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For many excited d- and f-electron configurations there exist instabilities in the iterative
self-consistent solution of the Hartree-Fock (HF) equations which make it practically impos-

sible to obtain HF solutions using standard methods.

These instabilities are associated with

the sudden contraction of the d- or f-electron wave function to smaller radii near the beginning

of the corresponding transition or rare-earth series.

The instabilities have been overcome

by new methods of solving the HF problem which involve the temporary relaxation of the nor-
malization condition and the application of techniques which search directly for that integral

of the differential equation having the highest degree of self-consistency. Using these new
methods, HF solutions have been obtained for excited d- and f-electron configurations through-
out the transition and rare-earth series of elements, and the results of these calculations

have been employed to study the nature of the solutions and of the associated instabilities.

I. INTRODUCTION

In an earlier paper! we carried out a detailed
study of sudden changes in the binding energies and
radial wave functions of d and f electrons preceding
the onset of the transition and rare-earth series of
elements, using the Hartree-plus- statistical-ex-
change method (HX).2 We felt it desirable to verify
the results of that paper using the theoretically
more firmly based Hartree-Fock (HF) method.
However, we found many configurations containing
excited d and f electrons which could not be handled
by either of two distinctly different and normally
satisfactory HF programs.®* In investigating the
reasons for these difficulties we found them to be
due to extreme instabilities in the self-consistent
iterative procedure which are of a very fundamental
nature. It is the purpose of this paper to present
methods for overcoming these instabilities and to
discuss the nature of the instabilities with the aid
of results computed by these methods.

For the most part, we shall consider the HF
problem for the center-of-gravity energy of elec-
tronic configurations of neutral atoms. However,
calculations for ions and for energies of specific
LS-terms will also be discussed briefly.

II. NATURE OF INTEGRALS OF THE HF EQUATIONS

The HF method involves the self-consistent itera-
tive solution of a set of coupled differential equa-
tions, each of which is of the form

da
(W +flr) - €> P(r)=g() . (1)

(We write all equations for radii in Bohr units and
energies in rydbergs.) The desired integral P(7)
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= P,,(r) is that which satisfies the boundary condi-
tions

P(0)=P(»)=0, @)
the auxiliary condition is that the

number of nodes=n-1-1, (3)
and the normalization condition is®
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For an orbital P;(r) = Pn;1,(r), corresponding to
quantum numbers n,l;, the term f;(») (which for
simplicity will be referred to as the potential term)
is given by

fin=eMz-v,.0]-1,0+1)/r*, (5)
where (for the configuration center of gravity)
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the term g;(#) (which for simplicity will be referred
to as the exchange term) is given by

2 “
g,(r):—;X,(r)+ 2, 6
njllatn‘t‘

t,xfuP;(T) , (7)

where (for the center of gravity)

1233



1234

L, 1, k
x0- L Gty
nylg#n gl e\0 0 O
X Yyuluyly;myly/v)Pyr), (8)

and €, is the absolute value of the diagonal energy
parameter. In the above equations g, is the occupa-
tion number of the ith subshell, €;; is the off-dia-
gonal energy parameter used to force orthogonality
between the functions P;(r) and P,(») for which
I;=1;and n; #n,, and Yl ;n,l,/7) is the integral

Yy(nly;ng,/v)= j‘;'Pi "Y' /)P, (r") ar’

+ j;”P,(r')(r/r')"‘P,(r') ar’.
(9)

In order to understand the self-consistent-field
HF problem, it is helpful to first consider the na-
ture of the integrals of Eq. (1) that satisfy only the
boundary conditions of Eq. (2), as a function of the
energy €, for fixed f(r) and g(»). To this end we
will need to consider integrals not only of the in-
homogeneous equation (1), but also those of the
homogeneous equation obtained by setting g(») =0.
The homogeneous equation will have nontrivial in-
tegrals Py (») satisfying Eq. (2) only for a discrete
set of eigenvalues {e%, k=1,2,3,...,»}. For
€ #€k it is always possible to determine particular
integrals of the homogeneous and inhomogeneous
equations Py (r) and P;(7), respectively, such that
P,(0)= P4(0)=0, but Py (») will not satisfy the bound-
ary condition at =, and in general neither will
P,(r). However, by forming the general solution
of Eq. (1) from the linear combination

P(#)=P,(r) + aPy () , (10)

we can force P(«)=0 by choosing @ appropriately.
P(¥) then satisfies Eq. (2), and (for a given value
of € #€%) is unique. As € approaches one of the
homogeneous eigenvalues €%, P, (») will approach
a solution for which P, (»)=0; however, in general,
P,(«) does not approach zero. Therefore, a will
have to be very large in order to force P(»)=0,
Thus we would expect the norm of P(r) to approach
infinity as € approaches €}.

A more detailed discussion of differential equa-
tions of the form of Eq. (1) is given by Courant and
Hilbert® using the theory of integral equations.

Many of the properties of the integrals of Eq. (1)
discussed above can be very aptly displayed by plot-
ting, for fixed potential and exchange terms, a
curve of the norm of the integral P(») vs €.” A
typical curve of this type is shown in Fig. 1. As
discussed above, the homogeneous equation will have
nontrivial integrals at certain discrete values of
€, four of which are indicated in the figure at €},
€%, €%, and €%. The inhomogeneous equation will

GRIFFIN, COWAN,

AND

|

Iell—

FIG. 1.

Typical HF norm curve for an z! electron.
The singularities at the energies €% (k=1, 2, 3, 4) cor-
respond to the homogeneous integrals for n=I+k (i. e.,
homogeneous integrals with 0, 1, 2, 3 nodes).

have integrals satisfying the boundary conditions
(2) at every value of € except at the energies €5,
which is indicated in the figure by the singularities
at these particular energies. However, if we now
impose the other conditions [Eqs. (3) and (4)], the
number of acceptable integrals is greatly reduced.
Let us first consider the condition of the number of
nodes in the integral. A typical arrangement of
node count as a function of energy is also shown in
Fig. 1. [The node count does not include the spu-
rious nodes in the tail of the wave function due to
g(7) at large 7.%] Although this particular node-
count arrangement is not entirely general (excited
f electrons in certain regions of the periodic sys-
tem have a much more complex arrangement), it
is typical for all core-electron wave functions as
well as for outer-electron wave functions for I <2.

We first discuss the case for which n=7+1 (e.g.,
a 3d electron). The possible acceptable integrals
can occur only in that energy range where the node
count is equal to zero. For illustrative purposes,
consider three different cases for which 1Pl =1
along the horizontal lines A, B, or C. For €> ¢},
I PIl approaches zero monotonically as € increases.
Therefore, for either case A or B, there is one and
only one acceptable normalized integral at A, or
By, respectively. For case C there appear to be
two possible normalized integrals at CJ and C;
however, the integral at C, is unacceptable. For
explanation of this refer to Fig. 2 where a plot of
the “initial slope”

() =[P(r)/r**]

is shown as a function of € corresponding to case
Cof Fig. 1. Note that the integral at C; has a nega-
tive value of a,. This integral is not acceptable
because the wave functions used to calculate the
potential and exchange terms are, by convention,
chosen to have positive initial slopes and therefore
C, cannot be close to a self-consistent result, ®

as r=-0
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FIG. 2. Initial-slope curve corresponding to case C
of Fig. 1. The circled points have unit norms.

For those electrons for which »>1+1, the situa-
tion is quite different. To see this, let us assume
that n=1+2 (e.g., a 4d electron), and again con-
sider the three different cases A, B, and C of Fig.
1. The possible acceptable integrals canoccur only
in the energy range where the node count equals 1.
For A the norm of P(r) is always greater than unity
in the region of correct node count, and hence no
acceptable normalized integral exists. For B there
are two acceptable normalized integrals: a low-
energy normalized integral at B; and a high-energy
normalized integral at B,. For C there appear to
be two acceptable normalized integrals at C{ and
C,, but the integral at C; is unacceptable because
its initial slope is negative (see Fig. 2).

In summary, when n=17+1, there is, in practice,
always exactly one acceptable normalized integral
of Eq. (1). However (contrary to a common mis-
conception), this cannot be generalized, and for
those cases for which >+ 1 there may (at any
given stage in the iterative search for self-consis-
tent solutions) be zero, one, or two acceptable nor-
malized integrals; when there are two such inte-
grals the decision as to which one to choose has to
be made on the basis of maximum self-consistency.
Of course there is always one final self-consistent
solution - a low-energy solution such as C; or B/
if the effect of the exchange term g(») is small,
or a high-energy solution such as B, if the effect
of exchange is large.

III. SOLUTION OF HF EQUATIONS
A. Standard Methods

Let us first consider the methods developed by
Hartree and co-workers!? to obtain self-consistent
solutions to the HF equations. These methods have
been successfully employed by numerous workers
to obtain solutions for a large number of ground-
state configurations and a relatively small number
of excited configurations.

The self-consistent iterative procedure consists
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of a sequence of “potential cycles” each of which
involves estimating trial radial wave functions,
calculating the terms Y (r) and X(») and the off-
diagonal energy parameters, and then for each or-
bital in turn (in some prescribed order) repeatedly
integrating the corresponding differential equation
to find that integral which satisfies all boundary
conditions. The potential-cycle iteration is con-
tinued until each integral is consistent with respect
to the corresponding trial function.

Hartree developed two methods for determining
the required integrals of the differential equations
during any one potential cycle. His first method
consists of a double-iterative procedure in which
both the initial slope a, and the energy € are ad-
justed until all conditions (2)-(4) are satisfied.

His alternate procedure involves only a single itera-
tion on the energy and, since it was employed here
both to determine the appropriate integrals of the
core electrons and as part of our new methods, we
discuss it in more detail. A trial value for € is
chosen and, with an arbitrary value of a,, both the
inhomogeneous and homogeneous differential equa-
tions are integrated; a linear combination (10) of
the resulting integrals is then determined such that
P(r -w)=0. [The condition that P(» -0)=0 is auto-
matically satisfied if a, is finite.] The initial slope
and the norm of P(7) are then calculated, and the
entire process is repeated at new values of € until
an integral P(7) is found for which a,>0 and condi-
tions (3) and (4) are satisfied.

Inherent in both of these methods is the assump-
tion that there is one and only one normalized in-
tegral of the differential equation with the correct
number of nodes and positive initial slope. How-
ever, for an excited d or f electron, there may be
zero, one, or two normalized integrals which sat-
isfy these conditions (cases A, C, B, respectively,
of Fig. 1). It is obvious that the usual methods
will not work when there is no acceptable nor-
malized integral, and that when there are two ac-
ceptable normalized integrals these methods include
no explicit way of determining which one of the in-
tegrals will lead to a self-consistent solution.

Even without the above complications Hartree
found that the iterative process is not, in general,
stable, and very often diverges if the final nor-
malized integrals from one potential cycle are used
as input to the next cycle. In general, it is there-
fore necessary to use some method to stabilize the
over-all iterative procedure. One technique®'* is
to calculate the input wave function for the m +1
potential cycle using the formula

P™(input) = cP ™ (output) + (1 - ¢)P™(input)

(0<e<1), (11)

where P™!(input) and P ™(input) are the input wave
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functions for the m+1 and m cycles, respectively,
and P™(output) is the normalized integral obtained
from the mth potential cycle. The majority of elec-
trons (including all core electrons and all excited
electrons with I <1) have low-energy normalized
HF solutions (e.g., C, or B{ of Fig. 1). For these
cases, any instability which may arise in the self-
consistent iterative procedure is oscillatory in na-
ture and such oscillations can be controlled in the
above manner by simply decreasing the constant ¢
(i.e., decreasing the amount of the output wave
function from the mth potential cycle used in the
input wave function for the » +1 potential cycle).

However, we have found that when the self-con-
sistent solution corresponds to a high-energy nor-
malized integral (e.g., B, of Fig. 1), as is the
case for many excited d and f electrons, the accep-
tance of the normalized integral (if one exists) or
the use of any function (11) intermediate between the
normalized integral and the input wave function ap-
pears to cause the iterative procedure to diverge in
a monotonic fashion, [i.e., P™(output) seems al-
ways to lead one away from the self-consistent
function]. The situation is complex: Since the self-
consistent function is unknown, the manner in which
P™(output) is leading one away from self-consistency
is also unknown. But since use of the normalized
integral of the differential equation is unsatisfac-
tory, an obvious alternative is to temporarily relax
the normalization condition and try using one of the
unnormalized integrals; indeed, this is the only
sort of integral available in case A of Fig. 1 where
the minimum of the norm curve is greater than
unity.

B. New Methods

Two new methods have been developed!!; they
differ only in the technique used to select the par-
ticular un-normalized integralfor the excited elec-
tron that will hopefully lead to a self-consistent
normalized solution. In each method we perform
(within each potential cycle) an additional iteration
on the excited-electron wave function P;(»). During
this iteration it is necessary to recalculate only
g:(7) because, for singly occupied subshells (which
are the only ones of practical importance for which
these instabilities occur), f;(») is independent of
P,(r)-see Egs. (5) and ().

Method M2. The second technique developed is
the more successful one, and we discuss it first.

It selects anun-normalized integral on the basis of
maximum self-consistency in the following sense:
During each potential cycle the core-electron in-
tegrals are determined using one of the standard
techniques, and values for the excited-electron po-
tential and exchange terms are calculated. The
potential term is then held fixed and the differential
equation is repeatedly integrated for different values
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of the diagonal-energy parameter €; to determine
that (first-generation) integral P{!’(r) which is not
normalized, but which satisfies the boundary con-
ditions at zero and infinity, has the correct number
of nodes, and when normalized, by dividing by the
value of its norm, yields a new exchange term

g, (r) with the following property: The differential
equation formed from the original potential term
and this new exchange term has a normalized
second-generation integral P%’(y) that satisfies the
boundary conditions at zero and infinity, has the
correct number of nodes, and is closest in form?!?
to the normalized function P{’(»)/I P{*li; the de-
termination of the normalized integral P{*'(r), of
course, requires an additional iteration over the
energy. At this point the norms and the diagonal
energy parameters of the first- and second-genera-
tion integrals are not equal (i.e., the norm curves
corresponding to the first- and second-generation
integrals are not the same) and, since IIP{1 #1,
P /1P is not a solution of Eq. (1).° There-
fore, we replace the first-generation exchange
term with the new exchange term, and repeat the
entire process until the first-generation norm is
equal to unity within some specified tolerance!?;
when this condition is satisfied the energies cor-
responding to the first- and second-generation in-
tegrals are necessarily equal (i.e., the two norm
curves coalesce). Once such an integral is deter-
mined we go on to the next potential cycle, and
continue the iterative process until all wave func-
tions are simultaneously self-consistent within
specified tolerances.

During the search for the appropriate normalized
second-generation integral there are often two nor-
malized integrals which satisfy all conditions (e. g.,
B/ and B, of Fig. 1). In principle, both of these
integrals should be determined and compared with
the first-generation integral; however, this approx-
imately doubles the time required to determine the
appropriate second-generation integral, and in
some cases can also lead to complications in the
search procedure. For this reason we have deter-
mined, by trial and error methods, the ranges of
Z over which excited d and f electrons of atoms and
ions have high- or low-energy self-consistent in-
tegrals; the decision as to which normalized inte-
gral to choose is then made on the basis of the
atomic number and ionization stage of the case at
hand. However, for excited electrons at or very
near the sudden contraction of the d-electron wave
function® (e.g., the nd electron of Car 4s nd) the
most nearly self-consistent integral tends to oscil-
late between the low- and high-energy normalized
integrals during the iterative procedure. M2 will
not work for such cases. Because of this, we
briefly discuss our first method which, although
not nearly as successful on the whole as M2, is
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free from the above difficulty.

Method M1. This method makes the decision as
to which unnormalized integral to choose on the
basis of the norms of the first- and second-genera-
tion integrals determined at the same value of €.
That is, an energy search is carried out to deter-
mine that first-generation (un-normalized) integral
which satisfies the boundary conditions at zero and
infinity, has the correct number of nodes, and
when normalized, by dividing by the value of its
norm, yields a new exchange term with the follow-
ing property: The differential equation formed
from the original potential term and the new ex-
change term has an integral at the same energy
which satisfies the boundary conditions at zero and
infinity, has the correct number of nodes, and is
more nearly normalized than the first-generation
integral. (In practice, the decision as to how much
closer to unity the norm of the second-generation
solution should be is quite critical and varies from
case to case, and this is one of the major difficul-
ties of the method.) Once such an integral is ob-
tained, the first-generation exchange term is re-
placed by the new exchange term and the process is
repeated until both the first- and second-generation
integrals have norms of unity within a specified
tolerance.'® We then go on to the next potential
cycle, and continue the iterative process until all
wave functions are simultaneously self-consistent.

Comparison of M1 and M2. Even though M2 re-
quires many more integrations of the differential
equation than does M1 (because of the required
iteration on € to determine a normalized second-
generation integral), it provides such good control
over the search for the self-consistent integral that
it usually converges more rapidly than does M1.
Indeed, there exist many high-energy solutions
(lying very close to a singularity in the curve) for
which the nature of the wave function varies so
rapidly with energy that M2 is the only workable
method of the two. M1 is useful mainly for those
cases in which the minimum of the norm curve in
the region of correct node count lies close to unity,
where there is a tendency for the iteration to oscil-
late between the two possible normalized integrals
of nearly equal energy.

By employing these new methods self-consistent
solutions have been determined for a large number
of excited configurations for which the usual method
(11) will not work. The results of some of these
calculations are given in Sec. IV where we consider
the nature of the solutions and of the associated
self-consistent instabilities.

IV. HF SOLUTIONS AND ASSOCIATED INSTABILITIES
A. Nature of the Solutions

We wish to consider the effects of the wave-func-
tion contractions,® at the onset of the various
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transition series, on the nature of the corresponding
HF solutions. As discussed in connection with

Fig. 1, when n-1-1=0 there is always exactly

one acceptable normalized integral of the differen-
tial equation; therefore, the wave-function contrac-
tion has no qualitative effect on the appearance of
the norm curve nor on the nature of the HF prob-
lem. However, when n-1-1>0, the wave-function
contractions are accompanied by important changes.

We first discuss the situation for d electrons.

As an example, we show in Fig. 3 the 4d norm
curves for the self-consistent integrals of ;;K14d,
20Ca14s 4d, and ,Ti14s 3d%4d. In each case there
are two normalized integrals with positive initial
slope and the correct number of nodes; however,
only one of these integrals corresponds to the self-
consistent solution. As, with increasing Z, the

4d wave function contracts to smaller radii and be-
gins to resemble a 3d wave function (so far as its
mean radius and eigenvalue are concerned), the
HF 4d solution changes from a low-energy nor-
malized integral for (K to a high-energy normalized
integral for ,,Ti; ;,Ca is intermediate between K
and Ti and, although the self-consistent solution is
a low-energy case, the 4d integral tends to oscil-
late between the high- and low-energy cases during
the iterative procedure. Note that in passing from
a low- to a high-energy solution, the minimum of
the norm curve rises to unity and falls again. The
situation for all nd electrons with » >5 is similar.
For simplicity, we shall refer to the low-energy
solutions as type 1 and to the high-energy solutions
as type 2.

In Fig. 4 the results of extensive calculations for
excited d electrons of neutral atoms are shown in
the form of plots of the effective quantum numbers
n* and nJ vs Z; n* has been calculated from the
formula

n*=€it’?
where €, is the HF eigenvalue, and n; has been cal-
culated from the formula

ni= ),

where €}, is the eigenvalue corresponding to the
integral of the homogeneous equation for quantum
numbers n;l,. Note that n* undergoes sudden drops
at Z=20 and Z =38, preceding the onset of the
transition series of elements, as was also the case
for the effective quantum numbers calculated with
the HX method in Ref. 1. However, n} for the nd
electrons with n» >4 throughout the first transition
series and n,} for the nd electrons with » =5
throughout the second transition series remain
virtually unchanged, their drops not occurring until
Z=33 and Z=50, respectively.!* These different
behaviors of n* and #; indicate large energy sep-
arations between the HF eigenvalues and the eigen-
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FIG. 3. Norm curves for the 4d electrons of 3K, 5 Ca,
and 4,Ti. In each curve the low-energy singularity cor-
responds to the 4d homogeneous integral and the high-
energy singularity corresponds to the 3d homogeneous
integral. The circled points correspond to the 4d self-
consistent normalized integrals.

values of the corresponding homogeneous integrals
from Z=20 to Z=32 and from Z=38 to Z=49.
These separations are large enough that nd electrons
with #» >4 from Z=21 to Z=32 and with » >5 from
Z=40 to Z=49 have type 2 solutions. 4,Sr and
39Y, like ,;Ca, have type 1 solutions which occur
very close to the corresponding high-energy nor-
malized integrals and tend to oscillate, during the
iterative procedure, between the high- and low-
energy normalized integrals. The magnitude of
the drop in n* for nd electrons (z >86) at the onset
of the first rare-earth series is smaller than those
at the onset of the two preceding transition series;
as a result, the excited nd electrons of the lantha-
nides have type 1 solutions with the exception of
those configurations having a 5d core electron
(e.g., La1 6s 5dnd), which have type 2 solutions.
A similar situation occurs for the excited nd elec-
trons (z =7) of the neutral actinides. However, the
relative separation between n* and »J increases
preceding the onset of the 5d transition series, and
the nd electrons with »n =6 have type 2 solutions
from Z=171 to Z=81.

Unlike #; for the nd electrons with n =5, »} for
the 4d electron decreases at Z=38 and Z =39
(where the 4d-electron wave function contracts into
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the core) by an amount which is large enough that
the 4d self-consistent solutions remain of type 1.
It is indeed generally true that once a wave function
has collapsed into the core, the HF solution for
that wave function will become a type 1 solution
and will remain so for all higher values of Z.!°

The behavior of HF solutions for excited f
electrons is somewhat different from that for
d electrons. In Fig. 5 are shown the norm
curves for the 5f electrons of Ba1 6s 5f and
La1 6s? 5f corresponding to the self-consistent
solutions. For z;Ba there are two normalized in-
tegrals with the correct number of nodes and posi-
tive initial slopes, but the 5f self-consistent solu-
tion is the normalized integral having an eigenvalue
just to the high-energy side of the 5f singularity
(i.e., the singularity which corresponds to the 5f
homogeneous integral). However, with the very
abrupt collapse of the 5f wave function to smaller
radii in going from Ba to La, the eigenvalue of the
self-consistent solution shifts all the way to the
high-energy side of the 4f singularity. Besides the
abruptness of this change in solution type and the
different relative energy position of the high-energy
f-electron solution, there are several other dif-
ferences which distinguish the f-electron case from
those of d electrons (compare the norm curve for
s;La with that of ,,Ti in Fig. 3). The node-count
arrangement corresponding to excited d electrons

| | I
I
20 30 40 50

FIG. 4. Computed HF effective quantum number curves
for d electrons, where n* = (€,)"1/2 and n}; = (€7f)-1/2,
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with type 2 solutions is identical to that of Figs. 1
and 2. However, we see from Fig. 5 that the 5f
electron of La has a node-count arrangement which
is quite different; the most striking features are
the change from two nodes to zero nodes at € £0. 055
Ry and the reoccurrence of one node to the high-
energy side of the 4f singularity. Second, it should
be noted, in contrast to the nd-electron cases, how
rapidly the norms of the integrals change in the
vicinity of the singularities, and how very small
and constant the norms are in the energy range be-
tween the singularities. Another interesting feature
of this case is that, unlike the typical initial-slope
curve shown in Fig. 2, the initial slopes of these
integrals increase with energy between two adjacent
singularities. Finally, for this f-electron case,
like many of the nd-electron cases, there are two
normalized integrals with positive initial slopes

and the correct number of nodes; however, here
the low-energy normalized integral occurs at an
energy which is on the low-energy side of the 5f
singularity. The above-mentioned properties are
characteristic of all excited nf electrons for which
the self-consistent solution occurs to the high-en-
ergy side of the (n - 1) f singularity. In order to

s¢Bo 1 68 5f
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FIG. 5. Norm curves for the 5f electrons of ;;Ba and
s7La. In each curve the low-energy singularity corre-
sponds to the 5f homogeneous integral and the high-energy
singularity corresponds to the 4f homogeneous integral.
The circled points correspond to the 5f self-consistent
normalized integrals.
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distinguish these cases from the type 2 high-energy
solutions, they will be referred to as type 3 solutions.
Of the many HF calculations that have been carried
out for excited nf-electron configurations of neutral
atoms, Ac1snfand Ac17s 6dnf are the only cases
we have found for which the nf electron has a type

2 self-consistent solution. However, there are
several cases for which the most nearly self-con-
sistent solution oscillates between type 2 and type

3 solutions during the iterative process. Further
HF calculations of excited nf-electron configura-
tions indicate that the nf electrons of neutral atoms
have high-energy solutions (type 3 with the excep-
tion of the two cases just noted) for » =5 from
Z=57to Z="76 and for n>6 from Z =89 throughout
and beyond the second rare-earth series. !®

All of the above discussion pertains only to neu-
tral atoms. For excited electrons in ions the situa-
tion is quite different. With increasing ionization
stage, cancellation between the terms 2Z /7 and
- 2Y,(»)/7 in the potential term £, (») [Eq. (5)] de-
creases, the exchange term g;(») tends to become
of less importance relative to f;(r), and the inhomo-
geneous integral tends to become more like the
homogeneous one. Thus the nd electrons of singly
ionized atoms have type 2 solutions over smaller
ranges of Z (e.g., for n >4, from Z =22 to 31),
while the nd electrons of doubly ionized atoms ap-
pear to have only type 1 solutions. For excited f
electrons of singly ionized atoms, the high-energy
solutions are of type 2, except for 71 <Z <75 which
remain type 3. The doubly ionized f-electron solu-
tions closely resemble the neutral d-electron solu-
tions (i.e., the high-energy solutions are all of
type 2 and the norm curves resemble those of Fig.
3). In atoms which are more than doubly ionized,
all f-electron solutions appear to be of type 1.

These remarks refer to the effect of ionization
in elements for which the d- or f~wave-function
collapse has already occurred in the neutral atom.
For elements of lower Z the wave-function collapse
may still occur upon ionization of a core electron!”;
this can increase (rather than decrease) the im-
portance of g;(») relative to f;(»). Thus, for ex-
ample, the 5f electron has a type 1 solution in
Cs1 5f and Ba16s 5f, but a type 2 solution in
Cs1m 5p* 5f and Ba 5p° 5f. Ba 11 nf appears to
be a unique borderline case in which the degree of
collapse (and the value of the quantum defect
8=n-n*)!® increase gradually with »; as a result,
the nf solutions are of type 1 for n <7 but of type
2 for n = 8.

So far we have been concerned with calculations
for the center of gravity of a configuration. We now
wish to consider modifications which result when
HF calculations are made for a specific LS term.
For such calculations, f;(¥) and g;(#) in general
contain additional terms beyond those given in Eqgs.
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(5)-(8). The effect of these added terms is to shift
the solution from type 3 or type 2 toward type 1,

or vice versa, depending on the signs of the added
terms. For example, the 4d electron of Ca14s 4d
is seen in Fig. 3 to have a type 1 solution for a
center-of-gravity calculation; however, for the

3D term the solution is of type 2, lying very slightly
to the high-energy side of the minimum in the norm
curve. Conversely, for Cum 3d° 4d, the 4d elec-
tron for the center-of-gravity calculation is dis-
tinctly of type 2 (the norm-curve minimum being
0.70), but for the !S term the solution lies very
nearly at the minimum of the norm curve.

B. Discussion of Instabilities

Because of the complex mathematical form of the
exchange term we shall not attempt to describe the
nature of the instabilities beyond a few qualitative
remarks. The first of these concerns the high sen-
sitivity of the computed value of the excited-elec-
tron exchange term g;(7) to small variations in the
low-radius portion of the excited-electron integral
P,(r). In elements which precede a transition or
rare-earth series, there exists a node in P, (7)
which lies just outside the region of appreciable
core-electron density. In elements following one
of the wave-function collapses, this node has moved
into the core-electron region. Therefore, both
positive and negative portions of P,(r) contribute
in an important fashion to the integrals
Y,(nl;3m,1,/7) of the exchange term g,(+). This
leads to cancellation effects which cause the com-
puted magnitude of the exchange term to be quite
sensitive to the position of the node. Test calcula-
tions indicate that serious cancellation occurs for
all high-energy solutions, and also for a few low-
energy solutions in elements immediately following
the sudden drop in n} (e.g., the 4d electron of
ssAs 1 4p? 4d).

The sensitivity produced by the cancellation ef-
fects is particularly serious because it occurs in
cases for which the exchange term has a large ef-
fect on the integral of the differential equation;
i.e., for which the eigenvalue €* of the inhomo-
geneous equation lies far from the corresponding
eigenvalue €} of the homogeneous equation. More-
over, the nature of the sensitivity changes at the
energy €, where the norm curve has a minimum
(and which divides the low-energy from the high-en-
ergy region) — this canbe seenfrom the following
plausibility argument: Suppose that the exchange term
&:(7) is scaled down by some constant factor which
is made to gradually approach zero. Then the in-
homogeneous equation approaches the homogeneous
equation as a limit. At the same time, it may be
seen from Eq. (1) that, for all €, the solution P;(r)
is scaled down by this same factor, so that each
section of the norm curve decreases everywhere
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and approaches the limiting form of a square well
(i.e., NPl =0 everywhere except at €% and €}™).
In any low-energy case €*<¢,, the lowering of the
norm curve forces the eigenvalue €* of the normalized
integral to decrease in magnitude (as is to be ex-
pected physically for smaller exchange), with €*
tending to €% and with the normalized integral ap-
proaching the proper solution of the homogeneous
equation. For the high-energy case €*> ¢, how-
ever, both €* and the normalized integral are forced
to change in the wrong direction, with €* increasing
toward €%! and the integral tending to the homogen-
eous solution with & ~ 2 nodes instead of 2~ 1 nodes.
Further evidence that the use of the normalized
integral tends to carry one away from the self-
consistent integral in the high-energy cases was
obtained through test calculations in which very
nearly self-consistent d- and f-electron wave func-
tions, obtained through application of method M2,
were used as input to the “standard method”
[Hartree’s alternate method plus Eq. (11)], all core-
electron wave functions being held fixed. All high-
energy solutions diverge monotonically regardless
of the degree of self-consistency of the input -
higher degrees of self-consistency merely decreas-
ing the initial rate of divergence. The results of
one of these test calculations for the 5f electron of
Os1 6s5d°%5f are shown in Table I. Here we give
the initial slopes of the integrals of the 5f electron
as a function of the iteration cycle of the standard

TABLE I. Monotonic divergence of the 5f electron of
Os 1 6s 5d° 5f as a function of the standard iterative cycle?
with t\sro different nearly self-consistent input wave func-
tions.

Iterative cycle a, (case 1) a, (case 2)
0 -input 7.3639454 7.3639519
1 7.3639400 7.3639595
2 7.3639235 7.3639847
3 7.3638715 7.3640137
4 7.3637057 7.3641421
6 7.3619688 7.3654763
8 7.3478326 7.376 298 2

10 7.2330278 7.464 2805

12 6.3006650 8.1787080

no acceptable

14 normalized solution 13.9807523

16 e 61.1034437

18 e no acceptable
normalized

integral

2The value c¢=0.10 was used in Eq. (11) for both cases
in order to slow down the divergence.

PBoth 5f input wave functions were self-consistent to
approximately 2 parts in 10%, The frozen-core wave func-
tions were the same in both cases, but were only approxi-
mately self-consistent.
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method for two different input wave functions which
differ only slightly -~ and in opposite directions -
from the self-consistent function. We see that with
these two imput wave functions, which for all prac-
tical purposes are identical, the iterative procedure
diverged monotonically in different directions.

Both the plausibility argument and the results in
Table I suggest that these unstable cases might be
controllable by using a modification of the standard
method with, in Eq. (11), a negative value of c;
i.e., by using a new input function obtained by ex-
trapolating from the output integral backward beyond
the old input function. Actually, the situation is
much more complex than this and a radially depen-
dent function c¢(7) is needed, frequently (but by no
means always) with negative c(») at small » and
positive c(r) at large ». The appropriate function
can in principle be predicted with the aid of Pratt’s
improvement scheme'® applied to the input and out-
put functions P, (r) for the two preceding cycles.
However, this functional extrapolation proves to be
highly erratic and unreliable; even when the pre-
dicted function c(#) is artifically limited to values
near zero and carefully smoothed, its use tends to
cause the growth of gross irregularities in the trial
input function. Instead of trying to use some func-
tion c(r), we have found it much better to improve
the trial function alternately at small and at large
radii in the following way: As in methods M1 and
M2, we carry out an iteration on P;(r) - with £,(»)
fixed but with g;(») recomputed each time - using
¢=-0.05 to - 0. 50 (depending on the configuration)
for two or more cycles [until the Pratt-predicted
value of c¢() at #=0.1 becomes positive] followed
by c=+1 for one cycle, and then repeating; a total
of 10 to 30 cycles may be required, depending on
the desired degree of self-consistency.

We have not yet tested this method extensively,
but it appears to be capable of working well. How-
ever, the choice of the negative value of ¢ is rather
critical: If the magnitude is too small, convergence
is very slow, and if it is too large, the iteration
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oscillates and may diverge. If we consider the
necessity for trial-and-error adjustment of the value
of ¢, the required computing time is usually greater
than that of method M2. Moreover, it must be
remembered that there are many excited-electron
cases for which it is difficult to find an initial trial
wave function for which there exists any acceptable
normalized output integral; this is true not only of
type 2 and type 3 cases, but also of some “stable”
(type 1) cases - including p electrons as well as

d and f electrons. For such cases, the most prac-
tical procedure is to employ method M2 or M1 for
at least the first cycle; having had to use such a
method at all, it is simplest to continue to use it
exclusively.

V. CONCLUSIONS

The new methods M1 and M2 described above for
solving the HF problem appear to be workable for
all cases for which the usual methods are imprac-
tical or impossible. Though time consuming they
have been used successfully to make an extensive
survey of configurations containing an excited d or
f electron throughout the various transition and
rare-earth series up to Z=95. The computed bind-
ing energies of excited electrons agree well both
with experimental values (where known) and with
the results of our previous calculations employing
a statistical approximation for exchange (cf. Fig.

4 of this paper with Fig. 1 of Ref. 1). In particular,
the values of Z at which the sudden binding-energy
jumps are computed to occur are identical with
those found previously by the HX method - specifi-
cally, Z=20, 38, 56, and 88 for d electrons, and

Z =57 and 89 for f electrons.
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The matrix element for electric dipole transitions is correctly given by the length formula
in the Hartree-Fock, configuration-interaction, and related approximations, which involve the
diagonalization of an approximate, but nonlocal, Hamiltonian.

INTRODUCTION

Fano and Cooper! have emphasized the lack of
a consistent theoretical formula for calculating
transition matrix elements and their contributions
to the Thomas-Reiche-Kuhn sum rule with approx-
imate wave functions. It is generally known that
there exist three alternative forms for the elec-
tric dipole transition matrix element, called the
length, velocity, and acceleration formulas.
These formulas are equivalent when one uses
exact eigenfunctions of either the complete spin-
independent Hamiltonian or of an independent-
electron central-field-model Hamiltonian. How-
ever, they disagree whenever the eigenfunctions
of a central-field model are improved by including
some correlation, even by only the Hartree-Fock
procedure.'® In practice, the disagreement
among the alternative formulas is less bothersome
than the lack of some criterion to choose among
them. Indeed, there are cases™® in which length
and velocity formulas using improved wave func-
tions differ by a factor of 2 and yet either would
be more accurate than a central-field-model cal-
culation, in which all alternative formulas give
the same result.

This paper identifies a class of approximations

in which the length formula is the physically cor-
rect one for calculating the transition matrix ele-
ment for electric dipole processes. This class
encompasses all those procedures which solve for
the exact eigenfunction of an approximate Hamil-
tonian. Two examples are the Hartree-Fock and
the configuration-interaction approximations.
Explicitly excluded from this class are those var-
iational procedures which do not give exact solu-
tions to an approximate Hamiltonian; for these,
qualitative considerations must be used to deter-
mine which of the alternative formulas are likely
to be most accurate.?® For conciseness we shall
compare only the length and velocity formulas.

THEORY

The difficulty that arises in the interpretation of
the length and velocity formulas stems from the
occurrence of nonlocal potentials, which is im-
plied by some common approximation procedures,
as shown in the next section. Here, therefore,
we discuss the properties of nonlocal potentials.
Consider first the ordinary case of a local poten-
tial V. In coordinate representation V is given by
V(¥), and the effect of operating with V(¥) on a
wave function ¥(¥) is just the product V(F)y(¥).
However, this is a special case. In general, the



