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' A complete description of these methods along with
flow diagrams and computer listings are given in Ref. 8.

'~We have found the initial slope a, to be the most
practical criterion for comparing the form of the first-
and second-generation integrals.

' In practice, the tolerence on normalization is quite
loose on the first few potential cycles but is gradually
tightened on later cycles.

' It is important not to confuse the homogeneous inte-
gral„ to which corresponds the effective quantum number

g~, with the self-consistent integral of the Hartree model;
the former is the integral of the homogeneous equation
with the HF potential term while the latter is the in-
tegral of the homogeneous equation with the Hartree
potential term. These potential terms are analytically

identical (when q& =1) but numerically quite different be-
cause of the different wave functions used to compute
them; therefore, the effective quantum numbers calcu-
lated using these two potential terms will undergo drops
at different values of Z- see Ref. 1, Table II.

"It is for this reason that all orbitals involved in ground-
state configurations can be readily handled with Hartree's
standard methods.

~SThe detailed variation of solution type with Z does
depend somewhat on the assumed core-electron configura-
tion.
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' This behavior of quantum defect is in qualitative agree-

ment with experiment, and is explained in Ref. 1 with
the aid of HX effective potentials.

~9G. W. Pratt, Jr. , Phys. Rev. 88, 1217 (1952).
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The matrix element for electric dipole transitions is correctly given by the length formula
in the Hartree-Fock, configuration-interaction, and related approximations, which involve the
diagonalization of an approximate, but nonlocal, Hamiltonian.

INTRODUCTION

Fano and Cooper' have emphasized the lack of
a consistent theoretical formula for calculating
transition matrix elements and their contributions
to the Thomas-Reiche-Kuhn sum rule with approx-
imate wave functions. It is generally known that
there exist three alternative forms for the elec-
tric dipole transition matrix element, called the
length, velocity, and acceleration formulas.
These formulas are equivalent when one uses
exact eigenfunctions of either the complete spin-
independent Hamiltonian or of an independent-
electron central-field-model Hamiltonian. How-
ever, they disagree whenever the eigenfunctions
of a central-field model are improved by including
some correlation, even by only the Hartree-Fock
procedure. ' In practice, the disagreement
among the a1ternative formulas is less bothersome
than the lack of some criterion to choose among
them. Indeed, there are cases3' in which length
and velocity formulas using improved wave func-
tions differ by a factor of 2 and yet either would
be more accurate than a central-field-model cal-
culation, in which all alternative formulas give
the same result.

This paper identifies a class of approximations

in which the length formula is the physically cor-
rect one for calculating the transition matrix ele-
ment for electric dipole processes. This class
encompasses all those procedures which solve for
the exact eigenfunction of an approximate Hamil-
tonian. Two examples are the Hartree-Fock and
the configuration-interaction approximations.
Explicitly excluded from this class are those var-
iational procedures which do not give exact solu-
tions to an approximate Hamiltonian; for these,
qualitative considerations must be used to deter-
mine which of the alternative formulas are likely
to be most accurate. '~ For conciseness we shall
compare only the length and velocity formulas.

THEORY

The difficulty that arises in the interpretation of
the length and velocity formulas stems from the
occurrence of nonlocal potentials, which is im-
plied by some common approximation procedures,
as shown in the next section. Here, therefore,
we discuss the properties of nonlocal potentials.
Consider first the ordinary case of a local poten-
tial V. In coordinate representation V is given by
V(r), and the effect of operating with V(r) on a
wave function g(r) is just the product V(r)$(r).
However, this is a special case. In general, the
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effect of operating with a potential V on an eigen-
state I (jj& is represented by the operator product
Vl (}I& in coordinate space, (rl Vl (If&; this quantity
may be expanded by inserting a complete set of
coordinate states between V and I g& and summing
(or integrating} over this complete set:

(rl VI g& = f (r I Vl r &(r I (Ii&d'r

= f (rI VIr'&(I((r )d~r

where (r I (Ii& is the same as the ordinary wave
function (}I(r ). The difference between local and
nonlocal potentials is this. Local potentials are
diagonal in coordinate representation, and their
matrix elements are given by

(rI VIr &= V(r)5(r —r ),
since substitution of this expression in the right-
hand side of Eq. (1) gives the familiar product
V(r)(I (r). Nonlocal potentials are not diagonal in
coordinate space and are represented by an in-
tegral operator V(r, r') = f(r IVI r'& ~ ~ ~ d~r',
which acts on all coordinate functions to its right,
as on the right-hand side of Eq. (1}.'

Two properties of nonlocal potentials are im-
portant to this paper. The first is that since a
nonlocal potential in coordinate representation is
an integral operator, it does not commute with the
coordinate operator. The consequence of this is
that for Hamiltonians containing nonlocal potentials
the length and velocity formulas for the matrix
element of an electric dipole transition are no
longer equivalent, To see this, take the commu-
tator of the coordinate operator /fr( with a
Hamiltonian H containing a nonlocal potential
(atomic units are used throughout this paper):

Z r(=-fi[ H+ r(]f=g pfp(+i[V(r„r, },rf]J. (3)

Thus, the momentum operator which arises in
Eq. (3) from the commutator of the kinetic energy
with the coordinates is no longer equivalent to the
velocity operator gfp;. Taking matrix elements
of Eq. (3) between exact eigenstates g and (I(f of H
(i.e. , H(I( =E (I)wfe obtain

=(q l~fpf l(ji(f&+t&(tf l&([V(r„r,'), rf] l(tff&.

(4)
Equation (4) shows that the length formula (on the
left-hand side) and the so-called velocity formula
(first term on the right-hand side} for an electric
dipole transition between states e and P differ by
the matrix element of the commutator of the non-
local potential with the coordinates.

A second property of nonlocal potentials elim-
inates the ambiguity concerning which formula for
the transition operator is to be used for Hamilton-

= V(r, p)4(r), (8)

where the momentum-dependent form V(r, p} of the
nonlocal potential is defined by the expression in
curly brackets.

This result alters the interaction of light with
particles in a nonlocal potential. Indeed, the in-
teraction Hamiltonian H„& is obtained by making
the standard substitution p-p —A(r}/c [where X(r)
is the vector potential] not only in the kinetic en-
ergy operator, but also in V(r, p). (This procedure
is justified by the requirement that one have a
gauge-invariant Hamiltonian. 'o} The additional
electromagnetic interaction induced by nonlocal
potentials thus arises from the term V[r, p —A(r)/c]
which is given by

V(r, p-X/c)= f(rlvlr')e" ' "" ' ""d'r'. (7)

Treatment of the interaction as a first-order per-
turbation implies expansion of the exponential in
(7) to first order in A. Limitation to electric di-
pole transitions implies disregarding the space
derivatives of A and hence its commutator with p.
Accordingly, Eq. (7) reduces to

V(r, p —A/c} = f(r l Vl r'& (1 —i(r' —r) X/c+ ~ ~ ~ J

e f(r'-1 ) ~ y~3 (8)

Combining the term linear in X from Eq. (8}with
the usual term arising from the kinetic energy, we
obtain for the interaction Hamiltonian

H„,=-gfgf
+i f(r, l Vl r, &

(r', —r, ) ~ ~ ~ d rf,) ~ .X/c, (9)

where we have expressed the term arising from
Eq. (8) as an integral operator once again. Noting
that this integral operator is just [V(r, r ), r] and
comparing it with Eq. (3), the interaction Hamil-
tonian becomes simply

Hf f —i [H, +fr(] ~ A/c = —iaaf r, X/c (10)

Thus, we see that the electrons are coupled to the
electromagnetic field through their current, which

ians having nonlocal potentials. This is that non-
local potentials can be expressed as local mo-
mentum-dependent operators, in the following way.
Consider the wave function fji(r ) on the right-hand
side of Eq. (1). We can express the wave function
at r in terms of its value at r by making a trans-
lation by the vector r - $:

q(r') [e f(ff'-fi ~
8) ~ (~)

where the exponential is the translation operator
and p= —i+„. Substituting this expression for
(ji(r ) in Eq. (1) we obtain

f(r l vl r') (j(r')d'f '=(f(r l Vl r'& e'"' "'d'r')(j(r)
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is given by the velocity operator g»r» and which
only equals the momentum g»p» for local potentials. '
The matrix elements of Eq. (10) between exact
eigenfunctions of the approximate Hamiltonian H
coincide with the length formula, Eq. (4), to within
the multiplicative constant X/c.

EXAMPLES

Let us now consider some approximation
methods which are widely used. %'e shall see
that they involve finding the eigenstates of an ap-
proximate Hamiltonian which contains a nonlocal
potential. Because of the nonlocal potential, the
length and velocity formulas are not equivalent
[cf. Eq. (4)].However, because in each case the
exact eigenstates of the -approximate Hamiltonian
H are found, the transition operator 5'»r; i [H=—, g»r»]
can be evaluated in terms of the length formula.

(i} In the Hartree-Fock approximation the non-
local potential is the Fock exchange potential,
which is given in coordinate representation by

( l l & ~ qg(r')»)»(r)
)r'-rl

where the P»(r) are the H Hartree-Fock orbitals
of the ground-state atom or ion. As discussed
elsewhere, "' one can calculate a complete set
of one-electron states, all of which are solutions
of the same Hartree-Fock Hamiltonian [whose
nonlocal part is given by Eq. (11)or by a suitable
modification of Eq. (11)]. Hence, as noted by
Amusia eP el. , 3 the length formula is the correct
one for the matrix element of electric dipole tran-
sitions between such Hartree-Fock states.

(ii) Consider now configuration-interaction
calculations for obtaining improved initial- and
final-state wave functions. ("Configuration inter-
action" is used here in the sense of Condon and
Shortley. ) One starts from a complete set of one-
electron eigenstates of some model Hamiltonian
H, d which contains only ordinary local potentials.
One then forms a restricted set (not necessarily
finite, though usually so) of »»f-electron Slater-
determinant wave functions, which represent the
configurations to be mixed. These configurations
are mixed by matrix elements of the residual in-
teraction V between the Slater determinants under
consideration. (Note that V=H-H, ~, where H
is the exact spin-independent Hamiltonian. ) In
more formal language we can form a projection
operator P =g; », I i&&i I, where each state li) is a
Slater determinant of the restricted set, and we
wish to take into account the portion of the resid-
ual interaction represented by PUP. That PVP is
a nonlocal potential is easily seen-by taking its
matrix elements in coordinate space'3:

&rlpvplr') = ~ &rli&&ilvlj&& jlr'&
j, jCP

,~=l(E-Eo) 'l&eol[H, Z»r»] l(,& l', (14)

where g, is the ground-state wave function of the
approximate H of energy Eo, and g~ is an excited-
state wave function of energyE. Equation (14) is
formally the same as in the usual case of local
potentials except now the commutator of the Ham-
iltonian with the coordinates has the additional
term X, [V(r„r,'), r, ] [Eq. (3)]. Summing the oscil-
lator strength, we obtain~

J"—, «=&+3~»&eol[r» [«r» r»» r»]] leg (»)

where N, as usual, is the number of electrons in
the atom. The second term is an additional os-
cillator strength induced by nonlocal potentials.

~ q](r)&ilvlj&»)»(r')
j, j~P

Note that if the set of states i and j were complete,
we could use closure in Eq. (12}, i. e. , set P = 1;
Eq. (12) would then reduce to the local (rl VI r ) .

Conf iguration-interaction methods utilize in

effect the Hamiltonian

Hc, =Pm, d+PVP
and its exact eigenfunctions for the calculation of
improved transition matrix elements and oscilla-
tor strengths. Since PVP is nonlocal, the length
formula should be used in these applications.

(iii) Brueckner-Goldstone perturbation theory ~'~4

does not actually calculate exact eigenfunctions of
an approximate Hamiltonian. It starts with a com-
plete set of Hartree-Fock wave functions and
treats the residual interaction between the exact
Hamiltonian and the Hartree-Fock Hamiltonian as
a perturbation. Since the zero-order wave func-
tions are derived from a nonlocal potential, the
length formula is the consistent one in zero order.
In infinite order, the improved wave functions are
solutions of the exact Hamiltonian, which has only
local potentials, and hence the velocity formula
becomes equivalent to the length formula. How-
ever, to any finite order of approximation, say
the nth, the wave functions solve the exact Hamil-
tonian to nth order, and hence we must expect
length and velocity formulas to disagree by effects
of (n+ 1)th order in the residual interaction. Thus
the effect of the nonlocal Hartree-Fock potential
is removed only to nth order and hence the length
formula, which is consistent in both zero and in-
finite order, is presumably consistent for each
finite order of the perturbation.

In using model Hamiltonians containing nonlocal
potentials, as in the examples above, a word of
caution is in order since the Thomas-Reiche-
Kuhn sum rule is not satisfied by their eigenstates. "
The density of oscillator strength per unit energy
is given by
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We may gain insight into the additional induced
oscillator strength by considering once more the
configuration-interaction Hamiltonian, Eq. (13).
In general the projection operator P may be con-
sidered as the sum of two projection operators,
P =P&+P, , where Pz and P, are constructed from
the subsets of Slater determinants with the same J
and parity as the final and ground states, respec-
tively. These subsets, of course, are separately
used to obtain improved final and initial states.

Since, in the electric dipole approximation,
initial and final states have opposite parity and
since V is even under parity, one obtains

PVP =PyVP)+P(VP), (16)
due to the vanishing of P&VP; and P, VP&. Note
further that P& and P, , by definition, operate on

g~ and go in the following way:

Pyro = P ~(E —0, Pygz ——tI'~, P;go ——go

Consider now the matrix element of the nonzero
commutator, ((OI [ PVP, P r, ] I gz), which brings
about the additional oscillator strength [cf. Eq.
(14)]. Using Eqs. (16) and (17), this matrix ele-
ment may be expanded as

(g ~[PVP, E r ] ~g )=(Q ~P, VP, Z r ~P )

(18)

Note that if one were to improve only the initial
state (i. e. , set P =P,), then only the first term on
the right-hand side would appear, while if only the
final state were improved (i.e., P =P~) then only
the second term on the right-hand side would ap-
pear. Thus the effects of nonlocal potentials may
be minimized by judicious simultaneous improve-
ment of both initial and final states rather than
improvement of only one. ' (The inequivalence of

length and velocity formulas when only the final
state is improved has already been noted. ) In
other words, the additional oscillator strength
arises from the partitioning of the residual inter-
action and can be minimized if the partitioning is
done sensibly.

CONCLUSIONS

We have shown that the matrix element for elec-
tric dipole transitions is correctly given by the
length formula for approximation procedures in-
volving a nonlocal Hamiltonian for which exact
eigenstates may be calculated. The discussion
has centered on two properties of nonlocal poten-
tials, namely, that they do not commute with the
coordinate operator, and that they induce an addi-
tional interaction with the electromagnetic field
(which is also dependent on the commutator of the
potential with the coordinate operator). The first
property causes the length and velocity formulas
to disagree, while the second shows that the length
formula is the correct one for electric dipole
transition matrix elements. The second property,
however, also creates additional oscillator strength,
which causes a departure from the Thomas-Reiche-
Kuhn sum rule. It is shown that for configuration-
interaction calculations this additional oscillator
strength can be minimized if both initial and final
states are improved simultaneously. Examples of
approximation procedures for which the length
formula is the consistent one are the Hartree-
Fock approximation, the configuration-interaction
method, and, probably, the Brueckner-Goldstone
perturbation theory.
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