higher excited states. In fact, for the first three
P states the polarizabilities in the (n + 1)st excited
state are roughly ten times those in the nth excited
state. Both this effect and (b) arise from the fact
that a less strongly bound valence electron is more
easily distorted by the field.

(d) The scalar polarizability @, is roughly ten
times the tensor polarizability &,. Thus the dif-
ferential shift among magnetic substates is only
about a tenth of the absolute shift of all the sub-
states.

(e) All a4>0 and all a,<0, except for the higher
¢p, /2 states of Na, which are strongly perturbed
by D states lying at slightly lower energies. Per-
turbing states tend to repel the perturbed state, so
states above the %P, ,, energy tend to depress that
level, states below tend to raise it. But since the
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higher states usually predominate in their contri-
butions to o, we generally find that the levels are
pushed to lower energy, i.e., @;>0. In the case
of Na, one D state lies just below the Py, state,
and yields a large negative contribution to .

(f) The S states contribute little to the polariz-
abilities. This is a fortuitous circumstance that
occurs because the 2P, /2 states lie roughly midway
between the nearest S states, so their contributions
to @y and @, very nearly cancel. This is readily
seen in Table I.
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One intuitively expects that a long-lived decaying state must have many properties like those
of true eigenstates, with interesting technical modifications to encompass the complex energy.
We examine here the small change in the complex energy due to the application of a weak per-

turbation.

Apparently, the energy levels of a quantum sys-
tem fall into two distinct groups, the discrete and
continuous spectra. An intermediate possibility
exists, however, which unites some aspects of both,
This possibility, which occurs in a wide variety of

atomic and nuclear systems, is the decaying state.
Here the spectrum is, strictly speaking, continu-

ous; nevertheless a carefully prepared superposi-
tion of continuum states behaves, for a time, very
much like a discrete eigenstate. To each decaying
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state we can usefully assign a complex energy
Ec = Eo +ir.

We may precisely define this complex energy as the
location of a pole of the appropriate Green’s func-
tion; the pole is, technically speaking, on a second
sheet, separated from the real axis by the imagin-
ary part I'. There is a simple interpretation for
T'; its reciprocal indicates the lifetime of the de-
caying state,

We intuitively expect that a decaying state must
have many properties like those of discrete eigen-
states, with interesting modifications to encompass
the complex energy. We examine here the small
change in the complex energy E. due to the applica-
tion of a weak perturbation.

This is not the usual perturbation theory of dis-
crete eigenstates; both the real part and the imag-
inary part of the complex energy E, alter. We have
obtained an exact formula for these alterations, in
a special context. The result is

E,=E® 2 fou &8 (r)ulr) dr + O(N?) | (1)

Here \u(7) is the perturbation, and E!® and ¢(r)
are the complex energy and “wave function” for the
unperturbed decaying state. We define these below.

1t is not surprising that the change in E, is linear
in A, the strength of the perturbation, However the
integral which appears in Eq. (1) is interesting be-
cause it is not the usual Hermitian (diagonal) ma-
trix element, The wave function ¢4(r) is complex,
and its complex square appears in (1), rather than
the squared absolute value. While it is mathemati-
cally obvious that an Hermitian expression would
preclude a first-order alteration in I', still the
physical significance of the non-Hermitian form (1)
is unclear and intriguing.

In the present work, we concentrate our attention
on a simple case which we may analyze exactly.
We consider an electron in the presence of a central
potential. The unperturbed potential v(r) is assumed
to have a barrier region which may trap the elec-
tron near the origin; the electron may tunnelthrough
the barrier and this is responsible for the “decay.”
We describe the electron by an s-wave Schrédinger
equation:

da
(- o +v(r)+>\u(r)—k2) ¥(r)=0. (2)

When we base our approach on the apparatus of
scattering theory, we are taking the continuum
viewpoint as fundamental.

The perturbation Mu(r) is a central potential, in-
fluencing the electron within the barrier region.
We assume that both v(r) and u(r) are strictly zero
beyond a finite radius a.

With these assumptions, the Jost functions for the
Schrddinger equation (2) have especially simple
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properties. We denote the exact Jost solution of
the perturbed equation (2) by f(2;7); it is that solu-
tion of Eq. (2) which equals e”**" for » > a. The Jost
function is the value at the origin of the Jost solu-
tion:

f&)=f(k;0) .

Each of these definitions may also be used for com-
plex values of 2. With our assumptions about the
potentials, f(£) is analytic for all 2.}

The decaying states of this system are associated
with zeros of the Jost function in the upper-half 2
plane. We define the decay-state wave vector K())
by the equation

flK)=0 ®3)

and the complex energy by E.=K?; we apply a sub-
script zero to denote the unperturbed values. The
definition (3) is equivalent tothe more usual Green’s-
function definition of a decaying state.

In this paper we only consider the first-order
perturbation theory. We derive a result of the form
(1) for a simple special perturbation:

Au(r)=r8(r =7ry) 7ro<a. (4)

This special case is easily dealt with; by the linear-
ity of expression (1) it suggests the general resuilt,
Thus, the study of (4) provides a simple heuristic
derivation of the perturbation formula. A mathe-
matically sound (but more complicated) derivation
of Eq. (1) is sketched in the Appendix.

For the perturbation (4), it is entirely elementary
to relate the perturbed Jost solutions:

f;7)=fo(k;7) for »> 7,
=Afolk;7)+Bfy(=k;v) for v <7,

We determine the numbers A, B by requiring con-
tinuity of f(%;7) and the usual condition on the jump
of its derivative. We simplify the formulas using
the fact that the Wronskian of fy(k;7) and fy(-;7)
is constant. We find

A=1+(\/2ik)folk; 7o) fol=F;7y),
== (\/2ik)f2e(k;7,) .

The dependence of K(\) upon X is implicitly de-
termined by Eq. (3). If we differentiate Eq. (3)
with respect to A, and evaluate the result for A =0,
we obtain

dK
ax

(The derivative on the left-hand side is evaluated
for A=0.) We rewrite this formula in the form

%WZ)=—i[f0(-Ko)/(%{9;)] [’ fiKo;7)ulr) dr .

_ [fo(— Ko) %KO(Z—Q‘)KOJ F3 Ko 7o) .
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Now we define the wave function for the decaying
state by the equation

)=} =i [rd- K0/ )" cn. ®

and then Eq. (1) follows.

The result (1) is an analog of the Feynman-Hell-
mann theorem. We expect that a similar result
can be formulated for other problems, where the
decay mechanism is more interesting.

A physical example of the latter type is the fol-
lowing. Consider an excited atom in a magnetic
field. It is well known that there is a linear altera-
tion in the real part E, of the excited-state energy
due to the magnetic field; this leads to the Zeeman
effect. However the imaginary part I is also
weakly field dependent. Even if the dipole radiation
matrix element is not altered (to first order) by the
magnetic field, the photon density of states cer-
tainly has a first-order alteration. This causes a
change in the decay rate, i.e., the natural line-
width., Of course, for optical spectra such an ef-
fect is far too small to be observable.

Our result (1) may also be obtained by a slightly
more complicated method involving the Green’s
function for the Schrddinger equation (2). We may
express this Green’s function in terms of the Jost
solutions and thereby analytically continue it onto
the second sheet (i. e., to the upper-half 2 plane).
The usual continuum perturbation theory for this
Green’s function thereby transforms into a decay-
state perturbation theory, which has complex en-
ergies in the denominators and matrix elements of
the form

Upm=2 fon da(r)ulr) ¢, (r) dr

in the numerators (n, m refer to the various decay
states), However, there are serious technical dif-
ficulties in handling this expansion; these difficult-
ies are due to the absence of orthogonality and
normalization theorems for the decay-state wave
functions.

The wave functions (8) cannot be normalized;
this is an important difference between the decay-
state problem and the usual discrete-state pertur-
bation theory. However the matrix elements ap-
pearing [e.g., in Eq. (1) above] are finite. They
are rendered convergent by the properties of the
potential.

In conclusion, we see that while the result (1)
looks superficially like the discrete-state perturba-
tion formula, it is obtained only by an indirect route
which carefully avoids such undefined concepts as
normalization and orthogonality of the decay-state
wave functions,

The idea of this inquiry was suggested by Profes-
sor E. Gerjuoy.

A DECAYING STATE

1219

APPENDIX

In this appendix, we supply a general proof of
(1) which altogether avoids the use of a §-function
perturbation. It is thus more mathematically rig-
orous than the discussion given in the text, although
considerably more ungainly and complicated.

We compare the differential equations defining
the perturbed and unperturbed Jost solutions:

=k x;7) + [o(r) + 2ulr) =] £ (B3 057) =0,
—fo (Ko 7)+[v(r) - K§) foKo;7)=0 .

The primes refer to differentiation with respect to
r. As above, we define the unperturbed wave vec-
tor K, by the condition f,(Ky; 0)=0. We multiply the
first equation by fy(Ky;7) and the second equation by
f(K;\;7), subtract the second from the first, and
integrate from » =0 up to » =a. The result is

fo“ (K2 k2= xu(r)] folKo; 7) f (B3 N;7) dr
=[G 07)f o (Ko 7) = f ' Rs s 7) folK s )] [2 . (6)

Using Eq. (6), we perform two procedures. The
first is to set £ equal to K(A), for which f(K;;0) is
zero. The right-hand side of Eq. (6) is then, using
the known form of f(K;x;7) for r 2 a,

i(K - Ko) exp(~iKya - iKa) . (8")

We differentiate Eq. (6) with respect to A, and set
A=0. Here we are assuming that the derivatives
involved exis¢, a question similar to the assumption
that the perturbation series is convergent. While
interesting, such questions are not essential to es-
tablishing the form of the series when it does exist.
After we have set A =0, we obtain

K a
-2K°(g—")o £ F2(Ky7) dr

+ f " ulr) £ (K 7) dr =i (g%) R,
0 0

Now we return to Eq. (6). Our second procedure
is to set A =0, leaving k arbitrary. We obtain

fo" (K2 = R2) fo(Ko; 7) folk;7) dr

= Ufolke; 7)o o;7) = fo e 7) fol Ko 7)) lg . (8)

The right-hand side now is a quantity like ('), with
k replacing K, plus an additional contribution from

7 =0, because fy(k;7) is not zero there. Setting &
=~ K,, we obtain
“f'(Ko,'O)=2iKo/fo(-Ko) . (9)

Finally, we differentiate Eq. (8) with respect to %,
and then set £ =K,. The result, simplified using
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Eq. (9), is

‘2Kof FiKy;r)dr
0

(10)

=i exp(- 2iK,a) - ﬂ"o..(ﬂa) ’
L)

fo-Ky) \ak
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and this in conjunction with Eq. (7) establishes the
original perturbation formula (1).

We see that the heuristic calculation of the text,
based upon the 5-function potential (4), has correct-
ly obtained the form of the general result. The der-
ivation given in this appendix only assumes that
v(r) +Xu(r) obey the usual analytic conditions re-
quired for Poincare’s theorem.®

*Research supported by the National Aeronautics and
Space Administration, under Grant No. NSG-416.
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Hyperfine Structure of the Ground State of Mnss
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The five hyperfine transition frequencies of the S;,, ground state of Mn® have been measured

in a spin-exchange optical pumping experiment.
buffer gas, and the measurements were made as a function of buffer-gas pressure.

The optical pumping flasks contained a neon
The mea-

surements were carried out at a temperature of 700 °C. The linewidth of the Mn signal was

typically 300 Hz.

The hyperfine interaction constants were found to be A=—72420836 (15) Hz,

=-19031(17) Hz, C=-0.7+1.1 Hz, | D| <0.25 Hz, and | E| <0.02 Hz. The fractional
pressure shift in A was found to be (1/A) (8A/8P)=(2.6+0.2) x10"® Torr-!. No pressure de-
pendence of the other interaction constants was observed.

I. INTRODUCTION

The hyperfine structure of the S5,, ground state
(=%, J=%) of Mn® has previously been investigated
by atomic-beam methods.''? There are five hyper-
fine transition frequencies from which one can de-
termine five interaction constants in the Hamilton-
ian. First-order perturbation theory relates these
constants to electric and magnetic multipole inter-
actions for atoms where LS coupling is a good ap-
proximation. In many cases, however, relativistic
effects, configuration mixing, and higher-order per-
turbation terms contribute significantly to the inter-
action constants. In this case, measurement of the
interaction constants can lead to a refinement of
theoretical wave functions.

In the most recent atomic-beam experiment, 2
three hyperfine frequencies were measured to de-
termine the magnetic dipole and electric quadrupole
interaction constants A and B. The three remaining
constants were set equal to zero. The value of B
was attributed entirely to relativistic corrections.

We report here a more precise spin-exchange op-
tical pumping experiment in which all five hyperfine
frequencies were measured, eliminating the need to
set any of the interaction constants equal to zero.

The Mn atoms were polarized in a weak magnetic
field by spin-exchange collisions with optically
pumped Rb atoms. When an rf field induces hyper-
fine transitions in the Mn atoms, they are depolar-
ized and the spin-exchange collisions depolarize the
Rb atoms. This results in a change in the intensity
of the pumping light transmitted by the sample flask.
Due to the low vapor pressure of Mn, the measure-
ments were performed at temperatures near 700 °C.
The density of the Rb atoms in the flask was con-
trolled independently of the flask temperature in a
manner described in a previous publication. 3

II. APPARATUS

A block diagram of the apparatus is shown in Fig.
1. The magnetic field was produced by Helmholtz
coils situated inside two concentric cylindrical mag-
netic shields. The sample flasks were 300-ml
quartz spheres. They were heated to 700 °C in a
firebrick oven located in the center of the shields.
The oven was heated with electrical heating rods.
The Mn vapor pressure at this temperature is ap-
proximately 1x10™® Torr. The Rb density in the
flask was adjusted for optimum signal strength in
the following way. A reservoir of Rb metal was
contained in a small sidearm attached to the flask



