wave
functions. Thus, the general behavior of minima
in the GOS is to move to greater Eao at higher ex-
citation energy in both discrete and continuum cases.

As another example of the phenomenon, the re-
sults of our GOS calculations for the ionization of
argon 3P to the &d continuum, which has been stud-
ied to a certain extent previously, ' are shown
in Fig. 7. Here the GOS has no minimum at the
lowest energy shown, but it does at all of the higher
energies. The minimum moves to larger Eao for
increased energy, as expected from the discussion
above. The path of the minimum in the K plane is
shown in Fig. 8. The minimum is, however, not
a zero minimum as the previous cases discussed.

This can be explained by noting that the expres-
sion for the GOS, in this case given by Eq. (10), is
the sum of two terms. Thus, when one term goes
to zero the other term, in general, does not. For
the 3P —ed GOS in argon, the first term R3'~,~,
which is generally the larger, goes through zero
while B~»,~ varies rather smoothly. The result
is the occurrence of the nonzero minima shown
and Fig. 8 is a plot of the path of the zero in the
matrix element 8'»

At this point it is worthwhile to note that for
ionizing transitions an experiment can only measure
the sum of the GOS's to all of the degenerate con-
tinuum channels, i.e. , all final-state angular mo-
menta. In practice, for small ionized electron



1266 STEVEN TRENT MANSON 3

I20

1 I I
1 I I

IOO

80

COI:
4J

60

F&Q. g. Trajectory of the minimum

of the generalized oscillator strength
for the 3p- &d transition in Ar.

40

20

I i ~ I i I

IO l5
Kao

energies, only a few low-l continuum states have
GOS's of any appreciable magnitude. Thus, these
minima may not be obervable experimentally; they
may be overshadowed by the GQS's for the other
continuum states. As a matter of fact, it is very
likely that the minima discussed in Na and K would

not show up experimentally. On the other hand, the
minimum in the Ar 3p- ed GOS will likely appear.
In fact recent experimental evidence seems to
indicate a minimum in the GOS for the ionization
of argon. This will be studied more extensively
in a future paper.

Whether or not the minimum is observable, if
it oc'curs in a particular atom or molecule at or
near Kao = 0 for a dipole-allowed transition, the
optical oscillator strength will be zero or anoma-
lously small at this energy loss. This has con-
sequences for the ionization of the atom or mole-

cule by high-energy charged particles at this same
energy loss which goes as

A(lnT)/T+ B/T,

where T is the incoming particle kinetic energy,
8 is a constant, and A is proportional to the optical
oscillator strength, Hence, a minimum at or near
Kao= 0 implies that A is zero or very small, thus
drastically affecting this high- energy ionization
cross section.
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The self-energy of K electrons in atoms with atomic numbers in the range 70 CZ( 90 is
determined numerically. Detailed theoretical evaluations of K-electron binding energies in-
cluding all effects of O(0.'mc ) are given for the four heavy closed-subshell atoms —W, Hg,
Pb, and Rn —in the range considered. With the present values of the electron self-energy,
the theoretical K-shell binding energies for these elements are found to agree with experi-
mental determinations to better than 1 part in 10 .

I. INTRODUCTION

Since the appearance of the first Dirac-Hartree-
Fock (DHF) calculations of atomic energy levels for
heavy atoms, ' various attempts have been made to
understand quantitatively the discrepancies between
theoretically determined eigenvalues2 ' for inner
electrons and experimentally determined inner-
electron binding energies. A great impetus has been
added to this work over the last few years because
of the highly accurate analysis of electron binding
energies by Bearden and Burr based on precise
electron spectroscopy~ (ESCA) measurements

It is the purpose of the present paper to analyze
the electromagnetic effects of lowest order in the
fine-structure constant a, in an attempt to bring
the theoretical and experimental understandings of
these inner-electron binding energies into closer

agreement. The (somewhat surprising) result of
our study is that, considering only lowest-order
electromagnetic corrections to the K-shell binding
energies, we are able to reduce the discrepancy
between theoretical and experimental values to less
than 0.4 Ry (1 part in 10~) for each of four closed-
subshell atoms —W, Hg, Pb, and Rn —in the range
of atomic numbers considered (2= V0-90).

For these heavy atoms the principal electromag-
netic effect on inner-electron binding is certainly
the nuclear Coulomb field. The Coulomb binding
energies are appreciably modified by electrostatic
screening; these screening effects are accurately
described for heavy closed-shell atoms by DHF cal-
culations. We take as a basis for the discussion of
electromagnetic effects the bound-interaction rep-
resentation of quantum electrodynamics, in which
it is assumed that the electron-positron field satis-


