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The method of pure electric field level-crossing spectroscopy has been used to measure
the tensor polarizability of the 5 I'3~2 state of potassium. Our result is +2=- 0.263(40) MHz/
{kV/cm) . Numerical values of the scalar and tensor polarizabilities of the first, second,
and third P&g2 states of Li, Na, K, Rb, and Cs have been calculated using the Bates-
Damgaard technique to evaluate the necessary radial integrals. The polarizabilities show
remarkable systematic trends among the various states of the atoms. Our present and pre-
viously reported results are compared with previous theoretical and experimental work.
The agreement between theoretical and experimental values ranges from fair to excellent.

I. INTRODUCTION

If an atom is placed in a small uniform electric
field 8, the energy of the mth sublevel of the atom
will be shifted by an amount nE (m) which is pro-
portional to the square of the electric field. ' One
can write this Stark shift of the sublevel m as

The constant of proportionality n (m) is just the
static electric polarizability of the atom in the sub-
level m. The 2J+1 polarizabilities of an atomic
state of angular momentum J are not all indepen-
dent, since, regardless of the size of J, they can
be expressed as )inear combinations of a scalar
polarizability o.o and a tensor polarizability n~:

o. (m) =no+am [Sm —Z(j+1)j/J(2J- 1) . (2)

Equations (1) and (2) provide an adequate descrip-
tion of the Stark shifts which were observed in our
work. A discussion of higher-order effects can be
found in the work of Khadjavi et al. The polariza-
bilities are of considerable interest since they can
be expressed as linear combinations of the oscilla-
tor strengths of the atom. Thus, accurate values
of the atomic polarizabilities can be used to check
the consistency of experimental oscillator strengths.
Also, in recent years Schwartz and Dalgarno' have

developed new methods, not based on perturbation
theory, for computing Stark shifts.

The Stark effect in alkali atoms is especially in-
teresting since the theoretical computation of the
polarizability of an atom with a single valence elec-
tron is particularly straightforward. Also, exten-
sive experimental oscillator strengths are available
for alkali atoms. Our interest in this paper is
limited to the P»~ states of alkali atoms since only
these states can be investigated by our experimental
technique of electric field level-crossing spectro-
scopy. Excellent measurements of the Stark shifts
in the P,&3 states were made spectroscopically
many years ago by Yao, Kopfermann and Paul,
and Grotrian and Ramsauer. ' More recently,
Marrus and Yellin, and Marrus, McColm, and
Yellin' have used the atomic-beam technique to
measure polarizabilities in the first P states of
K, Rb, and Cs. Khadjavi, Lurio, and Happer
used pure electric field level crossing to measure
the tensor polarizability in the second P3~~ states
of Rb and Cs. Murakawa and Yamamoto" calcu-
lated shifts for the lowest P states of all the alkalis
and for the second-lowest P state of cesium.

In this paper we report a new measurement of
the tensor polarizability of the 5 P3/p state of po-
tassium and we report new calculations of the scalar
and tensor polarizabilities of the first, second, and
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third P3~2 states of Li, Na, K, Rb, and Cs.

The interaction of an atom and a static uniform
electric field g is described by the operator

V= —g ~ p (3)

where 6& = eg, r, is the electric dipole moment op-
erator. Since r& has nonzero matrix elements only
between states of opposite parity, the average value
of V in any parity eigenstate vanishes. Hence, the
change in energy of a state m, to lowest order in

g, is given by the second-order perturbation for-
mula

(4)

where the sum extends over all intermediate states
i of the atom. From (4) we see that the energy
shift can be regarded as the diagonal matrix ele-
ment of the effective Hamiltonian operator K .
One can use the algebra of spherical tensors '3 to
show that for a state of electronic angular momen-
tum J and for an electric field along the z axis, the
effective Hamiltonian is

(5)

Here no and n~ are the scalar and tensor polariza-
bilities of the atom.

The effective Hamiltonian may be regarded as a
first-order perturbation within the sublevels of the
atomic state J. Since the atomic sublevels are also
perturbed by the interaction +„between the atomic
electrons and the nucleus, the energies and eigen-
states of the atom are just the eigenvalues and
eigenvectors of the Hamiltonian operator

X ~fg +X (6)

II. THEORY OF STARK EFFECT IN THE ALKALI P3 j2
STATE

The computation of the quadratic Stark shifts is
a straightforward application of second-order per-
turbation theory, and was performed many years
ago by Kirkwood' and by Condon. ' This approach
is summarized by Condon and Shortley. " More re-
cently, Angel and Sandars and Khadjavi, Lurio, and
Happer' have used the algebra of irreducible spheri-
cal tensors to elucidate the symmetry properties of
the Stark effect. This approach allows easy separa-
tion of the effective Hamiltonian into a monopolelike
and a quadrupolelike part with which are identified
the scalar and tensor polarizabilities, respectively.
This technique was used by Khadjavi et al. ,

' and we
shall briefly review it here.

A. Hamiltonian

The hyperfine interaction 3'„can be expressed to
sufficient accuracy in terms of the magnetic dipole
and electric quadrupole coupling constants a and b:

3 (I ~ j) + ~ (I ~ J) —I(1+1)J(J+ I)
2I(2I —1)J(2J'- 1)

In diagonalizing (6) one can ignore the scalar com-
ponent of the effective Hamiltonian (5) since this
simply shifts all energy levels of the atomic multi-
plet by the same amount.

B. Breit Formula

Our experimental work made use of level-crossing
spectroscopy. Details of the experimental method
can be found in an earlier paper by Khadjavi et al. '
The experiments are based on the fact that if atoms
are excited by resonant light of polarization vector
f, the intensity of fluorescently scattered light of
polarization vector g is given by the Breit formula

8 (f ) C Z f~mf ms' gu'm'gm
1+ 21TiTv (p, p, )

Here f, =&p tf ~ plm), etc , wh.ere 1p) and Im) are
excited-state and ground-state eigenvectors, re-
spectively; w is the radiative lifetime of the excited
state, and

The excited-state energies E(p) are the eigenvalues
of the Hamiltonian (6). The factor C is proportional
to the intensity of the exciting light. The summation
in (12) extends over the indices m, m', g, and p,

Because of the dipole matrix elements f, , etc. ,
the azimuthal quantum numbers associated with p
and p,

' can differ by no more than 2 if the numer-
ator of (8) is to be nonzero.

From (8) it is evident that resonant changes in
the intensity of scattered light may occur whenever
the frequency v(p, p, ') passes through zero, that is,
whenever two energy levels cross. Since the scalar
polarizability does not affect the frequencies v(pp'),
a level-crossing experiment yields no information
about ~,.

In practice, the intensity of fluorescent light is
carefully m|.'asured as a function of the applied elec-
tric field. Values of the unknown atomic polariz-
ability are then chosen to ensure the closest pos-
sible agreement between experimentally measured
and theoretically predicted fluorescent intensities.

The Breit formula was evaluated by means of a
computer program and typical results for the en-
ergy levels are shown in Figs. 1-3. In these plots
we have used the best values of a and b available.
For &2 we used the results of a Bates-Damgaard-
(BD)-type calculation, "described in Sec. II C;
(these values listed in Table III). The o.z values
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FIG. 1. Calculated energy
levels for the 4 P&i2 state of Na
vs $. A shift of the center of
gravity of the energy levels has
been suppressed. The hfs con-
stants are taken as a=6. 1MHz,
5 =1.0 MHz. The tensor polar-
izability is taken as G.2= —0.042
MHz/(kV/cm), which is the re-
sult of our BD calculation. . The
same plot is valid for the 3 P3i2
state if the vertical scale is mul-
tiplied by 3.05 and the horizontal
scale by 0.042/0. 021= 2.3.
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From (23) and (24) of Ref. 3 we find that the sca-
lar and tensor polarizabilities of the P3~~ states of
an alkali atom are

o'O=-k I9D(-.')+D(2)+5S(-')],

&a=I [»(-') - 4D(-')+ 25S(-')]

(9)

(10)

where the terms S(2) and D(J) account for perturba-

are probably accurate to a few percent, judging by
the agreement with the measurements that have
been made to date.

An interesting aspect of Figs. 1-3 is that level
crossings occur at nonzero values of 8. There
are, of course, the zero-field crossings that are
responsible for the electric field Hanl'e effect, but
the high-field crossings are important because they
will give additional structure to the level-crossing
signals. The scalar energy shift —

& o.'&8 has not
been included in the figures since the level-crossing
signals are not affected by this common shift of all
the atomic sublevels. Normally, oo &0, so there is
a net downward shift of all the levels. For the first
and second alkali P3&~ states, 0., is negative. The
center of gravity of the energy levels in Figs. 1-3
is independent of the electric field value.

C. Calculation of Polarizabilities

tions from S and D states of the atom. In Egs. (9)
and (10),

+ e'[ fo dr R(nP„,)r R(n'S, q,)]'
E(nPq)q) —E(n Sggq)

~ e I fo dr R(nP3g~)r R(n'D~)~)] (12)
E(nPq) q) —E(n'Dq )q)

~ e2[ fo dr R(nP31~)r R(n'Dg(2)]
E (nP3 /2) —E(n'D, &2)

o{+2) = &py op—- —4 D(2) —~ D( ,)-(14)

so that the polarizability of a + & sublevel is deter-
mined only by perturbations from the D states. For

The radial wave functions of the electron are & 'R.
Note that the S(J) and D(J) of this paper are exactly
half as large as those of Ref. 3. Also note that
there is a transcription error in Eq. (23) of Ref. 3;
the coefficients of S{-,') should have been 5 and 25
instead of 10 and 50. However, the correct version
of (23) was used in Ref. 3 to calculate the numerical
values of the polarizabilities, all of which agree
with the calculations of the present paper.

From (9) and (10) we find that the polarizability
of the + & sublevels of a J'= —,

' state is
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the + —,
' sublevels the polarizability is

+(+ 2) +0 +2 B D(2) —m D(a) -YS (a) (15)

so that both D and 8 terms contribute to the polariz-
ability of the + & sublevels.

The numerical values of S(&), D(-', ), and D(-, ) were
computed using the Bates-Damgaard (BD) method
for the radial integrals. " The program did not use
the tables published by those authors but rather
generated new values from the basic formulas. The
results of this program were thoroughly checked
against the original Bates-Damgaard tables. The
energy levels were taken from Moore's tables. '
The results are listed in Table I, where we have
entered the quantities (f dr ~ ~ ~ ) /r E and their sums
over n' for the first three P3i& states of the stable
alkalis. Except in the case of cesium the D(—', ) and
D(~) integrals were found to be essentially the same
so that only D(—,') is tabulated.

III. MEASUREMENT OF 0(, IN THE 5 P, t~ STATE OF K '
A. Apparatus

The apparatus used to measure the differential
Stark shifts in the second excited I'3i~ state of K
was described previously by Khadjavi et al.
Briefly, the experimental method is as follows:

Resonance radiation from a lamp is focussed onto

an atomic beam in a region near the center of a pair
of electric field plates. The scattered light is de-
tected by a photomultiplier tube. The polarizations
of the incident and detected beams of radiation were
chosen to be perpendicular to one another and to the
electric field. The applied field is purely electric
and the light is plane polarized in the plane defined
by the incident and detected light directions. The
electric field is normal to that plane and is uniform
to within a few percent in the field of view of the
optical system.

The electric field was swept by a function gener-
ator which fed a triangular wave with a 16-sec
period to the high-voltage regulator. The high
voltage (HV) was measured with a Sensitive Re-
search Model ESH electrostatic voltmeter and was
found to be a linear function of the sweep voltage.
Thus, during a measurement, the function generator
voltage was usually read at the input to the regulator
since the lower voltage there was easier to mea-
sure.

The signal from the photomultiplier tube passed
through a linear amplifier and was stored in a 1024-
channel signal averager (TMC Model 1000). The
averager was internally swept in a 16-sec cycle that
was synchronized with the HV sweep so that the
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FIG. 2. Same as Fig. 1 for the
5 I3/2 state of K, assuming
a =1.95 MHz, b =0.92 MHz, +2
= —0.260 MHz/(kP/cm) . For the
4 I'3/2 state, multiply the vertical
scale by 3.05, the horizontal scale
by 0.260/0. 024 = 10.8. The single
&~ = +2 crossing which we observed
in our measurements is marked with
a circle.

-10—

3 4 5 6

ELECTRIC FIELD (kv/cm'I

al
0

8



QUADRATIC STARK EFFECT IN THE Pq(a 1213

3000—

~ 2000—
x:

3+—
2

ilZ—1000—
F

LLI 5

4
0 —3

2

~-1000—

4J

FIG. 3. Same as Fig. 1 for the
6~P3~2 state of Cs, assuming a
=50.67 MHz, b=-0. 46 MHz, o'2
= —0.059 MHz/0 V/cm)'.

-2000—

-3000

0
I

50 100 150 200 250

ELECTRIC FIELD (kV/cmj
300

I

350

stored line shape represented intensity vs field.
In N sweeps the signal-to-noise ratio of the stored
information is increased by vP. A typical "run"
would consist of several hundred sweeps, or total
integration times for each of 1024 points of 5 or
10 sec.

The contents of the averager could be read out
onto an X-Y recorder or punched directly onto
cards. Normally, both methods were used. After
a readout of stored intensity data, a few sweeps
were taken using the output of the function generator
as input to the averager to obtain a record of the
field vs time. Thus, any nonlinearities in $(t) were
unimportant when t was eliminated as a parameter
between $(t) and f(t) to get I(S).

B. Analysis of Data

The experimental data, consisting of a set of
intensity values and the corresponding field values,
were compared point by point with a theoretically
generated set of the same data. The latter set was
computed from the Breit formula (see Sec. II B).
The calculations require that we know the hyperfine
structure and lifetime in the P3~& state, and we
used the results of Schmieder, I urio, and Happer, '
namely, a=1.95+0.05 MHz, b =0.92+0. 1 MHz,
7'= 140.8+1.0 nsec.

The program that compares the experimental
and theoretical data computes their mean square
deviation (MSD). The MSD is calculated for a
number of theoretical curves which correspond to
different values of &&. The value of && which gives
the smallest MSD is quoted as the experimental
result.

C. Typical Experimental Data and Results

In Fig. 4 we show a typical experimental line
shape as plotted directly from the averager by the
X-Y plotter. Although it appears continuous, it
actually consists of 1024 separate points. The sym-
metrical shape is due to the triangular sweep of the
field which varies from 8. 6 kV/cm at the left to
—2. 6 kV/cm at the center to 8. 6 kV/cm at the
right. In the processing of these plots, the sym-
metrical halves were added together. These data
were taken with 470 sweeps, or integration times of
about 7. 5 sec per point.

The average of &2 determined from the two best
independent experimental runs is

aa(K'95 'P~&3) = —0. 268+0. 04 MHz/(kV/cm)

The error limits here represent two standard devi-
ations, or 86% confidence. InFig. 5areplotted one
set of experimental points and the best-fit theoret-
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FIG. 4. Typical level-crossing signal for the 5 I'3~2
state of K as read out by the X-Y plotter directly from
the 1024-channel analyzer memory. The electric field
varies from 8.6 kV/cm to —2.6 kV/cm to 8.6 kV/cm,
left to right. This symmetrical waveform is due to
sweeping the field in a triangular wave. The plot appears
continuous, although it is actually 1024 separate points.
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ical curve. These data show considerably more
noise than the data used to determine a and 7'. '
This occurs because the resonance light for exciting
the second I'&~, state is less intense than the light
for exciting the first excited state and the photon
scattering cross section of the second excited state
is smaller than that of the first excited state. Also,
the electric field plates both reduce the size of the
atomic beam and contribute to increased instrumen-
tal scattering.

FIG. 5. Experimental points and the best-fit theore-
tical line shape, which is for &2 (K 5 PS~2) =-0.263
+ 0.04 MHz/(kV/cm)'.

IV. COMPARISON OF THEORETICAL AND
EXPERIMENTAL RESULTS

In Table III we list all the reliable determinations
of +o and && known to us. Not included are clearly
incorrect results, or data that did not permit de-
termining oro and/or o.'z. The values in this table
are plotted in Fig. 6. It should be noted that the
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11; g, Ref. 18; h, Ref. 6;
k, Ref. S.
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TABLE II. Scalar and tensor polarizabilities of the
P&~2 states of the alkali atoms.

Li Na K Rb Cs

&p + 0.040 + 0. 086 + 0.158 + 0.224 + 0.427
1st —0.010 — 0.021 — 0.024 —0.037 —0.059

2Ild
0.'p + 6, 855 — 1.085 + 1.828 + 3.377 + 9.269

—0.377 — 0.042 — 0.260 —0.507 —1.072

3rd &p +70.942 —14, 568 + 11.137 + 22. 534 +70.299
a2 — 8.217 + 0.662 — 1.375 —3.111 —7.523

BD calculation. Units of op, 0.2, NHz/(kV/cm)2.
Example: 0.'2 (K 5 Ps~2) = —0.260 MHz/(kV/cm) 2

scales in these plots are related by multiples of 10.
It is clear from Fig. 6 that 0'0 and e2 can be cal-

culated reliably to a few percent using the Bates-
Damgaard (BD) method to evaluate the radial inte-
grals. This is reasonable since the largest contri-
bution to the integrals comes from large r, where
the Coulomb approximation (BD) method is most
valid. The measured values of +& for the second

I'312 states of K, Rb, and Cs all agree with the
calculation to within experimental error.

The uncertainty in the theoretical calculations of

&0 and o'2 arises from the radial integrals and from
the truncation of the sum over perturbing states.
The energies are known experimentally to high
accuracy.

V. CONCLUSIONS

Several remarks about our results for the alkali
atoms (Tables II and III, Fig. 6) can be made:

(a) The polarizabilities of the alkalis apparently
can be calculated within a few percent with the BD
method, judging by the agreement with existing
measurements. One might thus expect the BD
method to be accurate for any atom or ion with a
single electron outside of closed shells.

(b) The polarizabilities monotonically increase
in absolute value with the atomic number, with the
exception of lithium.

(c) The polarizabilities increase as one goes to

TABLE III. Calculated and experimental polarizabilities. References marked with asterisks are from this work.
(dp and 02 are in units of MHz/(kV/cm)2.

Li

Na

2 'P»2

3 Ps]2
4 Ps]2

2

3 Ps]2
2

4 'Psi2
Ps/2

2

4 Ps]22

a, p {calc)

+0.04
+0.24
+6.855

+ 70.942

+0.084
+0.086

—1.085
—14.568

+0.156
+0.158

Q. p (expt)

+0.089

02 (calc)

—0.01
+ 0.002
—0.377
—8.217

—0.020
—0.021

-0.042
+ 0.662

—0.024
—0.024

0, 2 (expt)

-0.017

Ref.

Rbss

Csiss

5 Psi2

6 Ps(2
2

5 'Psi2

6 Ps]2
2

7 Psi2
2

6 Psi22

7 P3,2
2

8 'P&2

+1.828

+11.137

+0.153
+0.221
+0.224
+2.68

+3.2
+3.34
+3.377

+22. 534

+0.313
+0.372
+0.427
+8.88
+9.03
+9.269

+70.299

+0.156+0.03

+1.95
+2.01

+0.213 +0.03

+ 2.73

+0.398 + 0.06

-P. 260

—1.375

-0.039
—0.036
—0.037
—0.58

—1.14
—0.494
-0.507
-3.111
—0.076
—0.047
—0.059
—1.02
—1.05
—1,072

—7.523

—0.035 +0.006
—P. 263+0.04
—0.19
—0.70

—0.040 + 0.006

—0.72

—p. 521 +0.021

—0.065 ~0.01

-1.077+ 0. 043

—0, 993+0.02

8
6

11
10

18
6

12
3

11
10

11
3
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higher excited states. In fact, for the first three
P states the polarizabilities in the (n+ l)st excited
state are roughly ten times those in the nth excited
state. Both this effect and (b) arise from the fact
that a less strongly bound valence electron is more
easily distorted by the field.

(d) The scalar polarizability o.'0 is roughly ten
times the tensor polarizability &2. Thus the dif-
ferential shift among magnetic substates is only
about a tenth of the absolute shift of all the sub-
states.

(e) All &0&0 and all o!&&0, except for the higher
'P3&, states of Na, which are strongly perturbed
by D states lying at slightly lower energies. Per-
turbing states tend to repel the perturbed state, so
states above the 'P3&2 energy tend to depress that
level, states below tend to raise it. But since the

higher states usually predominate in their contri-
butions to +0 we generally find that the levels are
pushed to lower energy, i. e. , &p&0, In the case
of Na, one D state lies just below the P3~& state,
and yields a large negative contribution to 0.0.

(f) The S states contribute little to the polariz-
abilities. This is a fortuitous circumstance that
occurs because the PS&2 states lie roughly midway
between the nearest 8 states, so their contributions
to &0 and && very nearly cancel. This is readily
seen in Table I.
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One intuitively expects that a long-lived decaying state must have many properties like those
of true eigenstates, with interesting technical modifications to encompass the complex energy.
We examine here the small change in the complex energy due to the application of a weak per-
turbation.

Apparently, the energy levels of a quantum sys-
tem fall into two distinct groups, the discrete and
continuous spectra. An intermediate possibi1ity
exists, however, which unites some aspects of both.
This possibility, which occurs in a wide variety of

atomic and nuclear systems, is the decaying state.
Here the spectrum is, strictly speaking, continu-
ous; nevertheless a carefully prepared superposi-
tion of continuum states behaves, for a time, very
much like a discrete eigenstate. To each decaying


